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Trapping light in open plasmonic nanostructures
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In open resonators the energy associated with a localized photonic excitation is lost in the form of a radiated
wave, in the same manner that a classical charged particle in a curved orbit loses energy in the form of
electromagnetic radiation. As a consequence, photonic modes in conventional spatially bounded open resonators
have finite decay times. Here, we theoretically show that, surprisingly, in the limit of vanishing material loss,
plasmons give the opportunity to have light localization in open spatially bounded systems with infinitely large
lifetimes.
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I. INTRODUCTION

Light-wave oscillations in closed lossless cavities, e.g., a
closed metallic box with perfectly conducting walls, can in
theory take place forever because the photons are unable to
escape the cavity. In contrast, in open systems the energy of
an excitation continuously leaks away in the form of emitted
light, and hence the lifetime is invariably finite. Likewise,
charged particles moving in curved orbits emit electromagnetic
radiation, and this is the origin of the Rutherford atom
instability problem, solved by Bohr with his famous quantum
postulates, as any mechanical foundation seemed hopeless [1].
Yet Larmor observed at the time that “when steady orbital
motions in a molecule are so constituted that the vector sum
of the accelerations of all its ions or electrons is constantly
small, there will be no radiation, or very little, from it, and
therefore this steady motion will be permanent” [1]. The
quest for mechanisms that prevent radiation loss continues
to this day, and some of the known solutions are based on
Anderson localization [2], mirrors based on metals or photonic
band gaps [3], total internal reflection (e.g., whispering
gallery modes) [4], and structures that support bound states
within the continuum [5,6]. This last solution relies on a
proposal by von Neumann and Wigner who showed that in
quantum mechanics certain potentials may support spatially
localized states with energies above the potential barriers
[5–7]. Recently these ideas were extended to the case of light
waves [8–12], and exceedingly high Q factors have been exper-
imentally measured. However, an oscillation with exactly in-
finite lifetime requires an unbounded structure (e.g., photonic
crystals).

Here, we describe a strategy to trap light in a bounded
open resonator surrounded by a vacuum such that the
natural oscillations have infinite lifetime. This is evidently
fundamentally and profoundly different from having em-
bedded eigenvalues in an unbounded structure [5–12]. It
is theoretically demonstrated that volume plasmons—i.e.,
charge-density waves in metals—are the key to having light
localization with infinitely long lifetimes in open bounded
systems.

It is emphasized that while infinite-lifetime states are
relatively easy to achieve with unbounded structures, (e.g., in
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the form guided waves), up to now there is no known solution
that permits—even in the ideal case wherein material loss
vanishes—the trapping of light in an open optically transparent
bounded resonator. Indeed, because of the coupling to the
radiation continuum, light tends to escape from the resonator.
For example, whispering gallery resonators can have remark-
ably high radiation quality factors that increase exponentially
with the radius of the cavity [13]. However, the lifetime of
the free oscillations, even though very long, is always finite.
Another good example is the case of metallic spheres. As
shown in Ref. [14], the resonance linewidth associated with
the radiation loss of small metallic spheres decreases extremely
sharply with an increase of the angular quantum number;
however, it is never zero. Quite differently, here we prove
that in the limit of no material loss volume plasmons offer
the opportunity to have free oscillations of trapped light with
exactly infinite lifetimes. We envision that the proposed open
resonators can be potentially useful for light-emitting devices
(e.g., the plasmonic nanolaser [15,16]), chemical or biological
sensing, optical switching, and enhanced nonlinear effects
[17].

II. OPEN PLASMONIC RESONATOR

An archetype of our open resonator is depicted in Fig. 1.
It consists of a core-shell nanostructure in a vacuum, such
that the inner region has radius R1 and permittivity ε1 and
the cover shell has radius R2 and permittivity ε2. All the
materials are assumed nonmagnetic (μ = μ0). We look for a
localized oscillation associated with a (real-valued) frequency
ω such that the electromagnetic field is concentrated in the
vicinity of the nanoparticle, and there is no energy leakage. Let
jp = ∂tP = −iω(ε − ε0)E be the polarization current density
associated with the excitation. To have an oscillation with
infinite lifetime the current jp cannot radiate energy. This is
possible only if the corresponding far field vanishes, which
is tantamount to saying that the multipole moments of jp
of arbitrarily higher order must vanish. There is a general
theorem [18] that establishes that if a source far field is zero
then the corresponding radiated electromagnetic fields must
vanish identically in the vacuum region outside the source. In
our case this tells us that a hypothetical mode of oscillation
with infinite lifetime has (E,H) = 0 in the region r > R2. In
Appendix A, we further refine this result and prove that the
lifetime of any localized excitations of a wide class of bounded
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FIG. 1. (Color online) Geometry of the open bounded resonator
formed by a core-shell nanoparticle. The cover shell is made of a
low-permittivity (ENZ) material.

layered structures (e.g., a two-shell nanoparticle or truncated
photonic crystals surrounded by a vacuum) made of regular
materials with ε �= 0 and μ �= 0 are necessarily finite.

One possibility to have electromagnetic fields identically
zero when r > R2 and an infinite lifetime is to have ε2 = −∞
so that the cover shell is perfectly conducting. This is not
interesting to us because in such a case the resonator is opaque
and inaccessible from the outside world. However, as described
next, there is a startling, yet remarkably simple, opportunity
to have open resonators with Q = ∞.

Suppose that the outer shell is made of a material with per-
mittivity (epsilon) near zero (ENZ), such that ε2 = 0 at some
frequency ω = ωp. ENZ materials are presently of great in-
terest due to their remarkable potentials in supercoupling, tai-
loring wave fronts, and boosting the radiation from an emitter
[19–21]. Moreover, core-shell nanoparticles with a plasmonic
response have been considered previously in different contexts
[22–25]. Let us assume first that all the materials are lossless
because this is an obvious requirement to have undamped
oscillations.

The electromagnetic field in spherical nanostructures can
be conveniently written in terms of TEr and TMr vector
spherical harmonics of the form [26,27], MTE

n (r) = ∇ ×
{rf TE

n (r)Yn(r̂)} and MTM
n = ∇ × ∇ × {rf TM

n (r)Yn(r̂)/(ik)},
where r = xx̂ + yŷ + zẑ, Yn is a generic spherical harmonic
of order n, k = ω

√
εμ is the wave number, and f

p
n (p =

TE,TM) is a solution of the spherical Bessel equation
r−1∂2

r [rf ] + [k2 − n(n + 1)r−2]f = 0, i.e., a linear combi-
nation of spherical Bessel functions (jn,yn). Solutions such
that E ∼ MTE

n are transverse electric (TE) with respect to the
radial direction E · r̂ = 0, and solutions with E ∼ MTM

n are
transverse magnetic (TM), H · r̂ = 0. Straightforward calcu-
lations show that the transverse wave impedance for TEr and
TMr harmonics, defined such that r̂ × E = Zp(r̂ × H) × r̂
(p = TE,TM), is given by

ZTE
n = iωμ r TE

n

/
∂r

(
rf TE

n

)
and

(1)
ZTM

n = ∂r

(
rf TM

n

)/[
iωε rf TM

n

]
.

This suggests that in the ε → 0 limit the impedance of
TMr waves diverges, ZTM

n → ∞, for any vector spherical
harmonic (n � 1), whereas ZTE

n remains finite. For example,
if f

p
n ∼ jn(kr), it can be easily checked that ∂r (rf p

n )/(rf p
n ) ≈

(n + 1)/r for small r , which is independent of the material
parameters. Thus, in the ε → 0 limit the ENZ shell is generally
seen as a perfect magnetic conductor (PMC) by the TMr waves,
whereas it is penetrable by the TEr waves. Hence, despite the
fact the cavity is electromagnetically open, it may support a
wave oscillation with Q = ∞.

The electric field associated with a TMr
n wave is such

that E ∼ MTM
n . For convenience let us denote f̃ TM

n =
f TM

n k0/k with k0 = ω/c. The continuity of the tangential
electromagnetic field at an interface requires that εf̃ TM

n

and ∂r [rf̃ TM
n ] are continuous functions of r . In the limit

ε → 0 (ω = ωp) the fields in the open resonator must
satisfy

f̃ TM
n = E0 ×

⎧⎪⎨
⎪⎩

jn(k1r), r < R1,

Arn + Br−n−1, R1 < r < R2,

0, r > R2,

(2)

where E0 is a normalization constant, k1 = ω
√

μ0ε1, and
A and B are constants chosen to ensure that ∂r [rf̃ TM

n ] is
continuous:

B = AR2n+1
2 (n + 1) /n with

(3)

A = 1

n + 1
[rjn (k1r)]′r=R1

(
Rn

1 − R2n+1
2

/
Rn+1

1

)−1
.

On the other hand, the continuity of εf̃ TM
n requires that at

ω = ωp

jn (k1R1) = 0. (4)

Remarkably, Eq. (4) is coincident with the characteristic
equation for the TMr

n modes of a fictitious resonator
obtained by replacing the ENZ region by a PMC wall. Thus,
an electromagnetic wave can become trapped inside the
nanoparticle core provided the frequency ω = ωp is exactly
coincident with a resonant frequency of the equivalent PMC
cavity. This strict condition is satisfied only for very specific
values of the nanoparticle inner radius (R1). For example, for
waves associated with n = 1 the first zero of j1(u) occurs at
u = 4.49, and thus one possibility to have a natural mode at
ω = ωp is that R1 = R1,0 ≡ 4.49/(ωp

√
ε1μ0). The modes of

oscillation are degenerate because there are a total of 2n + 1
independent spherical harmonics of order n.

The previous analysis confirms that the ENZ shield can
effectively prevent the radiation from the nanoparticle core in
the ε → 0 limit. Interestingly, the magnetic field in the ENZ
cover vanishes, H = 0, whereas the electric field is inherently
quasistatic such that ∇ × E = 0, but it is a transverse field
(∇ · E = 0). Figure 2 depicts the electromagnetic fields in the
open resonator for the n = 1 case with Y1 = cosϕsinθ [(r,θ,ϕ)
is a system of spherical coordinates attached to the center
of the nanoparticle], R1 = R1,0, and R2 = 1.1R1,0, supposing
that the inner core is a vacuum (ε1 = ε0). The electric and
magnetic fields are in quadrature, ensuring that the net power
flow is zero, and Ex is the only nonzero field component at the
origin. Figure 2 shows that the radial electric field is greatly
enhanced in the ENZ shell, and confirms that the fields in the
exterior region vanish. The strong radial electric field is due to
the excitation of volume-plasmon-type oscillations. Usually
the notion of a perfect conductor implies an infinitely large
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FIG. 2. (Color online) Optical field distributions associated with the natural mode of oscillation with infinite lifetime for R1 = R1,0,
R2 = 1.1R1,0, ε1 = 1, ε2 = 0, and n = 1. (a) Amplitudes of the electromagnetic fields in the resonator (normalized to arbitrary units) as a
function of the radial distance in the xoy plane. (b),(c),(d) Time snapshot of Hz(t = T/4), Eϕ(t = 0), and Er (t = 0) in the xoy plane, with
T = 2π/ω the period of oscillation. Bluish (reddish) [Darker (lighter) gray] colors represent positive (negative) excursions of the fields.

complex refractive index, and thus an opaque material. Here,
the ENZ shell behaves as a perfect magnetic conductor, but
intriguingly it is penetrable by the electric field. The reason is
that unlike the “usual” perfect conductors the ENZ material
has a vanishing refractive index. We note that the fields inside
the core region are quite distinct from whispering-gallery
modes [4], which typically are localized near the interface
and are associated with spherical harmonics with an angular
number n 
 1. Moreover, whispering-gallery modes require
resonators with diameters significantly larger than the light
wavelength to reduce the radiation loss and achieve high
(but—even in the absence of material loss—finite) Q factors.
Quite differently, the diameter of our resonator is of the order
of the wavelength.

III. EFFECT OF MATERIAL LOSS AND OF A
NONLOCAL RESPONSE

From the Kramers-Kronig relations any linear and causal
material is necessarily lossy [27]. Even though the Kramers-

Kronig relations do not forbid that ε can be precisely zero at
some isolated fixed frequency of operation, for any realistic
plasmonic material the imaginary part of the permittivity is
greater than zero.

In the presence of material loss, the decay time becomes
finite and the corresponding oscillation frequency is complex
valued, ω = ω′ + iλ, with λ < 0. The quality factor of
the resonator is Q = ω′ × (stored energy)/(dissipated power)
and can be written as Q = ω′/(−2λ). Thus, it is pro-
portional to the ratio between the lifetime τ = 1/(−2λ)
and the period of oscillation T = 2π/ω, such that
Q/(2π ) = τ/T .

To find ω = ω′ + iλ, we note that for natural
modes the fields in the resonator are generally
determined by

f̃ TM
n =

⎧⎪⎨
⎪⎩

aTMjn(k1r), r < R1,

bTM
1 jn(k2r) + bTM

2 yn(k2r), R1 < r < R2

cTMh(1)
n (k0r), r > R2.

, (5)
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FIG. 3. (Color online) Natural oscillation frequency and quality factor of the open resonator. (a) Characteristic (complex) oscillation
frequency for the case ε1 = 1 and (b) quality factor, as a function of the normalized collision frequency of the ENZ cover material. The blue
dashed line in (a) and (b) represents the curves λ = −ωc/2 and Q = ωp/ωc, respectively. The radii of the core and cover shells are R1 = R1,0

and R2 = 1.1R1,0. (c) Quality factor as a function of the air cavity radius for several ωc/ωp and R2 = 1.1R1,0. (d) Quality factor as a function
of the ENZ cover radius for ωc/ωp = 10−5 and R1 = R1,0. (e) Quality factor as a function of the core radius for different values of the core
permittivity and ωc/ωp = 10−5 and R2 = 1.1R1,0. (f) Effect of spatial dispersion in the ENZ cover for ωc/ωp = 10−5, R2 = 1.1R1,0, and
ε1 = 1.0. Lower values of l0 are associated with stronger nonlocal effects.

The coefficients aTM, bTM
1 , bTM

2 , and cTM must be such that εf̃ TM
n and ∂r [rf̃ TM

n ] are continuous functions of r . This yields a
homogeneous linear system,⎛

⎜⎜⎜⎜⎝
− [jn (k1r) r]′r=R1

[jn (k2r) r]′r=R1
[yn (k2r) r]′r=R1

0

−ε1jn (k1R1) ε2jn (k2R1) ε2yn (k2R1) 0

0 [jn (k2r) r]′r=R2
[yn (k2r) r]′r=R2

− [
h(1)

n (k0r) r
]′
r=R2

0 ε2jn (k2R2) ε2yn (k2R2) −ε0h
(1)
n (k0R2)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

aTM

bTM
1

bTM
2

cTM

⎞
⎟⎟⎟⎟⎠ = 0, (6)

which has a nontrivial solution only when ω = ω′ + iλ is such
that the determinant of the matrix vanishes. In Fig. 3(a) we plot
the calculated oscillation frequency (mode with n = 1) as a
function of the ENZ material loss for an air cavity. The cover
material dispersion is described by a Drude model with plasma
frequency ωp and collision frequency ωc. As seen, ω′ is little
affected by the loss and satisfies ω′ ≈ ωp, whereas λ is roughly
proportional to ωc, such that when ωc/ωp → 0 the lifetime
is exactly infinite (λ → 0). Our numerical calculations show

that to an excellent approximation λ ≈ −ωc/2 when ε1 = ε0.
Thus, the quality factor of the open resonator is Q ≈ ωp/ωc

[Fig. 3(b)]. Interestingly, this is the same as the quality factor of
the volume plasmons supported by the ENZ material [solutions
of ε(ω) = 0]. Hence, the lifetime of the natural mode is
determined by the volume plasmons, proving that the wave
oscillation results from the hybridization of volume plasmons
and the optical field in the air cavity. It is interesting to mention
that the characteristic lifetimes of surface plasmon polaritons
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FIG. 4. (Color online) Mie coefficients in the core region and scattering cross section when the open bounded resonator is illuminated
by a plane wave. (a) Mie coefficients in the core region for p = TE (solid lines) and p = TM (dashed lines) waves assuming a lossless
Drude dispersion (ωc/ωp = 0) and R1 = 1.01R1,0. (b) Mie coefficient aTM

1 in the core region. The solid and dashed lines represent the exact
and the approximate analytical result [Eq. (7)], respectively, and are almost coincident. The collision frequency is taken as ωc = 10−5ωp , except
in the case R1 = R1,0 where it vanishes. (c) Scattering cross section σsca as a function of frequency for R1/R1,0 =0.98, 0.99, 1.00, 1.01, and
1.02. The arrow indicates the direction of increasing R1. In all the panels, the cover radius is R2 = 1.1R1,0 and the core region is a vacuum
(ε1 = 1.0).

in metal nanoparticles can also be fairly large due to their
intrinsic quasistatic nature. However, as further discussed in
Appendix B and in Ref. [14], even in the absence of material
loss they have necessarily a finite decay time due to the
radiation loss associated with high-order multipoles.

When the core is made of a dielectric [Fig. 3(b)], the quality
factor can be enhanced because of the impedance mismatch
between the vacuum region and the cavity. Figures 3(c) and
3(e) show the effect of detuning the cover radius for different
values of the material loss and core permittivity. As R1

is changed, so that ωp is no longer a resonant frequency
of the equivalent PMC cavity, the quality factor decreases
and the excitation lifetime becomes finite. On the other
hand, when the inner core is a vacuum the quality factor is
nearly independent of the ENZ shell thickness [Fig. 3(d)].
In general, thinner ENZ shells have lower quality factors.
The reason is that the electric field is enhanced in the ENZ
material as the shell is made thinner, implying a higher
sensitivity of thin ENZ covers to material loss. Interestingly,
a spherical dielectric resonator with no ENZ cover, ε1 = 49ε0

and radius R1 = R1,0 ≡ 4.49/(ωp

√
ε1μ0) supports a TMr

n=1
natural mode of oscillation with ω′ ≈ ωp and quality factor
Q = 79.9. The quality factor of the same resonator is increased
to Q = 5.4 × 105 when an ENZ shell with ωc/ωp = 10−5 is
used to shield the dielectric [Fig. 3(e)]. Thus, the ENZ cover
effectively traps the radiation in the core region.

Since the operation of the open resonator is critically
dependent on the ENZ response of the cover material, it is
pertinent to study how spatial dispersion effects may affect the
lifetime of the localized oscillation. The nonlocal response of a

metal is a consequence of the quantum kinetics of the electron
gas and can be conveniently modeled by adding a diffusion
term to Ohm’s law [28,29]. Within this approach, the frequency
dispersion of the volume plasmons is ω2 = ω2

p + c2k2/l0

where k is the wave number and c2/l0 = 3v2
F /5 with vF the

Fermi velocity. For example, for silver vF ≈ c/200 and hence
we have l0 = 6.7 × 104 [30]. In Fig. 3(f) Q is plotted for differ-
ent values of the l0 parameter that characterizes the nonlocal ef-
fects in the ENZ cover. The details of the calculations are given
in Appendix C. As seen, the nonlocal effects do not change the
peak value of Q but may shift slightly the optimal value of R1.

IV. EXCITATION OF THE OPEN RESONATOR
BY A PLANE WAVE

Consider now the scenario wherein the nanostructure is
illuminated by a linearly polarized plane wave. In Fig. 4(a) we
plot the Mie coefficients a

p
n (p = TE,TM) for R1 = 1.01R1,0.

The coefficients a
p
n determine the electromagnetic fields in the

core region, and their exact definition is given in Appendix D.
It can be seen that aTM

n vanishes at ω = ωp, confirming that
the ENZ shell behaves as a PMC wall for TMr vector spherical
harmonics, but that aTE

n are nonzero, clearly demonstrating that
our resonator is electromagnetically open. The coefficient aTM

1
is peaked at a frequency near ωp, which corresponds to the
resonance of the inner cavity. We verified that when ε1 ≈ ε0,
ε2 ≈ 0, and R1 ≈ R1,0, the Mie coefficient aTM

1 satisfies to a
good approximation

aTM
1 ≈ eiφ0

(ω − ωL)(ω + ω∗
L)

(ω − ωr )(ω + ω∗
r )

when ω ≈ ωp, (7)
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where φ0 is some phase factor, ωr = ω′ + iλ is the complex
frequency of the natural mode of the open resonator [obtained
by solving the characteristic equation discussed below Eq. (6)],
and ωL is the complex frequency associated with the volume-
plasmon free oscillations, ε(ωL) = 0. The accuracy of this
formula is demonstrated in Fig. 4(b). It is seen that the
resonances have Fano-type line shapes [17]. Curiously, when
ωc → 0 and R1 → R1,0 the zero associated with ωL and the
resonance associated with ωr merge so that |aTM

1 | → 1. Thus,
the emergence of the infinite-lifetime state corresponds to a
pole-zero cancellation in the Mie coefficient aTM

1 . This implies
that, surprisingly, in the limit ωc → 0 the incoming wave can
be coupled to the TMr

n=1 mode of the resonator. In Appendix D
the time dynamics of this effect is studied in detail for a pulse of
finite duration. It is found that the fields pushed into the core
by the incident wave do not remain stored in the resonator
after the source is switched off (i.e., once the incoming pulse
overtakes the nanostructure, the fields associated with the
TMr

n=1 mode in the nanostructure quickly fade away), and
thus, as expected the resonator cannot be directly pumped from
the outside. Consistent with this, it is seen in Fig. 4(c) that the
scattering cross section of the open resonator is always finite
under the plane-wave excitation. Moreover, when R1 = R1,0

(blue curve) the scattering cross section does not exhibit any
resonant features due to the previously discussed pole-zero
cancellation.

The property |aTM
1 | → 1 may look at first sight inconsistent

with the reciprocity principle. However, when ωc = 0 the open
resonator may support a natural mode with infinite lifetime,
and hence if a time-harmonic source is placed inside the
resonator the fields may grow without limit and a steady
state is impossible to reach. In other words, the reciprocity
theorem is based on the assumption that for a given source there
is a unique steady-state solution of the Maxwell equations,
which is not the case when Q = ∞. Thus, |aTM

1 | → 1 is not
inconsistent with reciprocity, simply because the reciprocity
theorem breaks down in this limit (see Appendix D).

V. CONCLUSION

In summary, volume plasmons in ε = 0 materials can
effectively shield the electromagnetic field in an open bounded
cavity. The circulating currents are blocked from radiating
because the ENZ shield behaves as a PMC for the TMr waves.
The open resonator is electromagnetically transparent, but it
cannot be directly pumped by an external source. However,
it can be pumped either by an internal source or by using an
electron beam to originate emission via processes such as the
Smith-Purcell and Cherenkov effects. Moreover, a nonlinear
response of the core material may permit the resonator to be
pumped from the outside, and may help to alleviate the strict
requirement R1 = R1,0 and enable self-sustained oscillations
for specific values of the stored field energy. Even though the
conditions required to have Q = ∞ are physically demanding
(e.g., ε = 0 is required while ε/ε0 ∼ 0.27i at ω = ωp for
silver in the UV; the damping is smaller in alkali metals such
as K, which has ωc/ωp ∼ 0.05 [31]) our theory gives hints
on how to have open resonators with higher quality factors,
and crucially shows that even within a classical framework
it is possible to have self-sustained circulating currents with

no energy leakage. Active (gain) plasmonic materials may
provide a route to achieve ε precisely zero and compensate for
the effects of material loss.
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APPENDIX A: THEOREM ON THE LIFETIMES OF THE
NATURAL MODES OF LAYERED DIELECTRIC

STRUCTURES

The following theorem is demonstrated in Ref. [18, p.165]:
Theorem. Assume that the bounded domain D is the open

complement of an unbounded domain, and let (E,H) be a
radiating smooth solution of the Maxwell equations in R3/D

for which the electric far-field pattern vanishes identically.
Then (E,H) = 0 in R3/D.

This result assumes that the region R3/D is uniform (ε =
const and μ = const) and that the wave number k = ω

√
με

is real valued and nonzero (e.g., the region R3/D can be a
vacuum).

In order to further generalize the theorem, we consider
the generic open resonator depicted in Fig. 5. It consists of
a bounded layered structure formed by conventional isotropic
materials with ε �= 0 and μ �= 0 (the material parameters may,
however, be either negative or complex valued) and surrounded
by a vacuum.

Suppose that the open resonator supports a natural mode of
oscillation with infinite lifetime. As discussed in the main
text, this implies that the far-field vanishes and thus from
the theorem, it follows that (E,H) = 0 in the vacuum region
(leftmost panel in Fig. 5). Applying the Stratton-Chu formulas
[18, p. 158] to the ε1,μ1 material domain (taking as the
boundaries of the integral representation the boundary surface
with the ε2,μ2 material, ∂D2, and the boundary surface with
the vacuum, ∂D1), we find that

E(r) = −∇ ×
∫

∂D1∪∂D2

n̂′ × E(r′)�0(r − r′)d3r′

+ 1

iωε
∇ × ∇ ×

∫
∂D1∪∂D2

n̂′ × H(r′)�0(r − r′)d3r′,

(A1)

where n̂′ is the unit normal vector directed into the exterior of
the ε1,μ1 domain, and �0 = eikr/(4πr). Because (E,H) = 0
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FIG. 5. (Color online) Sketch of the proof that a bounded layered
structure formed by conventional isotropic materials with ε �= 0 and
μ �= 0 standing in a vacuum cannot support localized oscillations
with infinite lifetimes.
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in the vacuum region, the tangential components of (E,H)
vanish at the boundary with the vacuum (∂D1). Hence, it
follows that the electromagnetic fields in the ε1,μ1 region
can be written as a surface integral of equivalent sources
defined only over the ε2,μ2 material boundary (∂D2). It is
well known that the integral in the right-hand side of Eq.
(A1) always evaluates to zero outside the ε1,μ1 domain
[18, p. 158]. Thus, because the integration domain does not
include ∂D1, it follows that the right-hand side of Eq. (A1)
defines a smooth (analytic) solution of Maxwell equations
in the region outside ∂D2 that vanishes identically in the
region outside ∂D1. But because of the analyticity of the
electric field [18, p. 159], we conclude that E must identically
vanish in the entire ε1,μ1 domain. The same arguments (or
the Maxwell equations) can be used to prove that H also
vanishes.

Now, it is possible to replace the vacuum region by the
material with parameters ε1,μ1 without perturbing the original
electromagnetic fields (middle panel in Fig. 5). The previous
discussion shows that the electromagnetic field vanishes in the
extended ε1,μ1 region. Thus, repeating the previous arguments
we can prove that for layered structures (E,H) vanishes in all
space (rightmost panel in Fig. 5), and thus this class of open
resonators cannot support oscillations with infinite lifetimes.
This result applies to any open layered resonator formed by
conventional isotropic materials with ε �= 0 and μ �= 0, and
in particular to any truncated photonic crystal whose basic
unit cell is a layered structure analogous to the one considered
here.

The reason why our theorem does not hold in the presence
of materials with ε = 0 can be understood by inspection of
Eq. (A1). As seen, because of the term 1/(iωε) the Stratton-
Chu representation of the electric field becomes ill defined. The
singularity can be lifted by expanding the ∇ × ∇× operator,
which gives:

E(r) = −∇ ×
∫

∂D1∪∂D2

n̂′ × E(r′)�0(r − r′)d3r′

− iωμ

∫
∂D1∪∂D2

n̂′ × H(r′)�0(r − r′)d3r′

+∇
∫

∂D1∪∂D2

1

iωε
Div[n̂′ × H(r′)]�0(r − r′)d3r′.

(A2)

The third integral in the right-hand side depends on
Div[n̂ × H]/iωε. At an interface Div(n̂ × H) = −n̂ · ∇ ×
H = iωεn̂ · E, with n̂ the unit normal vector to the interface,
and thus Div[n̂ × H]/iωε = n̂ · E. The key point is that having
n̂ × H = 0 at the interface is insufficient to conclude that
n̂ · E = 0 when ε = 0. Thus, when ε = 0 the third term in
the right-hand side of Eq. (A2) does not vanish, and hence the
integral over ∂D1 cannot be dropped and the theorem does not
apply.

APPENDIX B: LIFETIMES OF THE FREE OSCILLATIONS
OF METALLIC NANOPARTICLES

It is interesting to have an idea of the characteristic
lifetimes of the natural modes of resonators made of metallic
nanostructures. To this end, we consider a metallic nano-
particle with radius R surrounded by a vacuum (see the inset
of Fig. 6). For simplicity, the geometry is two dimensional
so that the structure is invariant to translations along the z

direction. It is assumed that the nanoparticle is described by
a lossless Drude model εm/ε0 = 1 − 2ω2

SPP /ω2, where ωSPP

corresponds to the surface plasmon resonance of a cylindrical
structure [εm(ωSPP )/ε0 = −1]. The characteristic equation of
the natural modes of oscillation (with magnetic field along
the z direction) can be derived using methods similar to those
reported in Sec. III and is

1

εm

kmJ ′
n (kmR)

Jn (kmR)
= 1

ε0

k0H
′(1)
n (k0R)

H
(1)
n (k0R)

, (B1)

where n determines the azimuthal variation of the fields
(einφ), k0 = ω/c, km = ω

√
εmμ0, and Jn and H (1)

n denote
the cylindrical Bessel and Hankel functions. Figure 6 shows
the numerically calculated frequency of oscillation ω = ω′ +
iλ for the surface plasmon supported by the cylindrical
nanoparticle with n = 1 as a function of the normalized radius.
As seen, even though the system is lossless, the imaginary
part of ω is always nonzero and thus the lifetime is always
finite. The lifetime is larger for smaller nanoparticles, but the
physical size cannot be arbitrarily small and this imposes
a bound on Q. For example, for silver we may estimate
ωSPP = 2π × 914/

√
2 THz, [32] and thus for R = 24 nm

we have ωSPP R/c = 0.32 which limits Q to 13.4.
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FIG. 6. (Color online) (a) Characteristic (complex) oscillation frequency of the surface plasmon supported by a cylindrical nanoparticle as
a function of the normalized radius R. (b) Quality factor as a function of the normalized radius R.
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APPENDIX C: NATURAL MODES OF OSCILLATION OF A
CORE-SHELL NANOPARTICLE WITH A NONLOCAL

PERMITTIVITY RESPONSE

Here, we study the effects of spatial dispersion in the ENZ
cover on the lifetime of the natural mode supported by the
open resonator. The methods described next follow closely
Refs. [29,30,33]. Our model is based on the assumption that in
a metal the electron gas can be modeled by an electric current
density Jc that satisfies a drift-diffusion equation:(

1 + D

iω
∇∇

)
· Jc = σE. (C1)

Here, σ is the electric conductivity and D is the diffusion
coefficient. The Maxwell’s equations are

∇ × E = iωμH, ∇ × H = Jc − iωεbE, (C2)

where εb represents the dielectric response due to the bound
charges of the material. It is convenient to introduce the
auxiliary function F = iωμJc. The coupled equations (C1)
and (C2) support transverse and longitudinal solutions.

The transverse solutions are such that ∇ · E = 0 and F =
iωμσE and hence satisfy:

∇ × ∇ × E = k2
t E, k2

t = k2
b + iωμσ, ∇ · E = 0,

(C3a)

F = iωμσE, H = 1

iωμ
∇ × E (C3b)

where k2
b = ω2μεb. For future reference we define a transverse

permittivity εt such that εt = k2
t /(ω2μ) = εb + σ/(−iω).

On the other hand, the longitudinal solutions are such that
E = ∇φ and F = −k2

bE, for some scalar potential φ. Thus,
from Eq. (C1) we have (1 + D

iω
∇∇) · ∇φ = 1

−k2
b

iωμσ∇φ,

which is equivalent to φ + D
iω

∇2φ = 1
−k2

b

iωμσφ. Therefore:

∇2φ + k2
Lφ = 0, k2

L = − 1

D

(
σ

εb

− iω

)
, (C4a)

E = ∇φ, F = −k2
bE, H = 0. (C4b)

The wave number kD = i kL is known as the Debye wave
number. In this work, we assume that εb = ε0 and that the
diffusion and conductivity coefficients are such that εt follows
a Drude dispersion model, εt/ε0 = 1 − ω2

p/[ω(ω + iωc)], and
that kL varies with frequency as

k2
L = l0

c2

[
ω (ω + iωc) − ω2

p

]
, (C5)

where l0 is some dimensionless parameter. When ωc = 0 the
dispersion of the longitudinal plane-wave modes with propa-
gation factor eik·r (volume plasmons) is ω2 = ω2

p + c2k2/l0,
which is consistent with the so-called hydrodynamic model
if c2/l0 = 3v2

F /5 where vF is the Fermi velocity [34]. For
realistic metals l0 is extremely large (l0 > 104) and the volume
plasmons are nearly dispersionless.

Next, we derive the characteristic equation for the TMr

polarized modes of oscillation supported by a core-shell
nanoparticle. It is supposed that the core is made of a regular
dielectric and that the cover shell is a metal with the electron
gas described by the drift-diffusion model. For TMr

n-polarized
waves the electromagnetic field is a superposition of the
transverse and longitudinal waves such that [30]

E = Et + El = ∇ × ∇ × {r ψT (r)Yn(r̂)} + ∇{ψL(r)Yn(r̂)}, (C6a)

F = Ft + Fl = (
k2
t − k2

b

)∇ × ∇ × {r ψT (r)Yn(r̂)} − k2
b∇{ψL(r)Yn(r̂)}, (C6b)

H = +iωεtψT (r) r̂ × GradYn (r̂) , (C6c)

where Yn is a spherical harmonic of order n, Grad is the surface gradient operator, and ψT and ψL are solutions of the spherical
Bessel equation, such that r−1∂2

r [rψT ] + [k2
t − n(n + 1)r−2]ψT = 0 and r−1∂2

r [rψL] + [k2
L − n(n + 1)r−2]ψL = 0. For natural

modes of oscillation of the core-shell nanoparticle, ψT and ψL are of the form

ψT =

⎧⎪⎨
⎪⎩

Ajn (k1r) , r < R1,

B1T jn (kt r) + B2T yn (kt r) , R1 < r < R2,

Ch(1)
n (k0r) , r > R2,

(C7a)

ψL =
{

B1Ljn (kLr) + B2Lyn (kLr) , R1 < r < R2,

0 otherwise,
(C7b)

with k0 = ω
√

ε0μ0 and k1 = ω
√

ε1μ. The constants A, B1T , B2T , B1L, B2L, and C must be consistent with the continuity of
the tangential components of the electromagnetic field and with the condition r̂ · F = 0 at the interfaces of the metallic region.
The latter boundary condition ensures that the normal component of Jc vanishes at the interfaces [29,30,33]. Straightforward
calculations show that

r̂ × E (r) = 1

r
{[rψT (r)]′ + ψL (r)}r̂ × GradYn (r̂), (C8)

where the prime denotes differentiation with respect to r . Thus, from the previous result and Eq. (C6c), it is seen that the continuity
of the tangential electromagnetic fields is equivalent to the continuity of [rψT (r)]′ + ψL(r) and εtψT (r). Hence, taking also into
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account that

r̂ · F =
[(

k2
t − k2

b

)n (n + 1)

r
ψT (r) − k2

bψ
′
L (r)

]
Yn (r̂) , (C9)

we can readily obtain a homogeneous linear system of equations of the form M · x = 0 with x = (A,B1T ,B2T ,B1L,B2L,C)T and
the matrix M given by⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− [jn (k1r) r]′r=R1
[jn (kt r) r]′r=R1

[yn (kt r) r]′r=R1
jn (kLR1) yn (kLR1) 0

−ε1jn (k1R1) εt jn (ktR1) εtyn (ktR1) 0 0 0

0 q jn (ktR1) q yn (ktR1) kLR1j
′
n (kLR1) kLR1y

′
n (kLR1) 0

0 q jn (ktR2) qyn (ktR2) kLR2j
′
n (kLR2) kLR2y

′
n (kLR2) 0

0 [jn (kt r) r]′r=R2
[yn (kt r) r]′r=R2

jn (kLR2) yn (kLR2) −[
h(1)

n (k0r) r
]′
r=R2

0 εt jn (ktR2) εtyn (ktR2) 0 0 −ε0h
(1)
n (k0R2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(C10)

with q = (1 − εt/εb)n(n + 1). The frequencies of oscil-
lation ω = ω′ + iλ (with λ � 0, i.e., in the lower-half-
frequency plane) of the natural modes of oscillation of
the open resonator are the solutions of the characteristic
equation det(M) = 0.

APPENDIX D: SCATTERING BY A CORE-SHELL
NANOPARTICLE

The scattering by a core-shell nanoparticle can be deter-
mined using standard Mie theory [27,35]. The electric field in
all space can be written in terms of vector spherical harmonics
as follows:

E = E0

∑
n�1

(2n + 1)

n (n + 1)
in

[
MTE

n,o + MTM
n,e

]
, (D1a)

MTE
n,o (r) = ∇ × {

r f TE
n (r) Y TE

n (r̂)
}
,

Y TE
n = −sinϕ P 1

n (cosθ), (D1b)

MTM
n,e (r) = ∇ × ∇ ×

{
r

1

ik
f TM

n (r) Y TM
n (r̂)

}
,

Y TM
n = −cosϕ P 1

n (cosθ ), (D1c)

where P l
n are the generalized Legendre polynomials, and

(r,θ,ϕ) is a system of spherical coordinates attached to the
center of the spherical scatterer. The radial functions f TE

n

and f TM
n satisfy the spherical Bessel equation, and can be

decomposed into incident and scattered waves:

f p
n =

{
f

p,inc
n + f

p,s
n , r > R2,

f
p,s
n , r < R2,

p = TE, TM. (D2)

When the incident electric field is a plane wave Einc =
E0x̂eik0z, the incident radial functions satisfy

f TE,inc
n = f TM,inc

n = jn(k0r). (D3)

On the other hand, for a two-layer spherical particle the
scattered radial functions are of the form

f p,s
n (r) =

⎧⎪⎨
⎪⎩

a
p
n jn(k1r), r < R1

b
p

n,1jn (k2r) + b
p

n,2yn(k2r), R1 < r < R2

c
p
n h(1)

n (k0r), r > R2

, p = TE, TM, (D4)

where ki = ω
√

μiεi . The unknown coefficients a
p
n , b

p

n,1, b
p

n,2,
and c

p
n are determined by imposing the requirement that the

total fields f
p
n satisfy the boundary conditions

f TE and μ−1∂r (rf TE) are continuous, (D5a)
μ−1kf TM and k−1∂r (rf TM) are continuous. (D5b)

Let us suppose that the inner core is a vacuum (ε1 = ε0)
and that the permittivity of the cover shell is near zero and is
modeled by ε2/ε0 = 1 − ω2

p/[ω(ω + iωc)]. When the radius
of the inner core is tuned so that R1 ≈ R1,0 (the first resonance
associated with the n = 1 inner mode), it can be verified that
for ω near the plasma frequency ωp the Mie coefficient aTM

1
satisfies to a good approximation Eq. (7). From Eq. (D1) the
contribution of the n = 1 TM wave to the electric field inside

the core is

ETM
1 = ∇ × ∇ ×

{
E0a

TM
1

3

2

j1 (k0r)

k0
r cosϕsinθ

}
, (D6)

where we used P 1
1 (cosθ ) = −sinθ . In particular, at the origin

we have

ETM
1

∣∣
r=0 = E0a

TM
1 x̂. (D7)

Thus, aTM
1 can be regarded as the transfer function that relates

the incident-field amplitude (E0) and the x- field component
at the center of the inner core (Ein = E0a

TM
1 ).

It is interesting to study the time dynamics of the field inside
the open resonator. To this end we suppose that E0 = E0(t)
has a finite (albeit very long) duration, and most of the spectral
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content is concentrated at the frequency ω = ωp. Then the
corresponding field Ein(t) at the center of the open resonator
is given by the time convolution of E0(t) and h(t), Ein(t) =∫ +∞
−∞ dτ E0(τ )h(t − τ ), with h(t) the inverse Fourier transform

of aTM
1 [Eq. (7)]. Neglecting the phase φ0 (which in general

corresponds to a time delay φ0 ≈ ω td ), we obtain

h (t) ≈ δ (t) + u (t)
1

Re {ωr} Im[(ωr − ωL)(ωr + ω∗
L)e−iωr t ],

(D8)
where u(t) represents the Heaviside step function. This
formula shows several interesting things. First of all, it proves
that the impulse response [h(t)] has a characteristic duration
determined by e−iωr t ∼ eλt where ωr = ω′ + iλ and λ < 0.
Thus, the lifetime is indeed of the order 1/(−2λ). Second,
it shows that in the limit of no loss (ωc → 0) and for
R1 = R1,0 we have h(t) ≈ δ(t), because in these conditions
ωr = ωL = ωp. Thus, in this limit the incoming plane wave is
unable to pump the open resonator because the amplitude of
the corresponding self-sustained oscillation (the term e−iωr t )
vanishes. However, surprisingly the fields inside the open
resonator are nonzero in the considered limit,

Ein (t) ≈ E0 (t) (when ωc → 0 and R1 = R1,0), (D9)

and follow closely the oscillations of the incoming field (as
mentioned previously the time delay associated with the phase
φ0 is disregarded). At first sight, this surprising result might
suggest that reciprocity is violated. The reciprocity theorem
requires that

∫
E1 · j2d

3r = ∫
E2 · j1d

3r, where (Ei ,Hi) are
solutions of the time-harmonic Maxwell equations associated
with the source current density ji (i = 1,2). Let j1 be associated
with a source placed in the outer vacuum region (e.g., it
radiates the plane wave), and j2 be a source placed inside
the open resonator. When the metal collision frequency is
nonzero, ωc > 0, the radiated fields obviously satisfy the
reciprocity theorem. However, if j1 and j2 are kept fixed, the
field E2 may diverge to infinity inside the resonator when
ωc → 0+ (even though it stays finite in the exterior region to
fulfill the reciprocity theorem), because no steady state can be
reached for the inner excitation when ωc = 0 and R1 = R1,0.
Thus, the reciprocity theorem does not hold when ωc = 0 and
R1 = R1,0. Indeed, in this limit the system supports natural
modes of oscillation with infinite lifetimes (the homogeneous
problem can have nontrivial solutions), and thus the solution
of a source problem is not unique, and, moreover, for some
time-harmonic excitations a steady state may be impossible to
reach.
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