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Asymmetric Mushroom-Type Metamaterials

David E. Fernandes, Stanislav I. Maslovski, and Mario G. Silveirinha, Member, IEEE

Abstract—We study the scattering of electromagnetic waves by
mushroom-type metamaterials such that the metallic wire array
and the patch grids have different symmetry centers. Based on a
quasi-static model, we develop an analytical formalism to compute
the reflection and transmission characteristics of a metamaterial
slab, and derive suitable boundary conditions for the patch grid
interfaces. The theory is successfully compared with full-wave sim-
ulations.

Index Terms—Additional boundary conditions
high-impedance surfaces, metamaterials, wire media.

(ABCs),

I. INTRODUCTION

HE DESIGN of artificial ground planes and textured sur-

faces with tailored electromagnetic response are active
fields of research, due to their important applications in wireless
communications as the substrate of compact antennas [1]-[10].
Particularly, the so-called mushroom ground plane [1] continues
to attract a lot of attention due to its unique characteristics,
which are: 1) it provides a compact high-impedance boundary
and an in-phase reflection characteristic and 2) it can suppress
the propagation of guided modes. These properties are useful to
enhance the radiation properties of low-profile antennas, e.g.,
to improve the return loss over a relatively wide bandwidth and
reduce the mutual coupling in printed antenna arrays sharing
the same ground plane [1]-[10]. More recently, it was shown
that two-sided mushroom metamaterials (with no ground plane)
enable the negative refraction of electromagnetic waves [11],
[12], a partial-focusing effect [13], and superlensing [14]. Thus,
mushroom-type structures are currently of great interest in mi-
crowave and millimeter-wave technologies.

Several analytical models were developed over the years that
enable the accurate and fast modeling of the electromagnetic
response of mushroom-type metamaterials (see, e.g., [9]-[17]).
In particular, an analytical framework has been proposed
([117-[17]) wherein the mushroom structure is regarded as a
wire medium slab (modeled as a continuous medium with a spa-
tially dispersive response [18]—-[20]) capped with an impedance
grid. It was shown that such a theory captures accurately the
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physical response of mushroom-type metamaterials in different
scenarios, which include arrays of wires with and without patch
grids, and wires connected to the patch grids through lumped
loads.

It is known that in the conventional mushroom ground plane,
the reflection characteristic for normal incidence is independent
of the metallic wire array. However, for some applications it
can be interesting to force an electric current to flow along the
metallic wires, even when the wave that illuminates the struc-
ture impinges along the normal direction. This can be particu-
larly useful if the metallic wires are connected to the patch grid
through discrete loads. If the impedance of the load is either
tunable (e.g., electronically) or if the loads have a nonlinear re-
sponse, then it would be possible to control the reflection char-
acteristics for normal incidence.

Motivated by these possibilities, this paper investigates the
electromagnetic response of mushroom-type metamaterials
such that the wires are asymmetrically connected to the patch
grid, i.e., the connection point has an offset with respect with
the geometrical center of the metallic patches. A related struc-
ture was studied in [5] using numerical techniques and with the
aim of designing anisotropic ground planes with a reflection
characteristic that depends on the polarization state of the inci-
dent wave. Here, we develop an effective medium approach to
characterize the response of general (with and without ground
plane) mushroom metamaterials such that the metallic wires
are displaced from the central position of the cell. In particular,
we propose suitable boundary conditions to characterize the
connection of the wires to the patch grid, and prove that when
the wires are displaced from the central position, the boundary
conditions are such that tangential macroscopic fields become
coupled with the current along the wires (or equivalently with
the component of the macroscopic polarization vector normal
to the interfaces).

This paper is organized as follows. In Section II, we develop
the analytical model and derive the new boundary condi-
tions. The analysis is done based on a quasi-static effective
medium model for the wire medium. In Section III, we high-
light the novel physical effects that result from displacing the
metallic wires, and present several numerical examples—for
both two-sided mushroom structures and standard mushroom
ground planes—proving that the results of our theory compare
well with full-wave simulations. Finally, in Section IV, the
conclusions are drawn. In this work, we assume a time variation
of the type ¢ *“*, with w being the oscillation frequency.

II. EFFECTIVE MEDIUM MODEL

We are interested in studying the electromagnetic response
of arrays of metallic wires terminated with metallic patches at
either one or at both interfaces. Moreover, we admit that the
wires can be attached to the metallic patches either through a

0018-9480 © 2013 IEEE



FERNANDES et al.: ASYMMETRIC MUSHROOM-TYPE METAMATERIALS

h g!l
Zlaad

Fig. 1. Representative geometry of the problem under study (two-sided mush-
room slab). (i) Side view: the wires are arranged in a periodic square lattice
with period a, embedded in a dielectric host with permittivity £ and thickness
h. The wires may be connected to the patches through lumped loads (blue ar-
rows in online version). The separation between consecutive patches is ¢. The
slab is illuminated by TM-polarized plane wave with angle of incidence #iy...
(ii) Top view of one cell of the two-sided mushroom structure: the wire is dis-
placed by d off the center of the patch in the positive -direction.

direct (short-circuit) connection, or alternatively through a dis-
crete lumped load. In Fig. 1, we depict a representative geom-
etry of the system, for the case where patches are attached to the
metallic wires at both interfaces and the wire and patch grids are
misaligned. Related structures have been analyzed in the litera-
ture using different approaches [9]-[17], but always for the case
of centered patches.

A. Bulk Wire Medium

We start by discussing the basic properties of the bulk wire
medium. This metamaterial is made of long metallic wires ar-
ranged in a periodic square lattice. We suppose that the metallic
wires are oriented along the z-direction and embedded in a di-
electric host with permittivity €. It is known from previous
studies [18]—-[20] that the effective dielectric function of the
metamaterial is

g =¢p[e:(XX + 3¥) + £..22)] )
where .. = 1+ [(en/(em — en)fv) — (82 — K2 /KD,
By = Jerpow is the wavenumber in the host medium, r,, is

the wires radius, a is the lattice period, fyr = (1., /a)? is
the volume fraction of the metal, ¢, is the complex permit-
tivity of the metallic wires, and %, is a structural parameter
with the physical meaning of the plasma wave number. Within
a thin wire approximation, one has (k,a)? =~ 2 /[0.5275 +
In(a/27r, )] and the transverse permittivity satisfies &; =~ 1
[18], [19]. Without loss of generality, here we focus our attention
in the microwave regime, and suppose that the metal is modeled
as a perfect electric conductor (PEC) such that ¢,,, = —oc and
€22 = 1—k2/(8; —k2). The dependence of the dielectric func-
tion on the wave vector k, = —id/dz implies a strong spatial
dispersive response [18], [19].

B. Electromagnetic Field Distribution

We want to analyze the scattering of a wire medium slab
with thickness 7 (with the wires possibly attached to metallic
patches, as discussed previously) under plane wave incidence.
We consider that the incoming plane wave is transverse mag-
netic (TM) polarized (magnetic field is along the y-direction)
with an incidence angle 8;,,. so that the plane of incidence is the
zoz plane. This monochromatic wave can excite plane waves

in the slab with a transverse wave vector k; = k;x 4 &, ¥ such
that k, = ko sin i, and k, = 0 with kg = w/c and ¢ is the
light speed in vacuum. The electromagnetic field inside the slab
can be written in terms of the natural photonic modes of the
bulk wire medium, more specifically in terms of the so-called
TM, transverse electromagnetic (TEM), and transverse electric
(TE) waves [18]-[20]. In our problem the TE waves are not ex-
cited, and thus the electromagnetic field in the wire medium slab
is written as a superposition of four plane waves: two pairs of
counter-propagating waves (propagating along +z- and —z-di-
rections, respectively) associated with TEM and TM modes.
The relevant field components in our problem are H,,, £, and
E,.

In the case the wire medium slab is surrounded by air (e.g.,
for the two-sided mushroom structured represented in Fig. 1, the
magnetic field distribution in the whole space can be written as

inc
k@ E

o
(e7* — Re™ 70F), z>0
Ale’YTM(Z-Fh)_|_A26*’>/TM(2+’L) + Ble’y’TEM(2+h)
+Bge vrEM(ZHh) —h<2<0
Tevolzth) 2 < —h

o, =c

2

where R and T are the reflection and transmission coeffi-
cients, and A; o and B;» stand for the complex amplitudes
of the TM and TEM waves, respectively, in the wire medium
slab. The propagation constants of the TM and TEM modes
can be determined from the dispersion equation inside the

wire medium [18]-[20] vtm = k2 + k2 — w2eppo and

YrEM = —itw\/Enjio. The free-space propagation constant
along the z-direction is vo = +/kZ — w?pgeg, 1o is the

free-space impedance, and £ is the incident field complex
amplitude.

Using E = (1/ —iw)[E(w, —i(d/dz))] -V x H, it is found
that the relevant electric field components are given by

ke
L, = e
(2022944
Yo(eT*+Re™70%), 2>0
—O'YTl\"[ (1416"/TM (z4h) _AQQ*"/TM (z+h))
Einc Ep
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(€))
Ez —_ _ (,tk,.L
e’ —Re™ ™7, z>0
. Lie k_L % (Al{ZA’/TM(H"")_‘_AZcf‘y’TM (z+h)) 7
o weo | _p<z<0
T(z‘Yo(erh)7 s<—h
“
where e T2 = e,47 /(k}4k7) is the permittivity along the wires

for the TM polarization.
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C. Overview of the Quasi-Static Wire Medium Model and of
the Boundary Conditions

Solving scattering problems involving spatially disper-
sive media generally requires imposing additional boundary
conditions (ABCs) [21]. In general, ABCs are needed for
both connected and non-connected wire media [17]-[24]. In
previous works [17]-[24], it was found that the ABCs are in-
trinsically related to the behavior of microscopic electric charge
density and microscopic electric current at the wire ends.

A convenient framework to model wire media was devel-
oped in [20] and [24], and is based on a quasi-static approxima-
tion. Within this approach, the electrodynamics of the effective
medium is described not only in terms of the macroscopic fields
(E, H), but also in terms of two scalar variables (I, ¢, ), with
the physical meaning of current along the wires and quasi-static
potential, respectively. In general, the quasi-static potential ¢,
can be regarded as the average potential drop from a given wire
to the boundary of the respective unit cell [20], [25]

a
2T 5

1 )
(pw%—//ejnlpdﬁ (5)
2T ) .
0 7y

where (p, 8, z) represents a system of cylindrical coordinates
centered at the pertinent metallic wire with radius r,,, and e de-
notes the microscopic electric field (before the spatial averaging
is done).

Both the current and the quasi-static potential are interpolated
in such a manner that they can be regarded as continuous func-
tions of space. It was proven in [20] that the dynamics of the
state variables (E, H, I, ¢,,) is described by a system of cou-
pled Maxwell and “transmission line”-type equations. In the ab-
sence of field sources and for PEC wires oriented along the z-di-
rection, one has

VxE=+4+wpH (6a)
1
VxH=—iwegE+ =2 (6b)
a
ol
— = wCy P (6¢)
0z
I .
P oL + B, (6d)
dz

where L., is a per unit of length (p.u.l.) wire inductance and C',
is a p.u.l. wire capacitance given by [20]

9
Ho a
Lw = — $ —_—
27 8 (47711)(a - Tw))
1 a’® -t
Cp=¢p|—log| —— . 7
o [% o8 <4rw<a—rw>>] @

The spatially dispersive dielectric function (1) can be recov-
ered by eliminating the additional variables (7. ¢,,) in favor of
(E, H) [20], [24].

The interesting thing about this quasi-static approach is that
it provides a natural framework to formulate boundary condi-
tions at the wire medium interfaces. Indeed, since the electrody-
namics of the wire medium is described in terms of a eight com-
ponent state variable (E, H, I, ¢,, ), typically one must provide

boundary conditions not only for (E, H), as in standard dielec-
tric media, but also boundary conditions for (I, ¢,,) [24]. The
latter correspond to the previously mentioned ABCs.

Based on these ideas, it was demonstrated in [24] that for a
boundary corresponding to wires connected to patches at the
central point (with no lumped loads), the quasi-static potential
.y, satisfies the following boundary condition at the interface
zZ = Zp-

Q I L

= . n-z,
_chpatch

Yo =75 atz=z (8)

patch

where () is the charge stored at the patch, and n is the outward
unit vector directed toward the exterior of the wire medium, e.g.,

at the upper (lower) interface in Fig. 1 = z (n = —%). Atan
interface with air, the patch capacitance is given by [20]
1
Cpatch = (5}1 + 50)71'((1 - g) —ﬂ.g . (9)
log (Sec (2—))
a

where g represents the spacing between two adjacent patches
(Fig. 1). Using (6c¢), it is possible to rewrite (8) in terms of the
current I as follows:
oI Cy
Oz Cpa.tch

(fl . i)] = 0, at z = zp. (10)
On the other hand, in the same scenario, the macroscopic
electromagnetic fields satisfy the boundary conditions

(11)
(12)

where Y, = —i(e), + o) (wa/7) log[csc(mg/2a)] is the effec-
tive patch grid admittance [26], and the operator | | ,—., repre-
sents the difference between the operand calculated at the two
sides of an interface so that |F']._., = F|z:z0+ - F|z:;g~
From a macroscopic point of view, the grid may be regarded as
an electric current sheet. As a consequence, the tangential com-
ponents of the electric field are continuous [see (11)] and the
macroscopic surface current is related to the macroscopic tan-
gential electric field through an impedance boundary condition
z2x |H|.0zy = YyEan|,_, [see (12)].

Equations (10)—(12) are the boundary conditions at an inter-
face of air and a wire medium attached to a patch grid. The ABC
(10) can be rewritten in terms of the macroscopic electromag-
netic fields using the formula [24]

|.E473J z=2zp = 0
LH,] z=zg ~Y,E,|

Z=Zq

I, L
']Z = —~2 = +’l:w5},,Ez + z- (’th X Ht)
a

(13)

where k;, H; stand for the transverse (to z) components of the
wave vector and magnetic field, respectively, which are given
by k; = k%, H; = H = H,y in our problem. Hence, one can
impose all the boundary conditions directly on the macroscopic
electromagnetic fields [see (2)—(4)], and in this manner solve the
scattering problem [24].

D. Boundary Conditions for Off-Centered Patches

Now we come to the main novelty of this work, which is the
generalization (10)—(12) to the case wherein the metallic wires
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are displaced with respect to the center of the patches. To do
this, we start by noting that the microscopic electric field e in the
vicinity of a given patch has two contributions. The first contri-
bution, which we denote by e,_sym, is a response to an external
applied field (and to the charges induced on other patches by this
external field). This external field induces a distributed charge
density ¢,_sym over the patch surface. The second contribu-
tion, denoted by eqyr,, is the field created by the electric charge
density o4y associated with the charges stored in the metallic
patches as a result of the patches being connected to metallic
wires. In other words, o, describes the charges transported to
the patches through the metallic wires. It should be clear that the
total charge stored in a metallic patch is ) = Qsym+Qa—sym =
(Jsym because (), _sym vanishes (Q; = fpatch 7:ds).

From (5), the quasi-static potential in the vicinity of a metallic
patch can be decomposed as

(}Q’LU = QDw,syln + Qaw,a—syln (14)

where ¢, = (1/2x) fo% ]7'1/2 e, - pdpdf with i =
a — sym,sym. Hence, based on symmetry arguments, when
the patch is centered at the origin (being the origin taken as
the position of the pertinent metallic wire), it follows that
Pw,a-sym ~ 0. Thus, in the usual configuration wherein the
patches are centered with respect to the metallic wires, we have
Pw = Pwsym, 1.€., the quasi-static potential is created by the
charges stored in the patches [20]. From (8), we can infer that

@ 1

sym P

Pw,sym — = . n-z. (15)
Cpatch _Q'WOpatch

It will be assumed that to a first approximation this formula
holds with no corrections for off-centered patches.

However, for off-centered patches, the symmetry of the fields
with respect to the unit-cell center is broken, and in general,
Yuw.a—sym 7 0. Let us estimate ., 4_sym in case d =~ (a —
g)/2, i.e., when the metallic wire is attached to a point close
to the border of the metallic patch. In such a case, the integral
]:/2 €4 sym * pdp is negligible for 7/2 < |f] < = because
the integration path is over a single metallic patch (see the path
(4 in Fig. 2). On the other hand, for |6] < 7/2 (see path Cs
in Fig. 2), the integral [ra/ 2 €,_sym - Pdp is nothing more than
the potential difference between two adjacent patches (along the
x-direction). Within a quasi-static approximation, this potential
difference is constant and equal to /. From these results, it
follows that

2r 3 )
" [ eaom B 1
i pdpd ~ db = - E,a,
Pw,a—sy // o pap / o 5 a
0 7y —7/2

(e —g)
for d ~ .
or 9

(16)

As discussed previously, ¢y q—sym| i—o = 0. We estimate
Prw,a—sym using simply a linear interpolation of the offset d,
and thus we will use

(17)

o, d
Pw,a—sym ~ E;L’afoz-, with fa - m

a

Fig.2. Sketch of the integration paths used to calculate the potential ¢ o —sym
when the wire is displaced from the center of the unit cell and located near a
point on the border of the patch. The path is divided into two distinct sub-paths
corresponding to variations on the azimuthal angle such that /2 < [8] < «
corresponds to path C; and |@| < 7 /2 to path Cs.

Note that the parameter f, varies in the range —(1/2) < f, <
(1/2), and is positive (negative) for positive (negative) wire dis-
placements d.

From (14), (15), and (17), we see that the quasi-static poten-
tial at the connection between a metallic wire and a metallic
patch satisfies
n-z+ FE.af,, at z = zg.

Pw = (18)

_iwcpatch
This result generalizes (8), and is the sought ABC for an inter-
face (z = zp) wherein the wires are connected to off-centered
patches. When the wires are connected to the metallic patches
through a lumped load with impedance Zt,,.4, (18) needs to be
modified as follows [24]:

+Z10ad> I(h-2)+F.afs. at z = zp.
(19)
Similar to Section II-C, with the help of (6¢), it is possible to

rewrite the above condition in terms of the current density J., =
1/a?, as follows:

CPw = (—
_‘Lwcpatch

alJ. Cy . PN . 1
(‘9—2; + (Cpatch - chu,'Zload> Jz (1’1 : Z) - ch’u}fcv. EE’I‘
= (, atz = zgp. (20)

Using (13), one can impose this ABC directly on the macro-
scopic electromagnetic fields.

It is interesting to note that the boundary condition (19) im-
plies that the wire termination with an off-centered patch can
be equivalently represented by a termination with a centered
patch of the same dimensions and a controlled voltage source
Ve = E,af, (see Fig. 3). In this circuit, the voltage source
V' accounts for the current induced in the wires by the tan-
gential electric field applied to the off-centered patch grid.

Next, we discuss how the two boundary conditions (11) and
(12) are modified for off-centered patches. Clearly, independent
of the displacement d, the patch grid can always be regarded
from a macroscopic point of view as an electric current sheet,
and this implies that the boundary condition for the electric
field [see (11)] remains the same. However, because the gen-
eral Onsager—Casimir symmetry principle [27], [28] (i.e., reci-
procity principle), the equivalent circuit of Fig. 3 suggests that
(12) needs be modified to take into account the reverse effect
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as
JS

Fig. 3. Termination of a wire with an off-centered patch can be represented by
a centered patch of the same dimensions and a pair of controlled voltage and
current sources.

of polarizing the off-centered patch grid by the wire current.
To clarify this, we start by noting that for centered patches,
the effective density of surface current J; = z x |H|._., in-
duced on the grid depends only on the macroscopic electric field
E. Indeed the microscopic surface current associated with the
charge (Jym has a radial-type profile for centered patches, and
hence, cannot contribute to the effective macroscopic surface
current J ;. However, for off-centered patches, the symmetry is
broken and thus J; may depend on both E and ()sym , or equiv-
alently (because Qsyr, is the charge transported by the current
I) may depend on both E and 7. This can be taken into ac-
count by writing the total surface current in the patch grid plane
asJ; = Y,E,x + J2°(]). In terms of the equivalent repre-
sentation shown in Fig. 3 this corresponds to introducing an-
other controlled source in the model: the sheet of surface current
J2* = J2*(I). Assuming for simplicity that the linear depen-
dence of J%” on I is to a first approximation local (i.e., it does
not depend on spatial derivatives of the current), we can write
J%* = —BIx, which leads to the following boundary condition
that generalizes (12):

LH, = Y, B,

_+BI 1)

|

z=z

In the above, B is a constant yet to be determined. To calculate
B, we appeal to reciprocity arguments.

In the Appendix, we derive the Lorentz lemma and the reci-
procity theorem for the general case of uniaxial wire media with
embedded sources. One may directly apply this theorem to the
equivalent circuit of Fig. 3 if the controlled sources V** and J¢*
are understood as external sources embedded into a regular wire
medium. The controlled sources model the electromagnetic re-
sponse of the metallic patches. By considering two scenarios of
excitation of the structure shown in Fig. 3 with either V}** = 0,
J¢ # Oor V3" # 0, J75 = 0, we obtain from the reci-
procity theorem [(A5) with V' = —(ia - 2)V**§(z — 2¢) and
It = J95§(z — 24)] that

Vi (h- 2)

o yas _
EI:QX : ‘]s,l - = a2

(22)
From here, —E, 2BI; = (—E,2af,[1(fi - 2)/a®) or B =
(fafa)(ia - 2).

The same result can be obtained in a slightly more cum-
bersome manner, but without employing equivalent sources.
Indeed, from the results of the Appendix, it follows that the

volume integral on the right-hand side of (A4) vanishes in a re-
ciprocal background. Therefore, when applied to a generic in-
terface of our geometry (let us say z = zp), the reciprocity the-
orem [(A4) applied to a small pill box enclosing the interface]
requires that ii-[Eq x Ho — Eo X Hy + (@112 — 0w 211)/a*)Z]
is continuous across the interface for two generic field distribu-
tions labeled with the indices 1 and 2. Considering an interface
with air, this implies that

wI_w.‘I
+<P,12 Pw,241

WM rgWM WM pgWM
El,;r, H - E2 T H 2=z a2

2,y Ly
s=zg

_ air rrair air rrair
= By — Bal Hyyl, o (23)

where the subscripts W M and air indicate at which side of the
interface the fields are evaluated (the current and additional po-
tential vanish at the air side). From (11), the electric field is con-
tinuous (hence, it is simply denoted by £,), and thus we can
rewrite the previous equation as

—ﬁ * 2 (EI,QL‘ |_H27.UJ =z - EZ,LE LHI:sz:ZO)

ow1ls — pu 2D
—_— =0. (24
+ 22 . (24)
Using now (19) and (21), it seen that
(—ﬁ 4B+ &) (Broly = Eaal) =0, (25)
a

In order that this condition can hold for arbitrary field distri-
butions, it is required that B = (f,/a)n - z, i.e., we arrive at
the same result as with the use of the equivalent model. Using
the expression for the Poynting vector in wire media derived in
[29], it is straightforward to prove that, in the lossless case, this
result also ensures the continuity of the power flow across an
interface with the wire medium.

E. Summary

The findings of Section II-D are summarized in the following
equations that give the boundary conditions at an interface (z =
2z ) between air and a wire medium slab attached to a misaligned
patch grid:

|B.)._., =0 (263)
LHUJ zZ=2z9 = _YHE«T |z:Zo + ]:_Laﬁ ’ ZI (26b)
GIA Cow . Loy 1
+( - Z(‘}C’wzload) Jz( 'Z)*chwfaz _Em
0z patch a
=0 (26¢)

By imposing these boundary conditions on the electromagnetic
fields [see (2)—(4)] with the help of (13), one can obtain a linear
system of equations and compute the scattering parameters and
the field distribution everywhere in space. It is interesting to note
that for misaligned patches, the boundary conditions for (26b)
and (26¢) involve both (I, ¢,,) and (E, H), that is the “electro-
magnetic part” of the system that is coupled to the “transmission
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Fig. 4. Representation of the: (i) magnitude and (iii) phase of the transmission coefficient and (ii) the magnitude and (iv) phase of the reflection coefficient for a
two-sided mushroom structure illuminated by a TM polarized plane wave with 8;,,. = 0° for different values of the wire displacement: a) d = (0, b) d = a/9,
¢)d = 2a/9,and d) d = /3. Solid lines: homogenization model; Dashed lines: full-wave simulations.

line part” not only through the dynamic equations [see (6)], but
also through the boundary conditions.

The boundary conditions can be readily generalized to other
scenarios. For instance, when the wire medium is attached to a
PEC ground plane (i.e., when the gap g between the patches is
closed) (26) should be replaced by

E,| =0

zZ=zq

(27a)
aJ.
Oz

+ (—iwaZload)Jz(ﬁ . i) =0. (27b)

III. EXAMPLES AND DISCUSSION

Next, we consider several numerical examples that illustrate
the application of our theory to metamaterial slabs with different
geometries.

A. Two-Sided Mushroom Slab With Displaced Wires

To begin with, we consider a two-sided mushroom slab
(Fig. 1) with the following structural parameters: slab thick-
ness b = 2a/9; patch separation ¢ = a/9 and lattice period
@ = 18 mm. The wires are PEC, have radius r,, = /72, and
stand in air. We assume that the wires are connected to the
patches through a perfect short-circuit (Z),,q4 = 0), and sup-
pose that the incidence angle is #;,,. = 0° (normal incidence).

In Fig. 4, we compare the results obtained with our homog-
enization model and the commercial full-wave electromagnetic
simulator Microwave Studio [30] for several values of the dis-
placement of the wires, d. One can see that there is a good agree-
ment between effective medium approach and the full-wave
simulations, supporting the validity of our theory. This indi-
cates that the boundary conditions (26) model accurately the

dynamics of the state variables near the interfaces. The small
difference between the results is of the same order as that ob-
tained for the case of centered patches [17]-[21] and is a conse-
quence of the approximations implicit in the analytical model.

Moreover, the results show that the relative position of the
wires in the cell has a major influence in the behavior of the re-
flection and transmission properties. For normal incidence, it is
seen that displacing the wires leads to the emergence of a new
resonance. This happens because (/, ¢, ) and (E, H) become
coupled through the boundary conditions. The resonance fre-
quency shifts to lower values as we increase the offset of the
wires with respect to the central position in the cell. This is ex-
pected because such a change effectively results in a physically
larger oscillation path for the electrons on the patches (the os-
cillation path contains the metallic wire), and this leads to a re-
duction of the resonance frequency. The new resonance is seen
only when the symmetry of the structure is broken, and for small
values of d it is associated with an odd-type mode that cannot
be excited with a slow-varying incoming plane wave. Similar
odd-type resonances have been reported elsewhere [31], [32].

Previous studies [17]-[21] have shown that inserting lumped
loads at the wire-to-patch connection may change the behavior
of the scattering parameters and alter dramatically the position
of the transmission resonances. To illustrate this, next we con-
sider that lumped inductive and/or capacitive loads are inserted
in the bottom grid, i.e., at z = —h. By considering an effective
load impedance given by [24]

1

1
—1wChar +
b <Z10ad)

Zload,oﬁ - *Z‘UJLpar + (28)
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Fig. 5. Representation of: (i) magnitude and (ii) phase of the transmission coefficient for the two-sided mushroom structure with d = a/9 under the excitation of
a TM polarized plane wave with the angle of incidence &;,. = 7.3° when the wires are connected to the bottom patch grid through inductive loads: a) L = 0.2 nH
and b) L = 2 nH and capacitive loads ¢) " = 0.4 pF and d) C' = 2 pF. Solid lines: homogenization model; dashed lines: full-wave simulations.
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Fig. 6. Magnitude and phase of the transmission coefficient for the two-sided
mushroom structure withd = —a /9 when the wires are connected to the bottom
patch grid through an ideal short circuit for a fixed frequency f = 2.7 GHz as
a function of the incidence angle of a TM polarized plane-wave. Solid lines:
homogenization model; dashed lines: full-wave simulations.

it is possible to take into account the effects of parasitic capac-
itances and inductances (Cy,a, and Lp,;), which depend on the
specific geometric details of the connection point.

Fig. 5 depicts the transmission characteristic of a two-sided
mushroom slab where the wires are displaced by d = a/9 along
the x-direction from the center of the patch, under the excita-
tion of a TM wave with angle of incidence 8;,c = 7.5° for
different values of load impedance. In the full-wave simula-
tions, we considered that the load is placed across a gap of 0.04
mm. The values of the parasitic inductance and capacitance may
be estimated by curve matching between the homogenization
and the full-wave simulation results. The parasitic effects intro-
duced by the gap are well modeled by a parasitic inductance
Lpar = 0.02 nH and parasitic capacitance Cl,,, = 0.12 pF.

As seen in Fig. 5, an increase in the inductance of the lumped
load causes the transmission resonance to shift to lower fre-
quencies, and the opposite behavior is observed when capacitive
loads are considered. Thus, the lumped loads provide additional
degrees of freedom to control the response of the metamaterial
surface. Moreover, the proper tuning of the value of the load
may allow for a switch-type behavior because the magnitude of
the transmission and reflection parameters can vary very fast in
a range of a few hundred megahertz.

g 6{(1(‘
E .
K\, ¢

h é,

Fig. 7. Similar to panel: i) of Fig. 1, but for wires connected to a ground plane
at the bottom interface.
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Fig. 8. Phase of the reflection coefficient for the mushroom structure termi-
nated with a ground plane illuminated by TM-polarized wave propagating along
the normal direction for different values of the offset of the wires: a) d = 0,
b)d = a/9,¢)d = 2a/9, and d) d = «/3. Solid lines: homogenization
model; dashed lines: full-wave simulations.

In the previous examples, the angle of incidence was close to
the normal direction. In order to validate the model for oblique
incidence, we show in Fig. 6 the transmission characteristic of
a two-sided mushroom slab for wide incident angles, when the
wires are displaced by d = —a/9 along the z-direction at the
fixed frequency f = 2.7 GHz. The wires are connected to the
metallic patches through an ideal short circuit. Very interest-
ingly, in this example, the transmission characteristic is an even
function of 6;,,., or equivalently, it is seen that despite the lack
of symmetry of the structure, the transmission characteristic re-
mains invariant if d = —a/9 is replaced by d = /9. This can
be understood by noting that, in general, for a fixed 6, and a
fixed polarization, our system is equivalent to a four-port mi-
crowave network. The four propagation channels correspond to
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Fig. 9. Phase of the reflection coefficient for a mushroom ground plane illuminated by a TM polarized wave propagating along the normal direction for: (i) different
values of the permittivity of the substrate a) ¢, = 1, b) £, = 2.33, and ¢) €, = 3 and (ii) different values of the separation between patches a) g = «/9,
b) gy = 2a/9, and ¢) ¢ = a/3. Solid lines: homogenization model; dashed lines: full-wave simulations.

the directions +6;;,. in the upper and lower subspaces. Hence,
because of the reciprocity theorem, it follows that the reflec-
tion coefficient is an even function of 6;,.. On the other hand,
the conservation of energy and the even parity of the reflection
coefficient ensure that if the system is lossless (as in this ex-
ample), the magnitude of the transmission coefficient is also an
even function of #;,,.. This justifies the results of Fig. 6.

B. Mushroom Ground Plane With Displaced Wires

Next, we apply the proposed homogenization model to a con-
ventional mushroom-type ground plane such that the wires are
connected to a ground plane at the bottom interface, and to the
patch grid at the top interface (Fig. 7). As before, the wire-
medium slab has thickness £, the separation between consec-
utive patches is g, and the wires are displaced from the central
position of the cell by a distance d as in panel (ii) of Fig. 1.

In the analytical model, the boundary conditions at the bottom
interface are different from the ones at the top interface (see the
discussion in Section II-E). In the first example, we calculate the
scattering parameters for a mushroom slab with thickness 4 =
2a/9 with g = a/9 and for a lattice period @ = 18 mm. The PEC
wires are embedded in a host material with relative permittivity
ep, = 2.2 and have radius r,, = a/72. In Fig. 8, we compare
the results obtained with our homogenization model and those
computed using the full-wave simulator [30] for several values
of the offset of the wires, d, supposing that the structured slab
is illuminated by a TM-polarized plane wave propagating along
the normal direction.

Again, a quite good agreement is observed, further validating
our theory. The results are also in excellent agreement with what
was reported in [5], where the same structure was analyzed, and
it was shown that by offsetting the wires the reflection properties
of the system can be tuned.

We also investigated the validity of the model when the struc-
tural parameters are varied. Fixing the value of the displacement
the wires equal to d = a/9, we calculated the phase of the reflec-
tion coefficient for different values for the substrate permittivity
and patch size (Fig. 9), keeping the remaining parameters as in
the previous example.

It is seen in Fig. 9 that the analytical model works quite
well in the considered scenarios. As expected, as the host
permittivity increases, the resonant behavior (corresponding to

the in-phase reflection condition) shifts to lower frequencies.
Moreover, when the spacing between patches is increased, the
structure resembles more and more a Fakir’s bed of nails [33]
(wires are terminated with an open circuit), and hence, the
resonant frequency increases. Although it is noticeable that
our homogenization model works better for large patches, the
results are still quite acceptable for relatively small patches.

IV. CONCLUSION

We have developed an effective medium approach to solve
scattering problems involving asymmetric mushroom-type
metamaterials. It was shown that when the symmetry centers
of the patch grid and wire array are misaligned, the response
of the structure is drastically changed and new resonances can
emerge, even for normal incidence. This occurs because in case
of misaligned arrays, the electric polarizability zz component,
ey, Of the basic inclusion in the unit cell does not vanish.
This effect and the possibility to load the wires with lumped
nonlinear loads may provide the opportunity to design novel
tunable nonlinear electromagnetic-bandgap metamaterials in
the microwave regime.

APPENDIX
LORENTZ LEMMA AND THE RECIPROCITY THEOREM
FOR THE UNIAXIAL WIRE MEDIUM

Let us consider an unbounded uniaxial wire medium oriented
along the z-coordinate, with position-dependent constitutive pa-
rameters €5, = £5,(2), Ly = Ly(2), and C,, = C,(2). When
there are no external sources embedded into the wire medium,
the electrodynamics are governed by the system of equations
(6a)—(6d). A more general form of the field equations with ex-
ternal sources was derived in [29]

VXE=+iwuyH (Ala)
I
VxH= —iwe, B+ —2 4 I (Alb)
a
a1
— = wCyww (Alc)
0z
dow .
(;p = iwlo I + E. + Vo, (Ald)
z

Here, the source term J** can be regarded as the current
density distributed in the space surrounding the wires, while
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V **t is the linear density of localized voltage sources embedded
into the wires (see [29] for more details). Note that the above
formulation with position-dependent constitutive parameters is
applicable without modifications to the cases of stratified wire
media, including the case wherein the wires occupy a half space
(in the latter case, the regions free of wires can be modeled as
the regions filled with wires of zero radius). Moreover, in these
cases, a complete set of boundary conditions follows directly
from (Ala)—(A1d) under the assumption of finiteness of all state
variables of the problem at the points where the constitutive
parameters change abruptly.

Using (Ala)—(A1d), it is straightforward to prove that the fol-
lowing relations hold for a pair of arbitrary solutions Eq », H; 2,

Y .1,2, 112 of these equations with the sources J {XQ* s fét

V[El XHQ—EQ XHl]
EZ,ZIl - Ez,1]2

=Ey J7 By - J5 + 5 (A2a)
a
d
a_(QOw,lIZ — Yuw,2lh)
4
=FE. 1l — E. o1 + V™ — Va™' (A2b)

Combining (A2a) and (A2b), we obtain the Lorentz lemma valid
for the general case of the uniaxial wire medium with position-
dependent constitutive parameters

a2
V'lextjz _ 2ext[l
2 .

Pu I — w IA
V‘[E1><H2E2><H1+M2—MZ]

=E,-J{ - E; - J& + (A3)

a

From this lemma, the reciprocity theorem can be formulated by
integrating over a volume V' with boundary S,

. w I —Yuw I ~
/ﬁ'|:E1XH2—E2XH1+SO'12—2(’D’21Z:| ds
a
i Vext[ _VextI
:/[EQ-JT‘“El-J;’“—F—l 22 1]dV (A4)
. a

when V is taken as the whole space the left-hand side surface
integral vanishes provided the fields satisfy radiation boundary
conditions at infinity, which results in

4 V’oxt[ 4 Voxt[
/ (Ez-J‘f"t—i-—laZ 2) (],V:/ (El At 1) v

L /2

(A5)
where the integration volumes V; » fully enclose the source re-
gions in the two problems.
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