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Additional Boundary Condition for the Wire Medium
Mário G. Silveirinha, Member, IEEE

Abstract—In this paper, it is proved that the continuity of the
tangential components of the average electric and magnetic fields is
insufficient to describe the reflection of plane waves by a set of thin
parallel wires embedded in a dielectric host using a homogeniza-
tion approach. Based on physical arguments a new boundary con-
dition is proposed to characterize the scattering of waves by the ho-
mogenized wire medium. In order to further support the proposed
theory, the problem of reflection of a plane wave by a set of semi-
infinite parallel wires is solved analytically within the thin-wire
approximation. Extensive numerical simulations demonstrate that
when the additional boundary condition is considered the agree-
ment between full wave results and homogenization theory is very
good even for wavelengths comparable with the lattice constant.

Index Terms—Additional boundary condition (ABC), boundary
conditions, homogenization theory, metamaterials, spatial disper-
sion, wire medium.

I. INTRODUCTION

THE characterization of the wire medium is an important
problem in electromagnetics. The reason is that this meta-

material is suitable for fabrication at the microwave band and
can be operated in a regime where it effectively behaves as a
negative permittivity material [1], [2].

In recent years, there has been a great interest in materials
with negative (or near zero) permittivity. For example, it was
shown that if not only the permittivity but also the permeability
of the medium is negative (double negative (DNG) medium)
then negative refraction occurs [3]. In [4] it was shown that a
source embedded in a metamaterial with permittivity near zero
radiates most of the energy into a narrow angular cone. In [5]
it was shown that an -negative material can be tailored to syn-
thesize a dielectric crystal that behaves effectively as a DNG
medium. In [6] it was proved that -negative (and near zero)
materials can be used as covers to significantly reduce the scat-
tering from moderately large particles.

Because of these and other prospective applications of -neg-
ative materials, it is important to rigorously characterize the wire
medium. Although the first studies about this composite struc-
ture were published more than four decades ago [1] there are still
some open research topics, and recent works show that the prop-
agation in the wire medium is not as simple as it was initially
thought. It was recently proved that all the common geometries
of the wire medium are characterized (at least to some extent) by
spatial dispersion [7], [8], and that consequently the constitutive
relations in the homogenized structure are non-local [9]. Also,
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in [10] it was shown that in a 2D-wire mesh of non-connected
wires the average fields at an interface cannot be identified with
those of the bulk metamaterial.

As is well-known, when spatial dispersion occurs the usual
boundary conditions (i.e., the continuity of the tangential com-
ponents of and ) are insufficient to describe the field in-
teraction at an interface. In fact, additional boundary condi-
tions (ABCs) are required [11]–[17], [30]. The ABC concept
has been used in electromagnetics of spatial dispersive media
and in solid-state physics for many decades [11]. Unfortunately,
no general theory is available to derive such conditions, which
in general are dependent of the local geometry/properties of the
medium. Some classical ABCs, which have been used in a wide
range of problems, were formulated in [15] and impose that ei-
ther the polarization vector or the derivative of the polarization
vector are zero at the interface. These and other ABCs are not
suitable (at least a priori) to the problem we want to study here,
since as referred before, the spatial dispersion phenomenon is
specific to the microstructure of the medium.

In this paper, we propose a new boundary condition to char-
acterize the wire medium (array of parallel thin metallic wires).
The only study that we could find in the literature directly re-
lated with this topic is the “ABC-free” [16] motivated approach
reported in [17], [30]. In that work, it is shown that the clas-
sical ABCs are not appropriate to homogenize the wire medium
problem. Instead, the authors of [17], [30] suggest introducing
a transition layer between the air region and the array of wires.
A source placed at the transition layer is excited by the inci-
dent wave, and determines indirectly the amplitude of the scat-
tered fields. This approach is interesting, but the choice of source
in [17], [30] seems to be somehow arbitrary and the proposed
model was not numerically tested.

Our approach here is very different. Based on physical ar-
guments we propose a new boundary condition to characterize
the interaction of the fields in free-space and the fields in the
wire medium. The proposed boundary condition is successfully
tested against full wave numerical data. To further demonstrate
the generality of the ABC, we theoretically calculate the reflec-
tion coefficient of a plane wave impinging on a set of semi-in-
finite parallel wires. An exact analytical formula for the reflec-
tion coefficient is derived under the thin wire assumption, using
complex function theory and a generalization of the method
proposed in [18]–[20], and it is shown that the result is com-
pletely consistent with the new ABC. It is important to note that
even though other studies [18]–[20] have shown that in some
cases it is possible to solve exactly the reflection problem in
a semi-infinite crystal, all these works assumed that the inclu-
sions could be replaced by point-dipole oscillators. However,
such assumption cannot be used in this paper because here the
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inclusions are infinitely long metallic wires. It is also worth
mentioning that the reflection of waves by a semi-infinite set
of wires is in a certain sense alike to the reflection of waves by
semi-infinite waveguides. It is known that for some geometries
these problems can be solved in closed analytical form using the
Wiener–Hopf method [21]–[23].

The organization of the paper is as follows. In Section II, the
new boundary condition is introduced. In Section III, it is shown
that the results predicted by our theoretical model compare very
well (even for moderately small wavelengths) with full wave
numerical simulations. To further support the new ABC in Sec-
tions IV and V, we study the reflection of a plane wave by an
array of semi-infinite wires. Firstly, in Section IV, we briefly re-
view the necessary formalism to tackle the reflection problem.
In [18]–[20] it was shown that it is possible (for the case of point
dipole oscillators) to relate the amplitudes of the excited modes
in the semi-infinite crystal with the electric dipole moment and
the wave vector of the modes. In [20] it was proved that these re-
sults are actually valid for an arbitrary dielectric crystal with no
restrictions on the electrical size of the inclusions. In this paper,
we present an extension of these results to the metallic case.
In Section V, we apply the derived formalism to calculate the
reflection coefficient analytically. Following an idea proposed
in [20], we will show that the solution of the problem is in-
trinsically related with the reconstruction of an analytical func-
tion from the knowledge of its zeros and poles. Although the
idea proposed in [20] is relatively plain, things are not really so
simple because the convergence of some infinite products and
the uniqueness of the solution may be questionable. We present
a rigorous analysis that solves these issues unambiguously and
we show that the result is compatible with the new ABC. Fi-
nally, in Section VI, the conclusions are presented.

II. ABC FOR THE WIRE MEDIUM

The (unbounded) wire medium consists of a set of infinitely
long wires arranged in a square lattice with lattice constant
(i.e., the spacing between the wires is ). The wires are assumed
to be perfectly conducting, have radius , and are oriented
along the -direction. The semi-infinite structure is obtained by
replacing the region by air, as illustrated in Fig. 1. The
wires are embedded in a dielectric with (relative) permittivity

. In the following, the reflection problem in the homogenized
structure is studied, and it is explained why an ABC is neces-
sary.

A. The Homogenized Wire Medium

Next, the key properties of the homogenized wire medium are
quickly reviewed. In [8] it was proved that the wire medium is
an electromagnetic crystal with permittivity (relative to the host
medium ) and

(1)

where is the wave number in free-space,
is the wave vector, and is the plasma wave

Fig. 1. Truncated wire medium: periodic array of semi-infinite wires embedded
in a dielectric with permittivity " .

number. The permittivity dyadic predicts that there are three
different plane wave solutions: a TEM mode, a TM mode and a
TE mode. The dispersion characteristic of the modes is

(2a)

(2b)

(2c)

The polarization of the associated plane waves is of the form

(3a)

(3b)

(3c)

and . The corresponding magnetic field is given
by

(4)

where is the impedance of the host medium. It is important
to note that in “conventional media” there are only two different
plane wave solutions for a fixed frequency. The homogenized
wire medium has not this property because it is characterized
by strong spatial dispersion in the long wavelength limit [8].

B. The Scattering Problem

The existence of three different electromagnetic modes has
an important consequence: the usual boundary conditions (con-
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tinuity of the tangential component of the electric and magnetic
fields) at a planar interface between the (homogenized) wire
medium and another dielectric medium are not enough to solve
unambiguously a scattering problem. In fact, the corresponding
system has one degree of freedom (because of the extra electro-
magnetic mode). To remove the indetermination an additional
boundary condition is necessary.

To illustrate this difficulty let us consider the problem of plane
wave incidence in a semi-infinite homogenized wire medium.
For simplicity, we assume that the component of the incident
wave vector parallel to the interface is , as de-
picted in Fig. 1. We consider that the incident magnetic field
is parallel to the interface (TM- polarization) (for TE- polar-
ization the problem is trivial because the corresponding plane
wave does not interact with the wires). Thus, the magnetic field
is oriented along the -direction, and the incident field can only
excite the TEM and TM modes inside the wire medium. There-
fore, we can write that

(5a)

(5b)

where is the
reflection coefficient, and and are the amplitudes of the
TEM and TM modes inside the wire medium. It can be easily
verified that the continuity of the tangential component of the
electric field is equivalent to the continuity of ,
where is equal to unity at the air side. So, the classical
boundary conditions impose that and are con-
tinuous at the interface. Since the number of unknowns is three,
the system is obviously underdetermined and the necessity for
the ABC is evident.

Now the objective is to find an ABC that is able to accurately
describe the electrodynamics of the wire medium. Which phys-
ical attribute of the wire medium can be used to formulate an
ABC? There is one important property that hopefully may be
useful: the electric current at the wire extremities must vanish
at the interface. How can we use this property to devise an ABC?

From the results of [10], it can be verified that in the wire
medium the homogenized fields satisfy (the averaging is over a
generic section of the unit cell) the following (exact)
relation

(6)

where is the density of current at a generic wire with cross-
section boundary , and is the arc length. The formula is
also valid at the air side, provided we take and .
Now, we note that if we impose that at the wire ends
the second term in the right-hand side vanishes at the interface
(and in the particular is continuous). On the other hand, the tan-
gential magnetic field is continuous at the interface and conse-
quently the -component of the first term in the right-hand side

is also continuous. Thus, we conclude that the -component of
the vector in the left-hand side is also continuous, i.e., the elec-
tric field must satisfy the ABC

(7)

where is the normal component (along for our geom-
etry) of the homogenized electric field. We remind that by con-
vention at the air side. Note that the ABC was derived
using only the fact that at the wire ends. Also, the ABC
is consistent with the well-known fact that in the non-homog-
enized problem is continuous at the interface, and thus
the same relation must hold for the homogenized field (given
the geometry of this particular problem). In [14] a similar ABC
was proposed to take into account the effect of diffusion in a
semiconductor.

An important consequence of (7) is that when the wires stand
in free-space not only the tangential components of the homog-
enized fields are continuous, but also the normal components.
This is a very unusual and interesting phenomenon.

The proposed ABC is in a certain sense counterintuitive. In-
deed, it apparently violates the rule that the normal compo-
nent of the electric displacement vector, , in the homogenized
structure is continuous (because the effective permittivity of the
homogenized wire medium is certainly different from ).

However that is not the case. To understand the reason it
is important to remember that when spatial dispersion occurs,
the permittivity dyadic has meaning only in the wave vector

-space (which is the Fourier Transform dual of the -space).
Of course, the permittivity dyadic can still be used to calculate
the plane wave solutions in the homogenized structure (which
describe the properties of the (spatial averaged) electromagnetic
modes in the non-homogenized structure). The boundary con-
ditions at an interface have meaning only in -space not in the

-space. In general (at least for an unbounded spatially disper-
sive medium), the electric displacement vector is related with
the electric field by a spatial convolution, and not by a simple
multiplication. When the field in the spatial domain consists of
a sum of plane waves (associated with different wave vectors),

, the corresponding electric displacement
vector is given by (in the wire
medium case the sum is over the TE, TM, and TEM modes).
But this formula clearly demonstrates that there is neither con-
tradiction nor redundancy between the continuity of the normal
component of and (7). It is also important to note that even
though the -component of the TEM mode vanishes, its contri-
bution to is different from zero because the permittivity seen
by this mode is infinite [8].

After simple calculations it is possible to verify that for
the geometry under study, (7) is equivalent to impose that

at the interface, where the rect-
angular brackets, , represent the difference between a quantity
calculated at the wire medium side and the same quantity
calculated at the air side. Therefore, the boundary conditions
necessary to solve the scattering problem can be summarized as

(8)
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When the wires are embedded in air, and its first and second
order derivatives are continuous at the interface.

Using the boundary conditions in (5) we obtain the following
linear system:

(9)

Solving for we obtain

(10)

In case the wires are embedded in air the formula simplifies
to

(11)

These results give the reflection coefficient for a plane wave in-
cident in the semi-infinite wire medium. It is important to note
that (10) is very different from the result derived in [24] which
applies when the wires are parallel to the interface. The reasons
are that in the configuration studied in [24], the spatial disper-
sion effects are hidden, the TEM mode cannot be excited, and
the wires can be treated as line sources. It can also be verified
that the corresponding result derived in [17], [30] is not com-
patible with (10).

In a subsequent section, we will prove that (11) is completely
consistent with the exact analytical result for thin wires.

C. Finite Wire Medium Slab

The proposed homogenization procedure allows us not only
to study the propagation of waves in the semi-infinite wire
medium, but also in a slab with wires of length . The geom-
etry of the problem is similar to that of Fig. 1, except that there
is a second interface at . In this case, assuming that the
incident wave is as in Section II-B, the magnetic field is given
by

(12a)

(12b)

(12c)

where and are the unknown reflection and transmission
coefficients, respectively, and and are the amplitudes
of the TEM and TM modes inside the wire medium slab. Using
the boundary conditions (8) at the interfaces and

we readily obtain a 6 6 linear system that can be solved
numerically to find the unknowns.

Fig. 2. Amplitude of the reflection coefficient as a function of the normalized
frequency (solid line: numerical results; dashed line: homogenization theory;
long dashed line: only TEM mode is considered).

Fig. 3. Phase of the reflection coefficient as a function of the normalized fre-
quency (solid line: numerical results; dashed line: homogenization theory; long
dashed line: only TEM mode is considered).

III. NUMERICAL VALIDATION

The objective of this section is to validate the new ABC. To
this end, full wave numerical results are compared with the re-
sults predicted by homogenization theory. Since it is not viable
to analyze numerically a structure in which the wires are in-
finitely long, we consider in the simulations that the wires are
finite with length . The geometry is described in Section II-C.
We numerically computed the reflection coefficient at the
interface using the periodic method of moments (MoM). The
radius of the wires is , and thus . The
theoretical results (i.e. the homogenization results) are obtained
from (12) and by matching the fields at the interfaces and

.
In the first example, the length of the wires is ,

and the incident angle is . The amplitude and
phase of the reflection coefficient are depicted in Figs. 2 and
3, respectively. The solid line represents the numerical results
computed with the MoM, and the dashed line represents the ho-
mogenization theory results. We also plotted (long dashed line)
the results obtained when the ABC is not taken into account and
only the TEM mode is considered inside the wire medium (note
that the TM mode is cutoff for long wavelengths) (these results
are computed by setting in (12) and imposing
the continuity of the tangential electromagnetic fields at the in-
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Fig. 4. Amplitude of the reflection coefficient as a function of the normalized
frequency for different angles of incidence (solid line: numerical results; dashed
line: homogenization theory).

Fig. 5. Amplitude of the reflection coefficient as a function of the normalized
frequency for different slab thicknesses (solid line: numerical results; dashed
line: homogenization theory).

terfaces). As seen, for this example, such approach completely
fails to describe the reflection characteristic of the wire medium
(even for very long wavelengths). This illustrates the importance
of the new ABC. The agreement between the numerical results
and the analytical results is good, especially for [which
defines together with the range of application of the
model (1)]. Note that for small frequencies the reflection is neg-
ligible because most of the incoming energy is coupled to the
TEM mode.

The proposed homogenization model is also valid over a wide
the range of incident angles and for the case in which the wires
are embedded in a dielectric. This is illustrated in Fig. 4 for

, and and
. As expected, the amplitude of the reflection coefficient de-

creases as the incident angle approaches the direction of normal
incidence. The agreement between homogenization theory and
the numerical results gets slightly worse when increases.
Similar good agreement is obtained for the transmission coeffi-
cient.

Finally, in Fig. 5 the amplitude of the reflection coefficient is
depicted for , and for the wire lengths:

, and . As before, the agreement
is very good for long wavelengths.

Fig. 6. Plane wave impinges on a generic semi-infinite electromagnetic crystal.
The structure is periodic in the xoy plane.

IV. SCATTERING BY A SEMI-INFINITE CRYSTAL

To further support the proposed ABC, in the second part of
the paper we will calculate the exact analytical solution (within
the thin-wire approximation) for the reflection coefficient of a
plane wave that illuminates the semi-infinite wire medium, and
prove that the result is consistent with the ABC.

To begin with, in this section, we review the theory that is
necessary to solve the scattering problem in a truncated periodic
structure. In [20] it was proved that the reflection problem in
a generic semi-infinite dielectric crystal can be reduced to an
infinite linear system. The unknowns of the linear system are
the amplitudes of the excited electromagnetic modes, and the
coefficients of the corresponding infinite matrix only depend
on the (generalized) electric dipole moment and on the wave
vector of the electromagnetic modes. We have extended these
important results to the metallic case. To ease the readability of
the paper the proof has been moved to Appendix A.

Consider that a 3-D-periodic crystal is truncated at the plane
, being the region filled with air. The geometry of

the resultant structure is as shown in Fig. 6. This semi-infinite
crystal is invariant to translations along the primitive vectors
and . We assume that are parallel to the plane. The
area of the unit cell of the transverse lattice is .

The unbounded crystal is also invariant to translations along
the primitive vector . We put (see Fig. 6).
For future reference, we introduce the reciprocal lattice primi-
tive vectors , and , which are defined by the relations

.
The semi-infinite crystal is illuminated (from the air side)

with a plane wave of the form ,
where is the wave vector, and defines
the polarization of the field. The wave vector satisfies the rela-
tion , where is the free-space wave
number, and is the angular frequency.

In the region (the truncated crystal), the excited electric
field can be expanded in terms of the electromagnetic Floquet
modes , of the crystal

(13)
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where are the unknown coefficients of the expansion. The
Floquet mode is associated with the frequency , and with
the wave vector , i.e., is periodic in the un-
bounded crystal. Since the component of the wave vector par-
allel to the interface must be preserved, the wave vector can
be assumed of the form . Also, because the
electric field must satisfy a radiation condition, it follows that

(assuming non-vanishing losses).
In Appendix A (see also [20]), it is proved that the unknown

coefficients satisfy the following infinite linear system:

(14)

where is a generic double-index of arbitrary inte-
gers, represents the Kronecker’s -symbol, and is the per-
mittivity of vacuum. We put

(15)

(16)

(17)

where is the projection of onto the plane, etc. Also,
the generalized electric dipole moment was defined using

(18)

In the above

represents the unit cell of the unbounded crystal,
is the (periodic) relative permittivity of the structure, is
the metallic region in the unit cell (if any), represents the
boundary surface of , and is the outward unit vector normal
to . Note that if in (18), then becomes the electric
dipole moment (in a unit cell) for the Floquet mode .

On the other hand, in the air region the scattered field
is given by

(19)

where is defined as in (17). So, assuming that
for , i.e., that only one reflected mode propagates in free-
space without attenuation (which is certainly true for relatively
long wavelengths), the asymptotic expression of the scattered
field as is

(20)

where we put . In particular, the
amplitude of the propagating (fundamental) reflected mode re-
ferred to the interface , is

(21)

The above results show that if somehow we are able to solve
the linear system (14), then we can compute the solution of the
electromagnetic problem in all space, and in particular the re-
flection coefficient at the interface.

V. REFLECTION PROBLEM IN THE SEMI-INFINITE

WIRE MEDIUM

Here, we use the formalism presented in the previous sec-
tion to characterize the reflection of a plane wave by the wire
medium. The geometry of problem is as in Section II, except
that we assume that the wires stand in air, i.e., (it can be
verified that only this case has an analytical solution).

A. Infinite Linear System

In order to calculate the reflected field using (21), we need to
solve the infinite linear system defined by (14). To this end, we
characterize first the electromagnetic modes supported by the
unbounded (non-truncated) wire medium. As is well known, the
electromagnetic modes of this structure can be decomposed into
three sets: transverse electromagnetic modes (TEM), transverse
electric modes (TE), and the transverse magnetic modes (TM).
The TEM modes are such that both and are zero, the
TM modes are such that , and finally the TE modes are
such that . It is noted that the dependency of the Floquet
modes with the variable is of the form .

It is assumed that the thin-wire approximation, ,
holds. Under this assumption the density of current (calcu-
lated at the surface of a generic wire) for an electromagnetic
mode with wave vector , is of the form

(22)
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where is the current. Thus, apart from the propagation factor,
it is assumed that the density of current is uniform and flows
along the wire axis.

Within this approximation, it can be proved that the TE-Flo-
quet modes degenerate into plane waves that propagate undis-
turbed in the wire medium (i.e., the TE-plane waves are not scat-
tered by the wires).

In order to solve the infinite linear system (14), first we will
calculate the (generalized) dipole moment associated with the

th Floquet mode with wave vector . Using (18) and the fact
that the wires are embedded in air, it is found that

(23)

where is the density of current associated with the th
mode, and the surface of the wire in the unit cell is defined by

. Note that
since the non-truncated structure is uniform in the -direction
the period can be chosen arbitrarily. Using (22) we obtain
that

(24)

In the above, is the current along the wire in the unit cell
(for the considered electromagnetic mode in the non-truncated
structure), and is the free-space impedance.

We note that for the TE-Floquet modes, and so
the corresponding generalized dipole moment vanishes
(within the thin-wire approximation). This proves that in (14)
and (21) the parcels associated with the TE-modes also vanish,
and therefore they can be discarded (i.e., the summation in the

variable can be restricted to the TEM and TM modes). This is
not surprising, since as noted before the TE-modes are not scat-
tered by the wires.

Substituting (24) into (14), taking into account that
because the wires are arranged in a square lattice, and calcu-

lating the scalar product of both sides of the resulting equation
with , it is found that

(25)

Defining such that

(26)

and noting that the left-hand side of (25) vanishes for , we
find that the unknowns satisfy

(27)

Similarly, substituting (24) into (21) and remembering that
, it is found that

(28)

Therefore, we can to compute the -component of the reflected
field using (28), by solving first the infinite linear system (27)
with respect to the unknown variables . As referred before,
the summations in (27) and (28) can be restricted to the TM and
TEM electromagnetic modes of the wire medium.

For a given (which only depends on the incident field),
there is only one TEM mode that satisfies the correct radiation
condition. Its propagation constant is known in closed-analyt-
ical form

(29)

On the other hand, for a given there are infinitely many dif-
ferent (but countable) TM modes. Their propagation constants
are of the form

(30)

where represent the eigenvalues of the (2D)
Laplacian associated with the Floquet
eigenwaves that satisfy Dirichlet boundary conditions over the
boundary of the metallic wires, and are independent of . The
eigenvalues are real valued and unfortunately
cannot be calculated in closed analytical form. However, they
can be calculated numerically as explained for example in [28].

Next, it is convenient to define the following function in the
complex plane ( is the complex variable):

(31)

We will suppose that the series is absolutely convergent in the
complex plane (except at the poles ). Equations (27)
and (28) are equivalent to

(32)

(33)

In particular, putting in (32) it is found that the reflection
coefficient is given by

(34)
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Therefore, provided we are able to calculate the unknown func-
tion then we can solve the problem analytically. This is dis-
cussed in the following sections. To begin with, the poles and
zeros of will be characterized.

B. Zeros and Poles of Function f

Equation (32) shows that function vanishes at for .
Thus, the zeros of are either purely imaginary numbers or
purely real positive numbers. For convenience let

represent the sequence of real numbers

ordered in such a way that . Then

are the zeros of function ,
ordered in such a way that the real valued zeros satisfy

.
Even though it is not possible to write explicitly as a

function of , it is possible to write an asymptotic formula for
. In fact, we have that

(35)

In the above, the symbol “#” represents the cardinal (number of
elements) of a given set. The last identity results from the fact
that in the wave vector space each index can be unambigu-
ously assigned to a square with side , and from the fact
that the area of the region is . Using the previous
result, we obtain the asymptotic formula

(36)

For future reference, we also note that

(37)

In fact, assuming that for the sequence is real
valued, we have that

(38)

The first identity is a consequence of when is
real valued.

On the other hand, (31) shows that the poles of , denoted by
, are given by

(39)

Note that except possibly for a finite number of purely imagi-
nary poles, all the poles are real valued and positive. We assume
that the sequence is increasing, so that the real poles
satisfy .

Next we prove that the poles and zeros of must alternate
in the real line. Within the thin-wire approximation, it can be
proved (see [7] for a related result) that

satisfies the characteristic system

(40)

The above equation can be rewritten (rearranging the summa-
tion order) as

(41)

where is some real constant and by definition
. The objective is to characterize the (real) roots

of the equation.
Let us assume first that . In that case it is obvious

that the right-hand side of the equation is a positive quantity and
so the equation has no solutions.

Consider now that
(assuming for simplicity that we have a non-degenerate case:

). It is convenient to rewrite the character-
istic equation as

(42)

In the considered interval, the right-hand side of the equation is
positive and grows monotonically to as approaches the
upper extreme of the interval. On the other hand, the left-hand
side of the equation is also positive and decays monotonically
from (at the lower extreme of the interval) to some con-
stant (at the upper extreme) This proves that there exists ex-
actly one solution of the characteristic equation in the interval

. This solution is precisely
. Thus, we have proved that

(43)
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This identity implies that for real valued poles/zeros we have
that

(44)

In the long wavelength limit, , the above identity is valid
for arbitrary . For simplicity, we shall assume in
the following sections that the zeros and the poles are real valued
for (nonetheless the derived results will still be valid in
the general case). The pole is always purely imaginary.

Because of (44) we have
(for sufficiently large ). Therefore,

from (37) we find that

(45)

Also, for future reference, we note that (36) and (44) imply that

(46)

To conclude this section, we prove that given by (31) is
uniformly bounded in sectors of the complex plane of the form

( is the polar angle) ex-
cluding a neighborhood of the pole . In fact

(47)

where the poles are assumed real, as referred before. So, from
(31) we find that in the considered sector:

(48)

The right-hand side is uniformly bounded outside a small neigh-
borhood of . Note that the series in the right-hand side con-
verges because we assume that the series in (31) is absolutely
convergent (in particular it is absolutely convergent for ).

C. Construction of Function

Next, we will calculate the unknown function . The obvious
idea is to write the function as an infinite product of monomials
that depend on the zeros and poles, as suggested in [20] for a
related problem. However, here things are not so simple.

In fact, for the problem under study the sequences of poles
and zeros grow to infinity relatively slowly [see (46)], which
prevents the convergence of some pertinent infinite products.
Thus it is necessary to proceed with extra care (in [20] the sit-
uation is easier because the sequences of poles and zeros grow
to infinity extremely fast).

Another crucial issue concerns the uniqueness of . In fact
there are many different analytical functions with exactly the
same poles and zeros. All these functions differ by the multipli-
cation of a function of the form , where is an
entire function. So the important question is, “how to pick the

correct function?” (this important issue was ignored in [20]).
The answer is intrinsically related with the behavior of at in-
finity, as is shown in the proof presented next.

To begin with, we introduce the auxiliary functions and
defined by (we assume without loss of generality that all the

zeros and poles are different from zero)

(49)

(50)

The absolute and uniform convergence of the infinite products
is guaranteed by (46) [see ([29, pp. 56]); the exponential factors
are necessary to ensure convergence]. Moreover, and are
entire functions and the zeros of are precisely

, whereas the zeros of are .
The idea is to write in terms of and .

Before that, it is important to estimate the order of growth of
and when (the reason will be clear ahead). An

entire function has order (of growth) if for every the
following relation holds:

(51)

for sufficiently large (see [29, pp. 63] for a more rigorous
definition). Because of (36) and (44), it is possible to prove that
the order of growth of and is [29, pp.69].

Since the zeros of are exactly the same as the poles of
function , we conclude that is an entire function that has
exactly the same zeros as . Moreover, it is possible to prove
(see Appendix B) that the order of growth of is also .
Because of this we can apply Hadamard’s factorization theorem
[29, pp.74] that establishes the following important result:

(52)

where is some polynomial of degree no larger than .
Rearranging the previous equation, it is found that

(53)

where still represents some (unknown) polynomial of degree
no larger than 2. Now because of (45), we can apply a Lemma
enunciated in Appendix B to conclude that

(54)
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is absolutely and uniform convergent in compact sets of the
complex plane that do not contain the poles. But this implies
that we can rewrite (53) as follows:

(55)

(56)

Apart from the unknown function , we have obtained a rep-
resentation for in terms of canonical products/quotients of
monomials that depend on its zeros/poles. From the above, it
is clear is a polynomial of degree no larger than 2.

In Appendix B, it is proven that because the zeros and poles
alternate in the real line [see (44)] the infinite product given by
(54) has the following bounds ( is arbitrary):

(57)

The above formula assumes that and are positive and
real valued for , but similar bounds can be obtained for
another more general situation.

Because of the lower bound of in the sector , we
conclude from (55) that will grow exponentially to infinity in
some regions of the complex plane, unless the unknown poly-
nomial is a constant. However cannot grow to infinity ex-
ponentially as because (48) established that is uni-
formly bounded in (as ). So, we conclude that

is necessarily a constant. Therefore, we have the result

(58)

where is some constant. It will be seen in the next section that
the knowledge of is not relevant.

D. Reflection Coefficient and Comparison With the ABC
Solution

Substituting (58) in (34) we easily find that the reflection co-
efficient is

(59)

In the long wavelength limit, the above formula can be rewritten
as explained next. Noting that for all the poles and zeros
are real valued for , and that is in the imaginary axis,
we have

(60)

(61)

The second identity in (61) is valid if . The parameter
has units of length and its physical meaning will be discussed

ahead. Note that (44) implies that

(62)

But since , we find that to a first approximation has
the following bounds:

(63)

Next, the exact result (60) is compared with the approximate
formula (11) obtained in the first part of the paper using the
ABC. First of all, we note that the definition of the reflection
coefficient is consistent in the two cases because the ratio be-
tween the reflected and incident magnetic fields is equal to the
ratio between the -component of the reflected electric field and
the -component of the incident field. We also note that (2c) is
the dispersion characteristic of the fundamental TM mode in
the wire medium, and so . Thus, we can
identify with the symbol introduced in Sec-
tion II-B (for the case and ). Therefore we con-
clude that

(64)

Thus, apart from the (complex) exponential factor (which as dis-
cussed ahead is in general negligible), the reflection coefficient
calculated with proposed ABC agrees exactly with the analyt-
ical formula (60). This demonstrates the generality and effec-
tiveness of the ABC. In the next section, it is explained how the
exponential factor can be incorporated into the homogenization
model of the wire medium.

To conclude, we refer that the approach that was used to
characterize the reflection coefficient in the semi-infinite wire
medium can also be applied to other related structures (such as
the semi-infinite parallel-plate medium), as briefly explained in
Appendix C.

E. Virtual Interface

Since is the propagation constant in the -direction (in
the air region), it is clear from (64) and from elementary
transmission line theory, that the semi-infinite wires can be
replaced by their equivalent homogenized model without af-
fecting the reflection coefficient, provided the interface with
air is displaced from a distance from the actual physical
interface. More specifically, we have the situation depicted in
Fig. 7. This means that in the homogenized model the interface
with air is not coincident with the physical interface. Due to
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Fig. 7. Definition of the virtual interface.

Fig. 8. Normalized displacement �=a as a function of the normalized wire ra-
dius r =a.

this reason we say that is a virtual interface. This
concept was also used in other works [26], [27]. Note that in
general , i.e., depends on the frequency and
on the direction of the incoming wave. However, in the long
wavelength limit and to a first approximation it is possible to
write . From (63) it is known that for
long wavelengths, and within the thin wire approximation,

.
Obviously, is also a function of the radius of the wires.

Using (61) we numerically calculated as a function of in
the limit and . To this end, the poles were
numerically calculated using the method proposed in [28] and
the thin-wire approximation. As shown in Fig. 8, increases
with .

We numerically verified that even though considering the ef-
fect of virtual interfaces helped improving the agreement be-
tween homogenization theory and the full wave results, the dif-
ference was not very relevant. In fact, for thin wires (i.e., within
the scope of application of our theory) the effect of virtual in-
terfaces seems to be negligible and so the ABC is sufficient to
accurately homogenize the structure.

VI. CONCLUSION

In this paper, we proposed a new boundary condition to ho-
mogenize the wire medium. The proposed ABC imposes that
the normal component of the average electric field multiplied
by the host permittivity is continuous across the interface. It
was shown that this ABC does not violate the continuity of the
normal component of the electric displacement vector, which

is still observed. The proposed theory was successfully tested
against full wave numerical simulations, being the agreement
good even for relatively small wavelengths, thin slabs, and also
in the case in which the wires are embedded in a dielectric. It was
shown that if the ABC is not considered and single mode prop-
agation is assumed instead, then homogenization theory may
completely fail to describe the scattering problem.

To demonstrate the generality and efficacy of the ABC, we
analytically solved the problem of scattering of a plane wave by
an array of semi-infinite thin metallic wires. To this end, we re-
duced the electromagnetic problem to a linear system of infinite
dimension. We showed that the solution of the infinite linear
system is intrinsically related with the problem of calculating
an analytical function from the knowledge of its zeros, poles,
and behavior at infinity. Using Hadamard’s factorization the-
orem and other results, we were able to rigorously reconstruct
the required function, and in this way compute the reflection
coefficient at the interface between the wire medium and air. It
was shown that the exact reflection coefficient was compatible
with effective medium theory, provided a virtual interface was
defined and the ABC was considered.

The new ABC paves the way to the homogenization of some
important structures such as the bed of nails substrate (ground
plane with metallic pins) used to synthesize artificial magnetic
conductors. These results will be reported in a future communi-
cation.

APPENDIX A

Here, we prove the results enunciated in Section IV. The re-
sults are an extension to the metallic case of the formalism de-
scribed in [18]–[20]. The proof presented [20] is based on the
local field theory, while our equivalent approach is based on in-
tegral representation theory.

A. The Unbounded Crystal

To begin with, we characterize the electromagnetic Floquet
modes in the unbounded periodic crystal. A generic Floquet
mode associated with the free-space wave number and
the wave vector has the following integral representation (the
identity is valid in the distributional sense and not as principal
value integral):

(A1)

where all the symbols are defined as in Section II, and the Green
dyadic is defined by

(A2)

where is the identity dyadic, and is the lattice Green func-
tion that satisfies

(A3)
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In the above, represents Dirac’s distribution,
is a lattice point, and is a multi-index

of arbitrary integers. In [25] several closed-form representations
of the Green function are derived. Of particular interest for this
work, is the spectral-like representation of the Green function,
which establishes that for

(A4)

where is given by (15), is
the projection of onto the plane, , and

is a double-index of arbitrary integers.

B. The Semi-Infinite Crystal

Consider now the semi-infinite crystal depicted in Fig. 6. As
referred in Section II, the semi-infinite crystal is illuminated
with the plane wave . The total elec-
tric field can be written as , where is the
scattered field.

Using standard Green function arguments it can be proved
that the scattered field has the integral representation

(A5)

where is the translation of the unit
cell along the vector is the translation of the
metallic region along the vector , and represents the
boundary surface of . The Green dyadic
is the solution of

(A6)

where , and is a multi-index of
arbitrary integers. The Green dyadic is given by

(A7a)

(A7b)

where is defined as in (15).

Equation (A5) can be rewritten as

(A8)

On the other hand, for the total field can be expanded into
electromagnetic Floquet modes, as established by (13). In order
to calculate the unknown coefficients we substitute (13) in
(A8) and use the fact that is a Floquet mode. It is found that

(A9)

where

(A10)

The last identity is valid for , and was obtained
using (A7b) and noting that the resultant series in the index is
a geometrical series. We put ,
consistently with (16). But using (A4), can be rewritten
as:

(A11)

Substituting the previous result in (A9), using (A1) and (13), it
is found for that

(A12)

where is defined by (17), and is defined by (18).
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Since and because , we finally
obtain that

(A13)

But the above identity obviously implies that the unknown co-
efficients satisfy the infinite linear system (14), as we wanted
to prove. On the other hand, using (A9) and (A10) we readily
obtain (19).

APPENDIX B

In this Appendix, we describe some auxiliary results related
with the convergence and asymptotic behavior of some infinite
products.

A. Order of Growth of

Here we prove that the order of growth of is the same as
the order of growth of . Using (31) and noting that

, it is found that

(B1)

On the other hand, we have that

(B2)

and

(B3)

Substituting the previous results in (B1), we obtain after further
manipulations that

(B4)

But since the order of growth of is the same as the order of
growth of [29, pp. 67], it is also evident that the order of
is the same as the order of .

B. Convergence of Q

Lemma: Suppose that and are sequences
of complex numbers such that and

. Then the infinite product
given by (54) converges uniformly in compact sets of the
complex plane that do not contain elements of the sequence.

In fact, it is known that if is a sequence of complex
functions such that in some domain of the
complex plane, with , then the infinite product

converges uniformly in [29]. The proof of
the Lemma follows from the enunciated result by putting

C. Bounds for Q

In this section it is proven that the function given by (54)
satisfies (57). For simplicity, we assume that and are pos-
itive and real valued for . We remind (see Section III-B)
that and are increasing sequences.

To begin with, we note that if and are positive numbers
then

(B5)

where is the polar angle. In particular, replacing for and
for , and noting that because of (44) , it is evident

that if (i.e., ) then .
Suppose now that and define such

that

(B6)

The above definition is possible because can al-
ways be assumed strictly decreasing. Then, using (B5), it is clear
that

(B7)

Noting that

(B8)

we find that

(B9)
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But because of (44) we have that . Using (B6), it is
also simple to verify that

(B10)

Thus, using again (B5), we obtain

(B11)

But since we assume that is positive and real, it follows that:

(B12)

This proves that has an upper bound in the considered sector.
The lower bound for can be easily derived by applying sim-
ilar arguments to the function .

APPENDIX C

In this Appendix, we prove that the formalism used to solve
the reflection problem in the truncated wire medium can also
be applied to the semi-infinite parallel-plate medium. The par-
allel-plate medium consists of an infinite set of parallel metallic
plates (see [21]). Here, we suppose that the plates are normal to
the -direction, and that the distance between the plates is . The
interface with air is at . Let us consider the case in which
the incoming wave has the magnetic field along the -direction,
and the component of the incident wave vector parallel to the
interface is . The objective is to compute the re-
flection coefficient at the interface. This problem was solved al-
most sixty years ago using the Wiener–Hopf method [22], [23].
The solution of the problem can also be found in [21].

Using the formalism developed in this paper it is straightfor-
ward to verify that the reflection coefficient is still given by (59),
but now the poles and the zeros are given by

(C1)

(C2)

where , assuming without loss
of generality that (so that is an increasing sequence).
Our result and the formula presented in [21] seem remarkably
different (apart from the differences in the notation). In fact, it
can be verified that in both formulas the operator acts exactly
over the same parcels. However the formula presented in [21]
differs from ours by the term (in our no-
tation). The lack of “-” sign in our formula is easy to justify: in
fact in [21] the definition of also differs from a “ ” sign from
our definition. But what about the term ?
Is our formula wrong? The answer is no: it can be verified that
both formulas yield exactly the same result when they are nu-
merically evaluated. So, why has the formula in [21] the extra
term ? The reason is that although in both

formulas acts over the same parcels, the sequence of multi-
plications is completely different in the two cases. The situation
is the same as in non-absolutely convergent series: if the order
of summation of an infinite number of terms is rearranged then
the result of the sum may be different. This result helps under-
standing why in Section III we had to proceed so carefully to
construct the unknown function .
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