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In this article, a regularization technique that allows the computing of the electromag-
netic Floquet solutions in two-dimensional photonic crystals using a modified plane
wave approach with very good convergence rate is described. The idea is to map
the original electromagnetic fields into a space of smooth functions. This work is a
generalization of a method previously proposed by the authors for metallic crystals,
and the formulation presented here allows the characterizing of two-phase dielectric
crystals. The numerical results show that the efficiency of our method is dramatically
superior to that of the standard plane wave method.
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Introduction

Photonic crystals are periodic dielectric/metallic structures. At the end of the 1980s,
Yablanovitch (1987) hinted that if these structures were properly designed, the propaga-
tion of electromagnetic waves could be rigorously forbidden. Later, experimental results
and numerical simulations proved that this conjecture was correct and that photonic crys-
tals may have omnidirectional band gaps (Yablonovitch, Gmitter, & Leung, 1991). An
important property of photonic crystals is that defects introduced intentionally in the
periodic lattice (i.e., addition or removal of dielectric material) can give rise to localized
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electromagnetic modes (Meade et al., 1991). This can be used to make high-Q cavities
and waveguides with sharp bends that confine the light losslessly at short wavelengths
(Yablonovitch, Gmitter, Meade, et al., 1991; Sakoda, 2001). Other novel phenomena and
applications have been reported over the years. Remarkable examples are the superprism
effect and negative refraction resulting from highly anisotropic dispersion curves (Luo
et al., 2002; Kosaka et al., 1998). The application of the band gap concept to the micro-
wave and (sub)millimeter wave bands has also been the subject of intensive study. A
review of the state of the art is presented in Maagt et al. (2003).

The characterization of the electromagnetic modes of a photonic crystal is computa-
tionally very intensive. In previous work, the authors of this paper proposed a new hybrid
method to compute efficiently the band structure of metallic crystals (Silveirinha & Fer-
nandes, 2003, 2004). The idea is to map the electromagnetic eigenmodes into a space of
“smooth functions” and to formulate an equivalent eigenvalue problem in the new space.
The eigenvalue problem in the transformed space can then be efficiently solved using the
plane wave method, because the transformed eigenmodes are smooth and so they can be
expanded into a fast-converging Fourier series.

The objective of this paper is to explain how the method can be extended to di-
electric crystals. The main difficulty in treating the dielectric case is to get rid of the
discontinuities of the dielectric medium. To this end, we will unfold the original prob-
lem into two coupled propagation problems in homogeneous spaces. This procedure has
no analogue in our previous works (Silveirinha & Fernandes, 2003, 2004) on metallic
crystals. For simplicity, it is assumed that the photonic crystal is two-dimensional, i.e.,
that the inclusions have cylindrical symmetry.

The standard plane wave method is inefficient because the electromagnetic fields are
discontinuous at the dielectric interfaces and thus the plane wave expansions converge
very slowly (Walker, 1988). This problem is particularly serious when the dielectric
contrast is high or when the electrical distance between the inclusions is small (Sozuer
& Haus, 1993; Sozuer, Haus, & Inguva, 1992; Villeneuve & Piché, 1994). Sometimes
the computational resources may even be insufficient to reach convergence (Villeneuve
& Piché, 1994; Meade et al., 1993). The objective of our method is precisely to avoid
this situation. To this end, and in analogy with the metallic problem, the electromagnetic
modes are mapped into a space of smooth functions. It will be shown that the convergence
rate of the method proposed here is dramatically superior to that of the standard plane
wave method.

The outline of the article is as follows. First, the geometry and the formulation of the
method will be described. Both polarization cases are studied, and on-plane propagation
is assumed. Then, we will present numerical simulations that validate the theory and
show the excellent convergent rate of the approach described here. Finally, conclusions
will be drawn.

Dielectric Crystals

Here, it is explained how the method developed in Silveirinha and Fernandes (2003) can
be generalized to the dielectric case. The main difficulty is to get rid of the discontinuities
of the sectionally constant periodic permittivity εr(r). More specifically, the equations
that define the eigensystem in the transformed space must not depend explicitly on εr(r),
because otherwise the technique proposed in our previous work is not appropriate to
compute the eigenvalues. The solution proposed here (which is an improvement of the
results briefly described in Silveirinha and Fernandes [2002]) involves unfolding the
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original propagation problem in two related problems defined in homogeneous spaces.
Before presenting the details of the formulation, the geometry of the dielectric crystal is
described in the next section.

Geometry

The periodic medium is depicted in Figure 1a. It consists of a two-dimensional array of
dielectric cylinders with arbitrary cross-section embedded in a dielectric medium with
permittivity εr1 (the host medium). The cylinders are oriented along the z-direction and
are made of a dielectric material with (relative) permittivity εr2. It is assumed that the
dielectric cylinders are not connected. The medium is invariant to translations along the
primitive vectors a1 and a2.

As is well known, the propagation problem is intrinsically two-dimensional in the
on-plane case. The unit cell � is illustrated in Figure 1b. We denote the cross-section of
the inclusions by D, and the boundary of the D by ∂D. The outward unit normal vector
is v̂.

The objective is to characterize the electromagnetic Floquet modes, i.e., the periodic
solutions modulated by the propagation factor exp(−jk.r), where k is the wave vector
and r is a generic point of space. Our analysis is restricted to the on-plane case: i.e.,
k is normal to the cylinders. In this situation, the electromagnetic waves decouple into
E-polarized waves (transverse magnetic with respect to the z-direction) and H-polarized
waves (transverse electric with respect to the z-direction). In addition, the vector problem
reduces to a scalar problem characterized by the scalar potential ψ .

We put ψ = Ez in the E-polarization case and ψ = Hz in the H-polarization case
(Ez and Hz are, respectively, the electric and magnetic fields along the z-direction). Since
the geometry is two-dimensional, the coordinate of space along the z-direction can be
discarded, and the observation point and wave vector can be written as r = (x1, x2) and
k = (k1, k2), respectively. The scalar potential satisfies the following wave equation:

∇2ψ + εrβ
2ψ = 0, off the interfaces, (1)

where ∇2 = ∂2/∂x2
1 + ∂2/∂x2

2 , β = ω/c is the free-space wave number, ω is the angular
frequency, and c is the velocity of light in vacuum. In addition, ψ exp(jk.r) is periodic,

Figure 1. Geometry of the photonic crystals. (a) Fragment of the periodic medium. (b) Cross-
section of the unit cell (the medium is intrinsically two-dimensional).



178 M. G. Silveirinha and C. A. Fernandes

and at the dielectric interfaces, the scalar potential satisfies the boundary conditions:

ψ+ = ψ−, 1

τ1

∂ψ+

ψv
= 1

τ2

∂ψ−

∂v
, on the interfaces, (2)

where the superscripts “+” and “−” specify whether the potential is evaluated at the outer
or inner side of the interface, ∂/∂v is the normal derivative on ∂D, and the constants
τ1 and τ2 are τ1 = τ2 = 1 in the E-polarization case and τ1 = εr1 and τ2 = εr2 in the
H-polarization case.

Since there are no sources, the propagation problem has nontrivial solutions only
for specific “resonant” wave numbers β = β(k) (the eigenvalues of the modal problem).
The objective of the paper is to compute the eigenvalues efficiently. For convenience,
we denote the set of eigenvalues β = ω/c associated with a given wave vector k by
�dc(k; εr1, εr2). The correspondence k → �dc(k; εr1, εr2) defines the band structure of
the dielectric crystal.

Equation (2) shows that the scalar potential is continuous in all space. On the other
hand, (1) and (2) also show that the first-order derivatives of ψ are discontinuous at the
dielectric interfaces in the H-polarization case, whereas only the second-order derivatives
are discontinuous in the E-polarization case. This irregular behavior of ψ is the source
of the convergence problems of the plane wave method. In the following sections, it is
proved that it is possible to circumvent these problems considering a space transformation
that improves the regularity of the scalar potential.

Extended Problem

In order to generalize the method proposed in Silveirinha and Fernandes (2003), not only
the scalar potential ψ must be regularized, but also the differential operators. In fact, in
the dielectric case the operator that acts on ψ , ∇2 + β2εr , depends explicitly on εr(r),
which is a discontinuous function. This situation does not occur in the metallic case
because in that problem we can always assume that εr is constant over all space.

In this section, it is explained how the differential operator can be regularized. Our
solution is to unfold the propagation problem in two coupled problems defined in ho-
mogeneous spaces. The concept is illustrated in Figure 2. The potential ψ defined in the
dielectric crystal is unfolded in the potentials ψ1 and ψ2. The potential ψ1 (ψ2) is defined
in a homogeneous space with relative permittivity εr1 (εr2). The relation between ψ and
the auxiliary potentials ψ1 and ψ2 is explained next.

Let us suppose that dielectric inclusions are removed from the dielectric crystal. In
that case, the medium becomes homogeneous with permittivity εr1. The scalar potential
in the new homogeneous space is by definition ψ1. We impose that the scalar potential
remains unchanged in the host medium, i.e., that ψ1 = ψ in the host region (the non-
shaded region in Figure 2). On the other hand, we consider that the scalar potential is
extended to the inner region as a continuous solution of the Helmholtz equation (1), with
εr = εr1 (i.e., ψ1 is extended to the inner region as a solution of an interior Dirichlet
problem).

The definition of ψ2 is analogous to that of ψ1: We suppose that the host medium
is replaced by a dielectric with the same permittivity as the dielectric cylinders. In this
way, the medium becomes homogeneous with permittivity εr2. The scalar potential in
the new homogeneous space is by definition ψ2. We impose that the scalar potential
remains unchanged in the dielectric inclusions, i.e., that ψ2 = ψ in the inner region.
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Figure 2. The scalar potential is “unfolded” in two auxiliary potentials defined in homogeneous
spaces. The figure depicts the unit cell of the different spaces.

We extend the scalar potential ψ2 to the outer region as a continuous solution of (1),
with εr = εr2. In doing this there is a degree of freedom. Indeed, it is possible to choose
many different boundary conditions on the boundary of the unit cell. For simplicity,
Floquet wave boundary conditions are chosen. However, we will not assume that ψ2 is
necessarily associated with the same wave vector as the potential ψ (the reason will be
explained later). We consider that ψ2 is associated with the wave vector k2, where k2
can be arbitrarily fixed. Hence, ψ2 is extended to the outer region as a solution of an
exterior Dirichlet problem with Floquet wave boundary conditions.

From the above definitions, it is clear that ψ1 and ψ2 satisfy the following formulas:

∇2ψi + εr,iβ
2ψi = 0, r �∈ ∂D (i = 1, 2), (3)

ψ+
1 = ψ−

2 ,
1

τ1

∂ψ+
1

∂v
= 1

τ2

∂ψ−
2

∂v
, on ∂D, (4)

ψi exp(jki .r) is periodic (i = 1, 2). (5)

The superscripts “+” and “−” refer to the outer and inner sides of ∂D, respectively. The
coupling condition (4) is a consequence of (2), and of ψ1 = ψ in the host medium and
ψ2 = ψ in the dielectric inclusions. In (5), we defined k1 = k, where k is the wave
vector associated with ψ . As discussed before, the wave vector k2 can be arbitrarily
fixed.

The coupled system formed by (3)–(5) is by definition the “extended problem.”
Unlike in the original problem, the differential operators that act on ψ1 and ψ2 are
smooth operators (in the sense that the respective coefficients are smooth functions). In
what follows, it will be proved that the extended problem is intrinsically related to the
initial problem.

Indeed, the definition of (ψ1, ψ2) shows that each nontrivial potential ψ can be
associated with a nontrivial solution (ψ1, ψ2) of the extended problem.
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Reciprocally, let (ψ1, ψ2) be an arbitrary continuous solution of the extended prob-
lem. This solution can be projected into a solution of the original problem. The projected
solution is obviously

ψ =
{
ψ1 in the host region,

ψ2 in the dielectric inclusions.
(6)

Hence, we conclude that there is a correspondence between the solutions of both
problems. However, the two problems are not equivalent. Indeed, some solutions of
the extended problem can have trivial projection (i.e., the extended problem has more
solutions than the original problem). A similar situation occurs in the metallic case, as
discussed in Silveirinha and Fernandes (2003).

In fact, the continuous solutions of (3)–(5) either of the type (ψ1, 0) with ψ1 = 0
in the host region or of the type (0, ψ2) with ψ2 = 0 in the dielectric inclusions are
projected into the trivial solution. The band structure of the extended problem is thus
richer than that of the dielectric crystal. More specifically, the band structure of the
extended problem contains the band structure of the dielectric crystal, and in addition
some bands associated with modes with trivial projection.

Next, we characterize the modes with trivial projection. These modes are the direct
sum of internal modes and external modes.

The internal modes are of the type (ψ1, 0), with ψ1 = 0 in the host region. In
this case, the potential ψ1 can be identified with a Dirichlet mode of a metallic cavity.
The metallic cavity has the same cross-section as the cylinders and is filled with a
dielectric with permittivity εr1 (notice that ψ1 is defined in a homogeneous medium with
permittivity εr1). Since ψ1 vanishes in the host region, it is independent of k. The internal
modes are thus dispersionless. Let �int be the set of eigenvalues β of the metallic cavity
with shape D and normalized (to unity) relative permittivity. Then, the spectrum of the
internal modes is

√
εr1�int.

The external modes are of the type (0, ψ2), with ψ2 = 0 in the dielectric inclusions.
The scalar potential ψ2 can be identified with an E-polarization Floquet mode in a related
metallic crystal (independently of the considered polarization). The metallic crystal is
obtained from the initial crystal by replacing the dielectric inclusions by perfect electric
conductor (PEC) inclusions, and the host permittivity by εr2. Therefore, the spectrum
of the external modes is

√
εr2�ext(k2), where �ext(k2) is the set of eigenvalues β of a

metallic crystal with the same topology as the one described above, but normalized (to
unity) relative permittivity.

We define �ep(k; εr1, εr2) as the set of eigenvalues of the extended problem. From
the previous discussion, there is the following eigenvalue decomposition:

�ep(k; εr1, εr2) = √
εr1�int ∪ √

εr2�ext(k2) ∪ �dc(k; εr1, εr2). (7)

The above formula shows that the eigenfunctions of the extended problem are de-
composable into three sets. One of the sets is projected into the eigenfunctions of the
dielectric crystal. The other two sets have trivial projection and consist of internal/external
modes.

Therefore, we can obtain the eigenvalues of the original problem from the spectrum
of the extended problem by extracting the eigenvalues associated with the internal/external
modes.

It is important to note that the eigenvalues associated with the internal/external modes
are independent of k (this is the motivation to consider that k2 is fixed). Therefore, these
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eigenvalues are easily detected and extracted from the computed band structure. In fact,
they give rise to flat (dispersionless) lines in the computed spectrum. A similar situation
occurs in the metallic case (Silveirinha & Fernandes, 2003). More details about this
matter will be given later in the article.

Smoothing Map and Eigenvalue Problem

In analogy with the results of our previous paper, the eigenfunctions of the extended
problem are mapped into a space of smooth functions where the eigenvalue problem can
be solved efficiently.

We use the same smoothing mapping as in Silveirinha and Fernandes (2003). More
specifically, the transformation (ψ1, ψ2) → (φ1, φ2) is defined by:

φi(r) = ψi(r) −
∫
∂D

fi(r′)�p(r|r′; ki )ds′, i = 1, 2, (8a)

fi = −
[
∂ψi

∂v

]
= ∂ψ−

i

∂v
− ∂ψ+

i

∂v
, i = 1, 2, (8b)

where �p(.; ki ) is the lattice Green function introduced in Silveirinha and Fernandes
(2003). Note that the wave vector is shown explicitly in the argument of the Green
function. Indeed, both ψ1 and ψ2 are Floquet waves, but they are associated with different
wave vectors (k1 and k2, respectively), as discussed in the previous section. Using the
fact that (ψ1, ψ2) is continuous and other arguments from our previous paper, it is easy
to verify that (φ1, φ2) defined as above is two-times continuously differentiable.

In what follows, an equivalent eigenvalue problem in the φ-space is derived. To
begin with, we obtain an integral equation for the densities f1 and f2 given by (8b).
To this end, we let the observation point approach ∂D and we impose the boundary
conditions (4). Using the jump conditions (Colton & Kress, 1992), it is found that:

φ1 + L1f1 = φ2 + L2f2 on ∂D, (9a)

1

τ1

(
∂φ1

∂v
+ M+,1f1

)
= 1

τ2

(
∂φ2

∂v
+ M−,2f2

)
on ∂D. (9b)

In the above, the integral operators Li , M+,i , and M−,i , i = 1, 2, are defined as:

Lf =
∫
∂D

f (r′)�p(r|r′)ds′, (10a)

M±f =
∫
∂D

f (r′)
∂�p

∂v
(r|r′)ds′ −

(
±1

2
f (r)

)
, (10b)

and the subscript of the operators identifies the wave vector (ki ) associated with the
Green function. After straightforward manipulations, it is found that:

f1 =
(

M+,1

τ1
− 1

τ2
M−,2L−1

2 L1

)−1 ((
1

τ2

∂φ2

∂v
− 1

τ1

∂φ1

∂v

)
− 1

τ2
M−,2L−1

2 (φ2 − φ1)

)
,

f2 =
(

M−,2

τ2
− 1

τ1
M+,1L−1

1 L2

)−1 (
−

(
1

τ2

∂φ2

∂v
− 1

τ1

∂φ1

∂v

)
+ 1

τ1
M+,1L−1

1 (φ2 − φ1)

)
.

(11a)
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The superscript “−1” refers to the inverse of an integral operator. The above formulas
show that f1 and f2 depend uniquely on (φ1, φ2).

Substituting (8a) in (3) we also find that:

∇2φi + εr,iβ
2
(
φi +

∫
∂D

fi(r′)�p(r|r′; ki )ds′
)

= 0 (i = 1, 2), (11b)

φi exp(jki .r) is periodic (i = 1, 2). (11c)

Equation (11) is an integral-differential eigensystem in (φ1, φ2). Our previous anal-
ysis shows that the mapping (ψ1, ψ2) → (φ1, φ2) given by (8) transforms every solution
(ψ1, ψ2) of the extended problem into a solution (φ1, φ2) of the integral-differential
eigensystem. Reciprocally, every solution of the integral-differential eigensystem can be
transformed into a solution of the extended problem. The inverse mapping is defined
by rearranging the terms in (8a) and (11a). Hence, (11) is equivalent to the extended
problem; i.e., both problems have the same eigenvalues.

Since the eigenfunctions of (11) are smoother than the eigenfunctions of the extended
problem, the convergence rate of the plane wave method in the transformed space is better
than in the initial space. This fact is used to compute the band structure of a dielectric
crystal efficiently.

To this end, we expand (φ1, φ2) as follows:

φi(r) =
∑

J

ciJgJ(r; ki ) (i = 1, 2), (12)

where c1
J and c2

J are the complex coefficients of the plane wave expansion and gJ is the
normalized plane wave defined by:

gJ(r; k) = 1√
Vcell

e−jkJ.r, kJ = k + j1b1 + j2b2, (13)

where Vcell = |a1 ×a2| is the area of the unit cell, and b1 and b2 are the primitive vectors
of the reciprocal lattice. These vectors are defined by the relations an.bm = 2πδn,m,
n,m = 1, 2, where δn,m is the Kronecker symbol. Note that the wave vector associated
with the plane wave depends on the considered potential.

Now, the objective is to obtain a matrix eigensystem in which the eigenvectors are
associated with the unknown coefficients ciJ. Inserting (12) into (11b) and proceeding as
in Silveirinha and Fernandes (2003), it is easy to obtain that:

εr,i

|kI,i |2 c
i
I + εr,i

|kI,i |4 〈gI(.; ki )|fi〉∂D = 1

β2
ciI, i = 1, 2, (14)

where I = (i1, i2) is a generic multi-index of integers, and kI,i = ki + i1b1 + i2b2.
Equations (11a) and (14) form a standard matrix eigensystem that can be solved

numerically. To this end, the integral operators are discretized and the plane wave expan-
sion truncated. The eigenvalues of the matrix eigensystem are 1/β2 and are coincident
with the eigenvalues of the extended problem.

Ahead, we present several numerical examples that prove that the proposed approach
may dramatically improve the convergence rate to the standard plane wave method. Before
that, in the next section, it is briefly discussed how the band structure of the dielectric
crystal can be obtained from the band structure of the extended problem.
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Band Structure of the Dielectric Crystal

As proved before, the eigenmodes of the extended problem can be identified either with
modes of the dielectric crystal or with internal/external modes with trivial projection.
Thus, it is possible to obtain the eigenvalues of the dielectric crystal by extracting the
eigenvalues of the extended problem associated with the internal/external modes. The
objective of this section is to elucidate how one can recognize if a given eigenvalue is
associated with an internal/external mode.

As discussed earlier, the simplest solution is to detect the dispersionless bands in the
calculated band structure. This is so because the eigenvalues of the internal/external modes
are independent of the wave vector k. Hence, if one solves the modal problem many
times with different wave vectors (e.g., in band structure calculations) the eigenvalues
associated with the internal/external modes are obtained repeatedly and so can be easily
identified.

A different approach to identifying the internal/external eigenvalues is to precalculate
them (see also our previous article). This can be done in two different ways.

The easiest way is to note that the unwanted eigenvalues are associated with the reso-
nant modes of a related metallic cavity/metallic crystal. Thus, they can be calculated using
the method proposed in Silveirinha and Fernandes (2003). This approach is especially ap-
propriate because the associated integral operators are also needed to solve the extended
problem (so the additional computational effort is very small). It is important to note that
the eigenvalues associated with internal/external modes only need to be calculated once,
because they are independent of k. Thus, the total effort to compute these eigenvalues
is negligible as compared with the effort required to obtain the band structure of a di-
electric crystal (which involves solving the propagation problem for many wave vectors).

The second alternative (not so good) is to note that the internal modes of the ex-
tended problem are mapped into modes of the form (φ1, 0), while the external modes
are mapped into modes of the form (0, φ2). Therefore, theoretically, it is easy to recog-
nize the internal/external eigenvalues: They are associated with eigenfunctions either of
the type (φ1, 0) or of the type (0, φ2) in the transformed space. We can test if a given
eigenvalue β is associated with an internal/external mode by computing the eigenvectors
(c1

I , c
2
I ) of the matrix eigensystem (14). The mode is internal if c2

I = 0 for every I and is
external if c1

I = 0 for every I. Although theoretically rigorous, this approach is not very
attractive in practice due to obvious numerical limitations.

Numerical Simulations

Here, numerical results that validate our theory and demonstrate the efficiency of the
proposed approach are presented.

To begin with, we compare the results obtained with our method with other results
published in the literature (Villeneuve & Piché, 1992). To this end, we calculated the
band structure of a triangular lattice of dielectric cylinders with permittivity εr2 = 16 and
volume fraction 35%. The cross-section of the cylinders is circular. The host medium is
air, i.e., εr1 = 1. The lattice constant is a.

The numerical results were calculated by solving a 98 × 98-matrix eigensystem
(φ1 and φ2 were expanded with 49 plane waves each). The integral operators were
discretized with 32 points on the dielectric interface. The computation time for each
wave vector is less than 2 s in a Pentium III-800MHz. In Figure 3, the calculated band
structure for the H-polarized waves is depicted. Data extracted from Villeneuve and
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Figure 3. Band structure of the H-polarized waves. The inclusions are circular cylinders with per-
mittivity 16. The volume fraction is 35%. The stars “*” represent results extracted from Villeneuve
and Piché (1992).

Piché (1992) (“∗”-symbol) is superimposed on the computed results. The agreement is
satisfactory, especially for low frequencies. The inset of the figure corresponds to the
Brillouin zone of the triangular lattice (Sakoda, 2001). The highly symmetric points %,
M, and K are also shown.

As seen in Figure 3, the periodic medium has a band gap for H-polarized waves.
The band gap between the first and second bands is defined by 0.30 < βa/2π < 0.35.

The static effective permittivity associated with the H-polarized waves (calculated
from the slope of the fundamental band at the origin) is 1.89. This value is practically
independent of the number of plane waves Np considered in the expansion. The relative
difference between the permittivity calculated with Np = 18 and Np = 1058 is as small
as 3×10−6%. This result anticipates that the convergence rate of the method is very good.

In order to study this matter in detail, we have implemented the standard plane wave
method using the algorithm described in Sakoda (2001). In Figure 4, the relative error in
the static effective permittivity (for the H-polarization) is depicted as a function of

√
Np.

The reference value is that obtained with our method and Np = 1058 (this corresponds
to the limit of the computational resources).

Figure 4. Relative error in the static effective permittivity (in percentage), as a function of the
number of plane waves (“∗”: plane wave method; “×”: our method) (H-polarization).
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As referred to before, the results calculated with our method are practically inde-
pendent of Np. Thus, the corresponding relative error is extremely small. On the other
hand, the permittivity obtained with the plane wave method converges very slowly. For
Np = 332 = 1089, the estimated relative error is 0.19%.

Since the plane wave method converges slowly, it is appropriate to use an extrapo-
lation method to obtain the asymptotic limit of the permittivity as Np grows to infinity
(Sozuer, Haus, & Inguva, 1992). Apparently, the plane wave method converges as 1/

√
Np

(in the two-dimensional case). The extrapolated value for the effective permittivity differs
0.02% from that calculated using the hybrid method. It is estimated that the number of
plane waves necessary for an error smaller than 0.1% is Np = 5625. Note that a better
result can be obtained with our method using only Np = 18.

The convergence problems of the plane wave method are more serious for high
frequencies. To illustrate this aspect we have calculated the relative error in the third
eigenvalue at the % point. Again, the reference value is that obtained with our method
and Np = 1058. The calculated results are depicted in Figure 5. Using our method, the
error converges to zero relatively fast. For

√
Np = 7.07 (i.e., 50 plane waves) the error

is about 1%.
On the other hand, the plane wave method converges very slowly. For Np = 332 =

1089, the estimated relative error is 2%. The extrapolated value for the eigenvalue differs
0.05% from that obtained using our method. It is estimated that 4225 plane waves are
necessary for an error smaller than 1%.

Next, the convergence rate of the E-polarized waves is discussed. The geometry of
the periodic medium is the same as before. We computed the relative error in the static
effective permittivity (extracted from the slope of the dispersion characteristic).

In the E-polarization case, the static effective permittivity is known in closed analyt-
ical form and is equal to the spatial average permittivity. For the considered geometry, it
is equal to 6.25. The value obtained with our method agrees excellently with the theoretic
value. The relative error is about 10−4% for 18-plane waves.

On the other hand, as depicted in Figure 6, the results obtained with the plane
wave method converge slowly. The relative error for Np = 332 = 1089 is still 3.96%.
The extrapolated value for the effective permittivity differs 0.4% from the theoretical
value. It is estimated that 44,100 plane waves are necessary for an error smaller than 2%.

Figure 5. Relative error in the third eigenvalue at the % point (in percentage), as a function of the
number of plane waves (“∗”: plane wave method; “×”: our method).
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Figure 6. Relative error in the static effective permittivity (in percentage), as a function of the
number of plane waves (“∗”: plane wave method; “×”: our method) (E-polarization).

The previous results clearly illustrate the convergence problems of the plane wave method.
They also demonstrate that our method yields very accurate results with a moderate
number of plane waves.

Conclusions

In this article it was explained how the hybrid method proposed in Silveirinha and
Fernandes (2003) can be extended to the dielectric case. The key idea is to map the
eigenfunctions of the propagation problem into a space of smooth functions where the
plane wave method can be applied with good convergence rate. The main difficulty
with the dielectric case is that the regularization of the eigenfunctions is insufficient
to improve the convergence rate of the method. Indeed, we also need to regularize the
differential operators that act on the electromagnetic modes. As proved in this paper, this
can be done by unfolding the propagation problem into two coupled problems defined
in homogeneous spaces.

The theoretical work was validated with numerical simulations. The results obtained
with our formalism were successfully compared with data extracted from the open lit-
erature. In addition, the convergence rate of our method was compared with that of the
standard plane wave method. The simulations show that our approach is very accurate
and may dramatically improve the efficiency of the standard technique. It was shown that
in some examples the computational resources are insufficient for the plane wave method
to converge (4% error in the worst case), whereas our method converges very fast and
with negligible effort. The typical computation time for each wave vector is less than 2s
in a standard personal computer.
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