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Homogenization of 3-D-Connected and
Nonconnected Wire Metamaterials
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Abstract—The homogenization of composite structures made of
long thin metallic wires is an important problem in electromag-
netics because they are one of the basic components of the double-
negative medium. In this paper, we propose a new analytical model
to characterize the effective permittivity of the three-dimensional-
wire medium in the long wavelength limit. We study two different
topologies for the wire medium. The first structure consists of a
lattice of connected wires, whereas the second one consists of a lat-
tice in which the wires are not connected. Our results show that the
propagation of electromagnetic waves in the two metamaterials is
very different. While one of the structures exhibits strong spatial
dispersion, the other one seems to be a good candidate for impor-
tant metamaterial applications. We also found that, for extremely
low frequencies, one of the structures supports modes with hyper-
bolic wave normal contours, originating negative refraction at an
interface with air. We validated our theoretical results with numer-
ical simulations.

Index Terms—Double-negative (DNG) medium, homogenization
theory, metamaterials, negative refraction, wire medium.

I. INTRODUCTION

I N [1], Smith et al. proposed an original structure that con-
sists of a lattice of long metallic wires and split-ring res-

onators (SRRs). Theoretical and experimental studies show that
the composite structure behaves as a double negative (DNG)
medium (also known as left-handed medium) with a negative
index of refraction [1]–[3]. This remarkable result motivated
much research on metamaterials and potential applications. For
example, numerous studies try to explore the focusing property
of a DNG slab surrounded by conventional media [4]–[6]. It was
even suggested, with considerable controversy, that metamate-
rials could be used to fabricate a super lens with no limit of
resolution [6]. Other studies show that metamaterials may favor
the miniaturization of some devices, and the realization of sub-
wavelength cavity resonators [7].

The negative refraction of the DNG metamaterial is attributed
to the combined effect of the arrays of wires and SRRs. As is
well known, the lattice of wires is modeled as a medium with
negative permittivity, whereas the lattice of SRRs is character-
ized by a negative permeability. To a first-order approximation,
there is no coupling between the two basic inclusions.
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Fig. 1. (a) Fragment of a metamaterial formed by a lattice of connected wires.
(b) Fragment of a metamaterial formed by a lattice of nonconnected wires
(adjacent orthogonal wires are spaced of half-lattice constant).

The configuration originally proposed in [1] is characterized
by DNG parameters only for a unique polarization, and for prop-
agation along a specific direction of space. The fabrication of
an isotropic DNG medium clearly compels for a basic cell with
extra symmetry. Apparently, apart from practical difficulties re-
lated to technological limitations, the generalization seems to be
straightforward.

However, the situation may not be so plain. For example, one
might expect that a medium formed by wires that are parallel
to the coordinate axes would interact with the radiation as an
isotropic medium with negative permittivity. However, numer-
ical results reported by Silveirinha and Fernandes [8] support
that, at least for the nonconnected topology studied in [8], that
is not the case. Indeed, we found that near the “plasma fre-
quency” the referred metamaterial is not isotropic. Moreover,
we verified that the numerical results are consistent with the hy-
pothesis that, analogous with the one-dimensional (1-D)-wire
medium formed by an array of parallel wires [9] and other re-
lated structures [10], the considered geometry for the three-di-
mensional (3-D)-wire medium has strong spatial dispersion in
the long wavelength limit, i.e., the permittivity depends not only
on the frequency, but also on the wave vector.

The results reported in [8] raise the obvious question: “Is
it possible to fabricate an isotropic metamaterial with negative
permittivity?” This is a fundamental subject not only to under-
stand the possible limitations of DNG metamaterials, but also
because metamaterials with negative permittivity, when paired
with metamaterials with negative permeability, may have inter-
esting properties and applications, as described in [11].

In this paper, we study two different topologies for the 3-D-
wire medium. The first structure consists of a simple cubic lat-
tice of connected wires, and the second one consists of a simple
cubic lattice in which the wires are not connected (i.e., the ge-
ometry studied in [8] using numerical methods). In Fig. 1, we
depict fragments of both metamaterials.
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Fig. 2. Geometry of the unit cell. (a) Connected wire geometry.
(b) Nonconnected wire geometry.

We propose a new analytical procedure to homogenize the
periodic metamaterials. We will prove that the two topologies
for the 3-D-wire medium are not equivalent, and that the inter-
action of electromagnetic waves with the two structures is very
different. We will derive an approximate analytical formula for
the effective permittivity of the composite structures. To our best
knowledge, no results were reported in the literature that con-
cern the homogenization of related structures with the excep-
tion of the numerical analysis described in [8], and the experi-
mental results reported in [12] (the geometry considered in [12]
is slightly more complex than the ones considered here).

This paper is organized as follows.1 Sections II–IV concern
the characterization of the Floquet modes that propagate in
the periodic material. In Section II, we describe the geometry
of the wire medium. In Section III, we formulate the modal
problem, and we obtain the characteristic system using an
integral-equation-based approach. In Section IV, we propose
a simplified characteristic system that can be solved using
analytical methods. Sections V and VI concern the homoge-
nization of the metamaterials. In Section V, we explain how the
effective permittivity dyadic can be obtained directly from the
characteristic system. In Section VI, we discuss the physical
phenomena implied by our formulas, and we compare the
developed theory with full-wave numerical results. Finally, in
Section VII, we present conclusions.

II. GEOMETRY

We denote a generic point of space by ,
and the unit vector directed along the -direction by

. The wire medium is obtained by the periodic repetition
of the unit cell shown in Fig. 2. The unit cell is centered at the
origin. The wires are arranged into a simple cubic lattice with
lattice constant . The boundary of the metallic region in the
unit cell is denoted by , and the outward unit normal vector
is denoted by . For simplicity, we admit that the wires are em-
bedded in air. We consider two different topologies for the wire
medium. The geometry shown in Fig. 2(a) corresponds to the
connected case, and the geometry of Fig. 2(b) corresponds to
the nonconnected case. In Sections II-A and –B, we describe
each configuration in detail.

1While this paper was being prepared, Simovski and Belov studied the ho-
mogenization of the nonconnected wire medium using a local field approach
[23].

A. Connected Topology

In this case, the metallic region in the unit cell consists of
three cylindrical wires with radius and length . We have

(1)

In the above, represents the surface of the wire section
oriented along the -direction. Note that the wires intersect
mutually, forming a junction near the origin.

Our objective is to propose an analytical treatment for the ho-
mogenization problem. Thus, it is desirable to have a model as
simple as possible for the current that flows along the wires. We
will assume that , where is the wavelength of
radiation in the dielectric region. Therefore, the thin-wire ap-
proximation can be used.

Within the thin-wire approximation, the density of current
over each wire flows along the direction of the axis, and

has approximately circular symmetry. We will also admit that
is a traveling wave characterized by the wave vector

(the justification for this assumption will be given
in Section III). Therefore, we admit that

(2)

where is a periodic function that stands for the unknown
current. In order to take into account the coupling at the junc-
tion, we admit the possibility of the current induced over the

th wire being discontinuous at . In general, we have
. The conservation of current re-

quires that (see also [13])

(3)

Note that, within the described model, we completely neglect
the shape of the wire junctions. Essentially, in our model, the
junctions are replaced by infinitesimal gaps located at

(i.e., the points where we allow the current to be dis-
continuous) with a circular transverse section. Nevertheless, our
simplified model is expected to yield good results since each
junction occupies only a very small fraction of the unit cell.

B. Nonconnected Topology

The nonconnected geometry is depicted in Fig. 2(b). As in
the previous case, the metallic region in the unit cell consists
of three cylindrical wires with radius and length . Now the
wires do not intersect, and the wire axes are spaced by , i.e.,
a half-lattice constant. The wire oriented along the -direction
is centered at

(4)

As before, we admit that the density of current over the th
wire is given by (2). Now is a continuous periodic function
because there are no junctions.
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III. MODAL PROBLEM

In order to homogenize the 3-D-wire medium, we will first
characterize the Floquet modes propagating in the periodic
metamaterial. Here, we will prove that the density of current
associated with a generic electromagnetic mode satisfies a
homogeneous characteristic system. Later we will show that
the effective permittivity dyadic of the metamaterial can be
obtained directly from the characteristic system.

By definition, an electromagnetic Floquet mode as-
sociated with the wave vector satisfies the fol-
lowing equations:

dielectric region (5a)

dielectric region (5b)

on the metallic surfaces (5c)

is periodic (5d)

where is the impedance of free space, is the free-space
wavenumber, is the angular frequency, and is the velocity of
light in vacuum. In the above, (5a) and (5b) are the frequency-
dependent Maxwell equations, (5c) is the boundary condition at
the metallic interfaces, and (5d) is the Floquet wave condition.

As is well known, for each wave vector , the system of (5)
represents an eigenvalue problem. It has nontrivial solutions
only for a countable set of wavenumbers

. The eigenvalues form the band structure
of the periodic medium [14].

In what follows, we obtain an integral-equation-based formu-
lation for the eigenvalue problem. To begin with, we note that
an electromagnetic mode associated with the eigenvalue and
the wave vector has the following integral representation:

(6)

In the above, the surface integral is over the primed coordinates
(the integration is performed over the metallic surface in the unit
cell), is in the dielectric region, and is the
lattice Green function [15]–[17]. The lattice Green function is
the Floquet solution of the following equation:

(7)

where is a multiindex of integers,
is the observation point, is a source point,

is a lattice point, and is Dirac’s distribution. We note
that the Green function depends on both and .

The lattice Green function can be efficiently evaluated as ex-
plained in [15]–[17]. Here, we instead consider the so-called
spectral representation of the Green function, which is obtained
by expanding into a Fourier series. The result is the following
slowly convergent series:

(8)

where is the volume of the unit cell,
is a multiindex of integers, and . The spectral
representation of the Green function has the important advan-
tage that, due to its simplicity, many relevant integrals can be
calculated in a closed analytical form.

It is clear that current density is a Floquet wave
associated with the same wave vector as the electromagnetic
fields. This justifies our earlier assumption that is a traveling
wave [see (2)].

Now the idea is to obtain an integral equation for the current
density. To this end, we impose that the tangential component of
the electric field given by (6) is zero over the metallic surface.
We test (6) with a generic tangential density , and then we
integrate the resulting equation over . Using the standard
method of moments (MoM) procedure, and also assuming that

is a traveling wave associated with the same wave vector as
the electromagnetic mode, we are able to prove that

(9)

where is the Hermitian form

(10)

In the above, the symbol denotes the conjugate of a complex
number, and denotes the surface divergence. The previous
result shows that for an electromagnetic mode associated with
the eigenvalue and the wave vector , the corresponding cur-
rent density is such that (9) holds for an arbitrary test den-
sity .

In analogy with (2), we assume in this paper that the test func-
tions are of the form

(11)

where is a periodic function of , possibly discontin-
uous at , but such that , where

. The expression for is consistent with
the thin-wire approximation described in Section II. The func-
tion can be discontinuous only if the geometry of the wire
medium corresponds to the connected case. It can be shown that
the current conservation law is a consequence of
our simplified model for the wire junctions.

For a given wave vector , we can compute the eigenvalues
using the standard approach de-

scribed below. First, we expand into a complete set of basis
functions (with unknown coefficients), and substitute it in (9).
We then test the resulting equation with a basis of test functions

. In this way, we obtain a homogeneous linear system for the
unknown coefficients. A nontrivial solution exists only if the de-
terminant of the linear system vanishes. This occurs only if is
coincident with an eigenvalue.



SILVEIRINHA AND FERNANDES: HOMOGENIZATION OF 3-D-CONNECTED AND NONCONNECTED WIRE METAMATERIALS 1421

We assume that the test functions are the same as the ex-
pansion functions. The test/expansion functions are denoted by

. The density of current is written as

(12)

where are the unknown coefficients of the expansion.
Over the wire section , we assume that evaluates to

(13)

where, as in (11), is a periodic function, possibly
discontinuous at (only if the wire medium is con-
nected). The surface divergence of a generic test/expansion
function satisfies

(14)

In the above, stands for the usual derivative of (i.e.,
the Dirac impulses that eventually arise must be discarded; in-
deed, the discontinuities are already taken into account by the
current conservation law).

Using the approach delineated before, we obtain the homo-
geneous linear system

(15a)

We will refer to the above system as “the characteristic
system.” Straightforward calculations show that

(15b)

For a given , the eigenvalues are the solutions of
.

Fig. 3. “Saw” function.

IV. LONG WAVELENGTH LIMIT

Apart from the thin-wire approximation, the formulation pre-
sented in Section III is completely general. That formulation
is mainly appropriate for the numerical calculation of the elec-
tromagnetic modes. However, numerical methods are computa-
tionally demanding and give no insight into the physics of the
problem.

The objective here is to propose a simplified formulation
that may allow characterizing the wire medium using analytical
methods. The scope of application of our results is the long
wavelength limit. The long wavelength limit approximation
holds when

and (16)

The idea is to reduce the size of the characteristic system
(which theoretically has infinite dimension) so that an analyt-
ical description is possible for the first few bands of
the periodic medium (i.e., for the eigenvalues with smaller am-
plitude). To begin with, it is appropriate to discuss some basic
properties of the expansion functions.

A. Basis for the Test/Expansion Functions

Comparing (2) with (12), we see that the current over the wire
oriented along the th direction is given by

(17)

Since the current is periodic, it seems appropriate
to take the functions equal to the Fourier harmonics

, This set of expansion functions
is clearly sufficient to model the electric current in the noncon-
nected topology case.

However, in the connected topology case, the set of Fourier
harmonics is not enough to describe the electric current that
flows along the wires (even though the Fourier basis is com-
plete). In fact, the set of Fourier harmonics is continuous at

and, thus, fails to model the possible discontinuous be-
havior of the current at the junctions (also note that the derivative
of the current must be defined in the usual sense, and not in the
distributional sense, as referred earlier). Hence, we need to in-
corporate some additional expansion functions in the expansion
set.

The step discontinuity of the current can be cancelled out with
another expansion function that has similar characteristics. This



1422 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

extra expansion function may be rather arbitrary. For simplicity,
we choose it to be the “saw” function , depicted in Fig. 3.
For , the “saw” function is given by

for (18)

Obviously, the current can be written as
, where and is a contin-

uous periodic function. Note that since is continuous, it can
be expanded into a Fourier series with a good convergence rate.
It is also important to remember that must follow the con-
servation law (3).

The previous discussion shows that, in the connected
topology case, an appropriate basis for the test/expansion
functions is formed by the two subsets described below. The
first subset (subset I) is formed by the vectors of type
(13) such that the projection over a specific wire is a Fourier
harmonic, and over the remaining wires is zero. The elements
of this infinite set are continuous functions. Therefore, the
conservation law is automatically observed.

The second subset (subset II) is formed by two elements only,
and describes the discontinuous component of the currents. The
elements of subset II are such that ,
where are constants, which ensure that the current conser-
vation law is satisfied (there exist precisely two
independent vectors in such conditions). The eigenvalues of the
propagation problem can be rigorously calculated (within the
scope of our model) with the complete basis formed by subsets
I and II.

In the nonconnected topology case, subset I is sufficient to
characterize the wire medium, as explained earlier.

B. Simplified Characteristic System

The dimension of the characteristic system (15) is infinite.
This seems to preclude the use of analytical techniques, as is our
objective. However, in the long wavelength limit, the propaga-
tion in the wire medium can hopefully be described adequately
using only the elements of the basis corresponding to the lowest
order Fourier harmonics. Thus, we propose to truncate subset I,
discarding all its elements, except the three vectors associated
with the Fourier harmonics . We do not
discard any element from subset II. Within this approximation,
the dimension of linear system (15) is either drastically reduced
to 3 in the nonconnected topology case or to in the
connected topology case. This is equivalent to assume that, apart
from the propagation factor, the amplitude of the current over
each wire section is either constant (nonconnected topology) or
a linear function (connected topology).

The elements of the truncated subset I are denoted by with
, and are such that

(19)

On the other hand, the elements of subset II are denoted by
with and, as explained above, they satisfy

(20)

For convenience, we introduce the following vectors:

(21)

We do not consider any specific choice for coefficients ,
. We only assume that vectors , , and (defined

as above) form an orthonormal basis of the space, and are real
valued. Thus, we have

(22)

Note that the orthogonality condition ensures that
is verified.
Within this approximation, we can rewrite the current expan-

sion (12) as

connected topology

(23a)

nonconnected topology (23b)

where the unknowns of the expansion are and . We note
that since the “saw” function is odd, we have

(24)

Therefore, is the average current over the th wire.
The characteristic system (15) is now rewritten using dyadic

notation. In the connected topology case, we obtain

connected topology (25a)

(25b)

(25c)

(25d)

In the above, denotes the conjugate of the transpose of the
dyadic , denotes the form (10), and and

denote the vectors that represent the
unknowns.

Similarly, in the nonconnected topology case, the character-
istic system becomes . Note that the dyadic
depends on the specific topology of the wire medium. Indeed,
in the connected case, the wires in the unit cell are centered at
the origin, whereas in the nonconnected case, they are not and,
thus, will be different in the two situations.
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It is convenient to rewrite the characteristic system in a unified
manner. As proven in Appendix A, the dyadic is invertible.
Therefore, we can calculate vector as a function of and
considerably simplify (25). After straightforward calculations,
we find that

where

connected topology

nonconnected topology
(26)

For a given , the eigenvalues associated with the first few
modes can be obtained by solving the characteristic equation

for .

C. Dyadic

In order to keep the readability of this paper, the calculation
of the dyadic is addressed in Appendix A. In the long-wave-
length limit, we obtain

(27a)

(27b)

connect.

nonconnect.

(27c)

where is the identity dyadic,
, and . Constants and are defined by (B5)

and (B6), and depend exclusively on the wire radius and lattice
constant.

For future reference, we note that the inverse dyadics are
given by

(28)

connected topology (29a)

nonconnected top

(29b)

V. HOMOGENIZATION OF THE WIRE MEDIUM

Here, we will explain how the effective permittivity of the
wire medium can be directly obtained from the characteristic
system derived in Section IV. To begin, it is appropriate to in-
troduce some auxiliary results and definitions that will be im-
portant later.

A. Homogenization Basics

Let be an electromagnetic Floquet mode in a generic
metallic crystal, i.e., a solution of (5) with , where

is the magnetic induction. We define the average fields
and as follows:

(30)

Using (5), it can be verified that the following equations hold:

(31a)

(31b)

where denotes the surface of the metallic region in the unit
cell and is the surface current over the metallic
interfaces. Using (31) and (24), after straightforward manipula-
tions, we obtain

(32)

Provided that magnetization and higher dipole moments can be
neglected, the right-hand side of the above equation is approx-
imately equal to , where is the polarization vector (i.e.,
the spatial average electric dipole moment in a unit cell). That
is the case in this paper because, at least within the scope of our
thin-wire model, the magnetization is exactly zero.

For future reference, we note that (32) can be rewritten as

(33)

where is defined by (28).

B. Effective Permittivity Dyadic

Here, we prove that the effective medium can be character-
ized with a permittivity dyadic. From (26) and (33), we have

(34)

We claim that the characteristic system is equiv-

alent to the characteristic system (i.e.,
both systems yield the same eigenvalues for the propagation

problem). Indeed, although for , we

have for because has a
pole and there is the following pole-zero cancellation:

(35)

Next, we obtain an explicit formula for the effective permit-
tivity of the metamaterial. Inserting (35) into (34), after simple
manipulations, we obtain

(36)
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Using (28), the above formula can be rewritten as follows:

where

(37)

Comparing the above expression with the characteristic equa-
tion for the average electric field in an anisotropic medium [18,
p. 202], we recognize that is necessarily the (relative) effective
permittivity dyadic. Indeed, from (32) and (37) (and noting, as
before, that the right-hand side of (32) is ), we have

(38)

From (29), the effective permittivity of the wire medium is
given by

connected topology (39a)

nonconnected topology

(39b)

Note that the effective permittivity depends explicitly on the
wave vector and, thus, the wire medium suffers from spatial
dispersion.

We could homogenize the 1-D-wire medium (array of parallel
wires) and the two-dimensional (2-D)-wire medium (two arrays
of orthogonal wires) using exactly the same technique (see Ap-
pendix C). For the 1-D-wire medium case, we would find that
the permittivity dyadic is given by (39b) with the index re-
stricted to (assuming that the wires are oriented along
the -direction). Comparing that formula with the results de-
scribed in [9], we conclude that the constant must be equal
to , where is the plasma (angular) frequency, and

is the velocity of light in vacuum. Indeed, numerical simula-
tions and analytical results show that, to a good approximation,

given by (B5) is coincident with the result of [9]

(40)

The above formula can be used to compute quickly and with
good accuracy. On the other hand, (B5) is a slowly convergent
double series and, thus, numerous terms need to be summed.

To conclude, we note that the homogenization method de-
scribed here can be generalized to arbitrary periodic structures,
and used to extract the permittivity, permeability, and magneto-
electric terms of the effective medium.

VI. DISCUSSION

Here, we will characterize the electromagnetic modes that can
propagate in the homogenized medium, and discuss the phys-
ical implications of the results. We also compare our analytical
model with full-wave numerical simulations.

To begin with, we note that, from (37), the dispersion char-
acteristic of the modes can be calculated by solving the charac-
teristic equation

(41)

The solutions of the characteristic equation depend on
the topology of the wire medium, and are described in Sec-
tions VI-A and B.

A. Connected Geometry

Here, we admit that the wires are connected and, thus, the
permittivity dyadic is given by (39a). This model for the per-
mittivity is exactly coincident with the one described in [19]
for the effective permittivity of a nonmagnetized plasma con-
sidering the effect of pressure forces. Unlike the classic “cold”
plasma model [19], which applies when the pressure forces are
neglected, this model is characterized by spatial dispersion in
the long wavelength limit. A “cold” plasma is characterized by
the permittivity .

It is easy to verify that (39a) predicts that there are two degen-
erate TEM modes (i.e., such that ) with the dispersion
characteristic

modes (42)

Since when , we con-
clude that the TEM waves “see” the effective permittivity .
Therefore, in the long wavelength limit, TEM propagation in the
3-D-wire medium is equivalent to propagation in “cold” plasma.

Apart from the TEM waves discussed above, the 3-D-wire
medium supports a longitudinal wave. The longitudinal wave is
such that the polarization is parallel to the wave vector. It starts
propagating near the plasma frequency and has the dispersion
characteristic

longitudinal mode (43)

The “cold” plasma model also predicts a similar mode [19].
However, since the “cold” plasma model neglects the “pressure
forces,” the corresponding mode is dispersionless, i.e., .
If the “pressure forces” are considered, the electrodynamics is
exactly the same as in the wire medium. The existence of a lon-
gitudinal mode was also conjectured in [12] based on experi-
mental results.

Next, we present full-wave numerical simulations that vali-
date the above-described results. We numerically implemented
the full-wave method described in [8] also using the thin-wire
approximation. We expanded the unknown currents with
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Fig. 4. Dispersion characteristic of the modes as a function of the � angle for
' = 0 (full line: numerical results; dashed line: theory).

Fig. 5. Dispersion characteristic of the modes as a function of the � angle for
' = 45 (full line: numerical results; dashed line: theory).

expansion functions (the continuous compo-
nent of each current was expanded with five Fourier harmonics;
the coupling between the wires is modeled with two expansion
functions; the expansion basis for the currents is the same as the
one discussed in Section IV).

We admit that and, thus, the plasma
wavenumber is and . We put

with , and we
computed numerically for the relevant modes as a function
of for (Fig. 4) and (Fig. 5).

As can be seen in Figs. 4 and 5, the agreement between the
full-wave results and the analytical model is good.

The results show that the connected medium is a good can-
didate to synthesize a metamaterial with negative permittivity,
at least if the longitudinal mode is not significantly excited. To
study this subject with greater detail, one would need to know
the boundary conditions for the electromagnetic fields at an in-
terface with a dielectric. As is well known, the usual boundary
conditions (i.e., the continuity of the tangential components) are
insufficient to describe the reflection of plane waves at an inter-
face. Indeed, we need an additional boundary condition [20],
[21] as a consequence of the medium response being spatially
nonlocal (i.e., the electric displacement at one point depends
on the electric field in the whole material). Unfortunately, no
general method to obtain the additional boundary conditions is
available [20]. A detailed discussion of this topic is outside the
scope of this paper.

We will instead discuss the use of the connected geometry of
the wire medium in DNG material applications. Let us suppose
that an ideal isotropic magnetic particle is available (e.g., a gen-
eralization of the split ring resonator [22]). If we load the wire

medium with magnetic particles, it seems reasonable to assume
(provided there is low interaction between the wires and mag-
netic particle) that the new composite medium is described by
the permittivity dyadic (39a) and a permeability due to the
magnetic effects. We assume that is a scalar and that
in some frequency band below the plasma frequency. We claim
that this new composite material behaves as an ideal isotropic
DNG material in the referred frequency band and that no spatial
dispersion occurs in this band. Indeed, it is easy to verify that
only two TEM modes will propagate in this regime. The lon-
gitudinal mode of the wire medium will remain in cutoff even
though . The reason is very simple: the magnetic field
associated with the longitudinal mode is exactly zero and, thus,
this mode does not interact with the magnetic particles. Thus,
we conclude that this topology of the wire medium may be ad-
equate for DNG material applications.

B. Nonconnected Geometry

Here, we consider that the wires are not connected. Unlike
the previous case, the dispersion characteristic and polariza-
tion vector cannot be calculated in closed analytical form.
To circumvent this problem, we proceed as follows. First,
we write the wave vector in polar coordinates, i.e.,

. We then admit that the disper-
sion characteristic has the Taylor expansion

, where , , etc. are unknown coefficients that, in
general, depend on and . Inserting these formulas into (41),
we obtain, after some simplifications, an equation of the form

, where is a polynomial function. In
order to calculate recursively the unknown coeficients , ,
etc., we impose that the successive derivatives of the function
(in ) at the origin vanish. For simplicity, we will admit in the
remainder of this section that , i.e., the modes propagate
in the plane.

Using the approach delineated above, we verified that there
exist five modes in the long wavelength limit. The dispersion
characteristic of the modes is

(44a)

(44b)

(44c)

(44d)

In the above, represents an expression that vanishes at the
same rate as . Equation (44c) represents the dispersion char-
acteristic of two different modes: one associated with the “ ”
sign and the other one with the “ ” sign. The polarization of
the modes can be calculated using [18, p. 202 (with a different
notation)]

(45)
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Fig. 6. Angle between the electric field and the x -axis for the “+” mode
defined by (44c) (full line: numerical results; dashed line: theory).

The modes defined by (44c) and (44d) were discussed in [8].
For completeness, we will briefly review their main properties.

The mode defined by (44d) is a TEM mode with polarization
along the -direction (i.e., normal to the plane of propagation).
On the other hand, the two modes defined by (44c) have elliptic
wave normal contours (the principal axes are defined by

). The polarization of these modes is on the plane
and, to a first-order approximation, is independent of the wave
vector . This result is the leading term of
the formula that is obtained by substituting (44c) into (45).

In Fig. 6, we compare the formula for the electric field with
full-wave numerical simulations obtained using the method pro-
posed in [8] (we computed the electromagnetic modes, and then
we averaged the fields over the unit cell to calculate the polar-
ization of the field). The wire radius is . We put

, where , and we computed
the angle that the average electric field associated with the “ ”
mode makes with the -axis as a function of . We compared
the result with the expected value . As seen in Fig. 6,
the agreement is good, especially for directions not too close
to the axes. The discrepancy along the wire axes is not relevant
because the modes defined by (44c) are degenerate along those
directions.

The described results show that the propagation in the non-
connected wire medium is very different from the propagation
in the connected wire medium. Indeed, the modes that propa-
gate in the two materials have distinct polarizations and disper-
sion characteristics. The nonconnected medium does not sup-
port TEM waves and, thus, it is not suitable for applications in
which the metamaterial is supposed to mimic the properties of
ideal cold plasma.

In what follows, we discuss the properties of the electromag-
netic modes corresponding to (44a) and (44b). The mode asso-
ciated with (44a) is longitudinal and nearly dispersionless (for

). Thus, it is not relevant for propagation on the
plane. On the other hand, the mode associated with (44b) has
a remarkable feature: the wave normal contours are
hyperbolic near the static limit. This situation is rather peculiar
and does not occur in standard (nonartificial) dielectric mate-
rials, which invariably have elliptic wave normal surfaces. In
Fig. 7(a), we plot a generic contour. We also depict
a generic wave vector and the corresponding Poynting vector

. As is well known, the Poynting vector is perpendicular to
the wave normal surface [14, p. 95].

Fig. 7. (a) Generic wave normal contour of the mode defined by (44b).
(b) Theoretical geometrical relation between the associated average electric
field and wave vector.

Fig. 8. Negative refraction occurs at an interface between air and the non-
connected wire medium (the inset shows the orientation of the metamaterial).

For , the polarization is to a first approximation
. This expression is the leading term of the formula

that is obtained by inserting (44b) into (45). In particular, if the
wave vector is along a coordinate axis, the mode is longitudinal.
The geometrical relation between the wave vector and electric
field is depicted in Fig. 7(b). The electric field and wave vector
make the same angle with the coordinates axes.

To our best knowledge, no one has ever reported an artificial
material with similar properties near the static limit. This mode
propagates only at very large wavelengths before it enters in
cutoff. The interesting thing is that the hyperbolic contours orig-
inate negative refraction at an interface with air. Indeed, since
the component of parallel to the interface is preserved and the
rays are parallel to the Poynting vector, we have the ray picture
illustrated in Fig. 8. Note that we have negative refraction, but
not a backward wave.

In Fig. 8, the vector represents the wave vector of the ray
that impinges on the interface, is the wave vector associated
with the reflected ray, and is the wave vector associated with
the transmitted ray. We also depicted the contour.
The transmitted wave vector lies on the contour
and its projection onto the interface is equal to the projection of

and onto the interface. The transmitted ray propagates
along the direction of the Poynting vector . It is clear from
Fig. 8 that the negative refraction phenomenon occurs. Note that
the interface with air is normal to the direction , where

is measured relatively to the -axis (as usual, the wires are
directed along the coordinate axes).
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Fig. 9. Calculated � (full line) and theoretical � (dashed line) along a
hyperbolic contour in the k-plane (i.e., as a function of the '-angle).

Fig. 10. Angle between the electric field and wave vector as a function of the
'-angle (mode with hyperbolic contour; full line: numerical results; dashed line:
theory).

In Fig. 9, the theoretical dispersion characteristic of the
mode (44b) is compared with full-wave numerical results
obtained using the method proposed in [8]. We put

, where is calculated in order that
the wave vector satisfies (44b) for (the free-space
wavelength is ). We then computed numerically as
a function of , and we compared it with the theoretical value
(i.e., ). As seen in Fig. 9, the computed value com-
pares well with the theoretical value, and is practically constant
(even near the coordinate axes where the long wavelength limit
approximation fails; indeed the condition is not
fulfilled for ).

In addition, we calculated the polarization of the elec-
tromagnetic mode numerically and we compared it with
the formula . As before, we put

, and we computed the angle between
the average electric field and wave vector as a function of .
The result is depicted in Fig. 10. The agreement between the
analytical model and simulations is excellent.

VII. CONCLUSIONS

In this paper, we discussed the electrodynamics of the
3-D-wire medium in the long wavelength limit. We considered
two distinct topologies for the wire inclusions: the connected
topology and nonconnected topology. We found that the prop-
erties of the effective medium are surprisingly dependent on the
topology of the metamaterial. Based on simple physical con-
siderations and using an integral-equation-based formulation,
we were able to reduce the modal problem to the calculation of
the zeros of the determinant of a characteristic system known

in closed analytical form. We have proven that the permittivity
dyadic can be extracted unambiguously from the characteristic
system. We obtained an analytic model for the permittivity
dyadic of the wire medium. The permittivity dyadic depends
on the wave vector and, thus, there is always spatial dispersion.

However, we found that the connected wire medium supports
two TEM degenerate waves. These waves propagate as in an
ideal isotropic medium with negative permittivity. Therefore,
as discussed in the text, this topology of the wire medium is
a good candidate for many relevant metamaterial applications
(e.g., DNG materials).

On the other hand, in the nonconnected medium, the waves
are, in general, neither TEM, nor degenerate. Moreover, near the
plasma frequency, the polarization of the fields is almost inde-
pendent of the wave vector. Thus, we conclude that this topology
of the wire medium is not appropriate for metamaterial applica-
tions in which the material must supposedly mimic the proper-
ties of an ideal plasma. Our results also show that, near the static
limit, the dispersion characteristic of the modes is intrinsically
hyperbolic. This result is remarkable because the materials usu-
ally available in nature have elliptic wave normal surfaces. A
consequence of this unusual property is that negative refraction
may occur at an interface between air and the nonconnected wire
medium.

APPENDIX A

Here, we calculate the dyadics defined by (25) and (26). To
begin, we note that, in the long wavelength limit (16), we can
replace the term by in the spectral
representation of the Green function (8), except in the parcel
associated with the index . We obtain the approximate
formula

(A1)

where is a multiindex of integers and
. In the following, we evaluate the desired

dyadics using always the above approximation for the Green
function.

A. Connected Topology

Here, we assume that the topology of the wire medium is
connected. We first calculate the dyadic defined by (25b).
Inserting (19) into (15b), we easily obtain

(A2)

where is defined by (B1). Using (B4) and the identity
, we find that

(A3)
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where is the identity dyadic. The constants and are de-
fined in Appendix B.

We now calculate the dyadic defined by (25d). Inserting
(19) and (20) into (15b), we obtain

(A4)

The coefficient is defined by (B1b) and, as proven in Ap-
pendix B, is identically zero. Using (B4) and the continuity
equation , we find that

(A5)

Therefore, we have

(A6)

The dyadic is given by

(A7)

We next calculate the dyadic defined by (25c). Inserting
(20) into (15b), we obtain

(A8)

In the above, the coefficients are defined by (B1). Using
(B4), (B8), (B10), and the continuity condition, we obtain

(A9)

The constant is defined by (B10b). In the long wavelength
limit, the first term on the right-hand side can be neglected. In-
deed, if we would decide to keep that term, we would find that
the correction in the final result would be comparable with the
error introduced by the approximation (A1). Hence, using (22),
we conclude that

(A10)

We are now ready to calculate the dyadic defined by (26).
Straightforward calculations show that

(A11)

We note that (22) implies that

(A12)

However, we then necessarily have

(A13)

and, in particular, we find that

(A14)

Inserting the above result into (A11) and using (21), we obtain

(A15)

Substituting the previous formula and (A3) into (26), we obtain
(27).

B. Nonconnected Topology

Here, we calculate the dyadic for the case in which the
topology of the wire medium is nonconnected. From (26), we
have . Since the results of the above section remain
valid, the dyadic is still given by (A3). However, we note that
the dyadic is not the same in the two cases because the constant

depends on the topology of the wire medium [see(B6)]. We
also note that because is given by an oscil-
lating series, whereas is given by a double nonoscillating
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series. Therefore, in the long wavelength limit, we can clearly
neglect the term in (A3). This approximation yields (27).

APPENDIX B

Here, we calculate the following auxiliary integrals assuming
that (A1) holds exactly:

(B1a)

(B1b)

(B1c)

Using (A1), we easily find that is equal to

(B2)

where is the constant (independent of and ) defined by

(B3a)

(B3b)

In the above, stands for the Bessel function of the first kind
and order 0, and is the center of the wire directed in the

-direction. For the connected topology, we have ,
while for the nonconnected topology, is given by (4). We
note that has only two different values, more specifically,

if and if . Therefore, we
can rewrite (B2) as follows:

(B4)

The constant is independent of the wire medium being con-
nected or not, and is always positive. It is defined by

(B5)

where and are integers. On the other hand, the constant
depends on the topology of the wire medium, and can be nega-
tive. It can be written as

connected topology
nonconnected topology

(B6)

where is an integer different from zero.
In the remainder of this Appendix, we will always assume that

the wires are connected. Next, we calculate . We obtain

(B7a)

(B7b)

Taking into account the symmetries of the summation range
in the index and the fact of the “saw” function being odd, it
is easy to verify that

(B8)

Finally, we calculate . We have

(B9)

If , the series vanishes for reasons similar to those
discussed during the calculation of . Therefore, we have

(B10a)

(B10b)

Note that the definition of is independent of the index,
and that is a constant.

APPENDIX C

Here, we generalize without proof the results of the paper to
the 2-D-wire medium. In this metamaterial, the wires are ori-
ented exclusively along the - and - directions. In the case
of the nonconnected topology, the permittivity dyadic is given
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by (39b), except that the index is restricted to . On
the other hand, in case of the connected topology, the permit-
tivity dyadic is given by (39a) with the symbol replaced by

, and the dyadic inside brackets replaced

by . The constant is defined as shown in
(39a) with the symbol “3” replaced by “2.”
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