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Abstract—In this paper we propose a new approach to compute
the dynamic potential (Green function) from two- and three-di-
mensional periodic arrays of point sources in a three-dimensional
space. The method has at least exponential convergence rate (in
some cases it has Gaussian convergence rate). The convergence
rate is independent of the position of the observation point in the
unit cell. The proposed approach can also be used to calculate the
derivatives of the Green function very efficiently.

Index Terms—Frequency-selective surfaces, homogenization
theory, lattice Green function, periodic Green function, photonic
crystals.

I. INTRODUCTION

THE solution of Maxwell’s equations in periodic un-
bounded structures can often be reduced to a boundary

value problem in a unit cell. An important example is the anal-
ysis of doubly periodic systems in a three-dimensional (3-D)
space (e.g., frequency-selective surfaces [1]). The Green func-
tion method allows formulating the boundary value problem
as an integral equation over metallic/dielectric interfaces, and
eventually over the boundary of the unit cell.

From the computational point of view, it is desirable that the
integral equation domain does not include the boundary of the
unit cell since this potentially increases the numerical effort.
This can be accomplished by imposing the Green function to
satisfy periodic boundary conditions. In that case, the Green
function is the dynamic potential from a two-dimensional (2-D)
array of point sources in the three-dimensional space. It is some-
times designated as “periodic Green function” [2], but in this
paper we shall refer to it as “layer Green function” to avoid con-
fusion with a different Green function introduced ahead. The
reason for the designation will be clear later.

It is of crucial importance that the Green function is efficiently
evaluated because otherwise the gain obtained in reducing the
complexity of the integral equation may be lost in time-con-
suming computations. Different mathematical representations
of the Green function are known. The spatial representation con-
verges always slowly, whereas the spectral representation con-
verges slowly when the observation point lies on the plane of
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the point sources (the “on-plane” case) [2], [3]. Several methods
have been proposed to accelerate the convergence of the corre-
sponding mathematical series. These include the Shanks’s trans-
form [4], [5], the summation by parts algorithm [6], and a tech-
nique based on the Kummer’s transformation and on Poisson’s
formula [7], [8]. In general, the previous methods have alge-
braic convergence. In [9] a mixed-domain representation of the
Green function is derived (Jordan’s formula). This representa-
tion has the excellent Gaussian convergence rate, but the im-
portant inconvenient of requiring the evaluation of the error
function with complex argument, which is computationally de-
manding. In spite of that, Jordan’s formula can greatly reduce
the computation time in the analysis of doubly periodic struc-
tures [10], [11].

In this paper we propose a new method to efficiently eval-
uate the “layer Green function” in a 3-D space. The accelera-
tion technique has exponential convergence rate (irrespective to
the observation point position), it is valid for arbitrary lattices,
and it can also be used to compute the derivatives of the Green
function. The idea is that the 2-D array of point sources can
be regarded as a sub-lattice of a 3-D lattice. We prove that the
potential from the 3-D array of point sources (which we des-
ignate as “lattice Green function”) is intrinsically related to the
layer Green function. We will demonstrate that provided one of
the Green functions can be efficiently computed the other one
also can. To this end, we will derive new representations for the
lattice Green function (one of the representations has Gaussian
convergence rate).

The lattice Green function has important applications in many
problems. It is used in the Korringa–Kohn–Rostoker (KKR)
method to compute the electronic structure of solids in solid-
state physics [12]. In [13] the Green function is utilized to cal-
culate the Coulomb interaction energy of a lattice of ions. The
lattice Green function plays an important role in the homoge-
nization of artificial materials [14], and in the characterization of
the band structure of dielectric and metallic crystals [15]–[17].

The spatial and spectral representations of the lattice Green
function converge slowly. In [12] and [18], an alternative
spherical wave representation that involves the intensive com-
putation of some lattice constants is presented. In [13], a mixed
domain representation with Gaussian convergence rate is
derived (Ewald’s formula). However, in analogy with Jordan’s
formula, Ewald’s formula requires the evaluation of the error
function in the complex plane, which is time-consuming.
Indeed, Jordan’s formula [9] is intrinsically related to Ewald’s
original results [13].
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In this paper, we derive three new representations for the lat-
tice Green function: the “spectral-like” representation and two
mixed-domain representations. The derived results enable the
efficient computation of the lattice Green function and circum-
vent the shortcomings found in Ewald’s formula.

The outline of this paper is as follows. In Section II, we re-
view some standard results concerning the layer Green function.
In Section III, we introduce the lattice Green function, and we
obtain two new representations for the lattice Green function. In
Section IV, we derive a new spectral-like representation for the
lattice Green function. The spectral-like representation relates
the layer Green function with the lattice Green function. We use
this fact to develop a new technique to evaluate the layer Green
function. In Section V, we present numerical results that illus-
trate the efficiency and application of the proposed method, and
in Section VI, we draw the conclusions.

II. THE LAYER GREEN FUNCTION

We consider a 2-D lattice with primitive vectors and .
The primitive vectors define a plane in the 3-D space, which
we refer to as the transverse plane. The layer Green function

is the solution of

(1)

where is the observation point, is the source point,
is a generic lattice point, is a double-

index of integers, and is the wave vector that defines the phase
shift between the point sources. In addition, the Green function
satisfies the usual radiation condition at infinity.

The Green function is the dynamic potential from a 2-D array
of phase-shifted point sources positioned at the lattice points

. The Green function only depends on the coordinates
. The spectral representation of the Green function

states that [1]

(2a)

(2b)

where is the area of the transverse unit cell,
is a double-index of integers, is the projection

of onto the transverse plane, and is the projection of onto
a unit vector normal to the transverse plane. The vectors
and lie in the transverse plane, and must satisfy

for , where is Kronecker symbol.
The spectral representation of the Green function converges

exponentially except when , i.e., when the observation
point lies “on the source plane.” In that important case, the spec-
tral representation converges extremely slowly [7]. This may af-
fect considerably the efficiency of electromagnetic solvers.

III. THE LATTICE GREEN FUNCTION

In this section we introduce a Green function that is pseu-
doperiodic in three independent directions of space, in contrast

with the layer Green function, which is pseudoperiodic only in
two directions.

The Green function is the dynamic potential from a phase-
shifted array of point sources positioned at the lattice points of
a 3-D lattice. The primitive vectors of the 3-D lattice are ,
and . The lattice points are , where

is a generic triple-index of integers. We shall
refer to the Green function as the “lattice Green function.” It is
the Floquet wave solution of the following equation:

(3)

where is the observation direction, is the source point,
is the wave number, and is the wave vector that defines the
phase shift between the point sources. The Green function is
the dynamic potential from the point sources placed at .
In Section III, we prove that the lattice Green function is intrin-
sically related to the layer Green function, and we exploit that
fact to accelerate the convergence of the layer Green function.

The spatial representation of the lattice Green function is [12]

(4)

where , and is the
free-space Green function.

By expanding and the series in the right-hand side of (3)
into plane waves, we obtain a spectral representation for the
Green function [12]

(5a)

(5b)

where is the volume of the unit cell,
is a triple-index of integers, and , , and are

the reciprocal lattice primitive vectors defined by
, , [12].

Both the spatial and the spectral representations converge
slowly, and thus are of limited interest in the numerical eval-
uation of the lattice Green function. In what follows we derive
two new mixed-domain representations for the Green function
with excellent convergence rate. The representations are related
to Ewald’s mixed-domain formula [13]. However, as we shall
verify ahead, the new formulas are much more effective from
the numerical point of view. Later, we shall prove that the results
can be used to accelerate the convergence of the layer Green
function.

To begin with, we note that the radiating solution of the
Helmholtz’s equation in (4) can be replaced by an arbitrary
(bounded) solution not necessarily satisfying Sommerfeld’s ra-
diation condition. Indeed, the lattice Green function is not re-
quired to satisfy any particular radiation condition at infinity
because it is a Floquet wave with wave vector . In particular,
assuming that the wave number is real, we can replace by

(6)
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The function does not satisfy the Sommerfeld’s radia-
tion condition. From the previous discussion, we have that

(7)

The equivalence between the previous formula and (4) is the
key identity that will allow us to generalize Ewald’s results.

The spatial sum (7) converges very slowly. The idea to accel-
erate the convergence is to use the Poisson summation formula
[19]. The Poisson formula transforms a sum in the spatial do-
main into a sum in the spectral domain, and may dramatically
increase the convergence rate of a generic series. Indeed, when
a function decays slowly in the spatial domain, it decays in gen-
eral extremely fast in the spectral domain. However, in this case,
the singularity of at the origin prevents its three-dimen-
sional Fourier transform to decay fast at infinity.

To circumvent this situation we consider the decomposition

(8)

where , and are, respectively, the first and second
terms of the intermediate identity, and function is chosen as
described in the next paragraphs.

First, we require to be such that it can be evaluated in an
efficient way. Second, we impose that as approaches infinity,

converges exponentially to unity. This ensures that when we
substitute (8) in (7), the sum corresponding to the second term
converges fast.

The objective is to use the Poisson summation formula to
accelerate the convergence of the series associated with the first
term. To this end, we require that the three-dimensional Fourier
transform of is known in closed-form. Furthermore, in order
to guarantee that the Fourier transform decays fast at infinity

must be a smooth function of at the origin. This is possible
only if is an even function of , and thus if is an odd function
of .

Thus, must be an odd function that converges exponentially
to unity as approaches infinity, and such that is analytically
Fourier transformable. In that case, using Poisson summation
formula [19], we obtain from (7) and (8) that

(9a)

(9b)

(9c)

where , is a
generic triple-index, is the volume of the
unit cell, and is the Fourier transform of given by

(10)

where is the Fourier space vector. Equation (9) is a mixed-
domain representation of the lattice Green function. The term

resembles the spectral representation of the Green func-
tion, whereas the term resembles the spatial representation.

Since only depends on , the triple integral (10)
can be reduced to an integral over the real axis. To this end, we
consider a spherical coordinate system with the polar
axis parallel to . In this way, we obtain that

(11)

Similarly the Fourier transform of is

(12)

In Sections III-A and III-B, we propose specific choices for
the function, and we derive the corresponding mixed repre-
sentations for the lattice Green function. Our choices are logic,
because there are not many standard functions that satisfy the
conditions enunciated earlier.

A. Hyperbolic Tangent

Here we admit that is a hyperbolic tangent

(13)

In the above, the parameter is an arbitrary positive number.
Inserting the above equation into (12) and using the table of
integrals [20, pp. 508], we obtain that

(14)

where is the hyperbolic sine, and the sum with index “ ”
represents the sum of two terms: one with the “ ” sign and the
other with the “ ” sign. If we let the parameter approach
zero, the Fourier transform of function becomes the Fourier
transform of . Hence, from (14), we find that

(15)

Since from (8) we have that , we
conclude that

(16)
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Equations (13) and (16) together with (9) define the “hyper-
bolic tangent mixed domain representation” of the lattice Green
function.

The mixed-domain representation is the sum of and
. Both of these terms are triple sums that, provided is

positive, converge exponentially. In the particular case ,
vanishes and reduces to the spatial representation (7).

On the other hand, if is infinite, reduces to the spectral
representation (5a) and vanishes.

In general a small value of favors the convergence of ,
whereas a large value of favors the convergence of . The
optimum value is the one that ensures that both series have ap-
proximately the same convergence rate. It can be verified that
an appropriate choice for is

(17)

With this choice, the mixed-domain representation typically
converges very fast, and only a few terms need to be summed to
calculate the Green function to machine precision.

B. Error Function

Here we admit that is the error function

(18)

where the parameter is an arbitrary positive number. The
Fourier transform of is now given by

(19)

Proceeding as in the previous section, we obtain that

(20)

Equations (18) and (20) together with (9) define the “error
function mixed domain representation” of the lattice Green
function. This mixed representation has properties analogous
to those of the mixed representation introduced in the previous
section. An appropriate choice for the parameter is now

(21)

By direct inspection, one can verify that the convergence rate
of this representation is significantly better than that of the hy-
perbolic tangent representation: it has Gaussian convergence
rate.

IV. REPRESENTATION OF THE LAYER GREEN FUNCTION

Here we propose a new method to compute the layer Green
function with exponential convergence rate. To begin with, we
will prove that the lattice Green function and the layer Green
function are intrinsically related.

Fig. 1. The two-dimensional array of point sources defined by the primitive
vectors a and a , can be regarded as a sublattice of a three-dimensional array.

A. The Spectral-Like Representation

In what follows, we derive a representation of the lattice
Green function analogous to the spectral representation (2) of
the layer Green function. The idea is that the 3-D array of point
sources can be regarded as the superimposition of 2-D arrays,
as illustrated in Fig. 1. The building block of the lattice is a
“layer” of point sources.

To exploit the referred property we rearrange the summation
order in (4). We put

(22)
It is obvious that the term inside the rectangular brackets can

be written in terms of the layer Green function. We have that

(23)

where is an arbitrary integer and is the layer Green func-
tion associated with the transverse lattice defined by the primi-
tive vectors and . From the spectral representation of the
layer Green function (2), we find that

(24a)

(24b)

We define as

(25)

where and are the first two basis vectors of the reciprocal
lattice. It is straightforward to verify that and (defined
as in Section II) are the projections of and onto the trans-
verse lattice plane. Hence is the projection of onto the
transverse plane.

Let be a unit vector normal to the transverse plane and
be the projection of onto . We have the decomposi-

tion . Since for we
have that

(26)
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Thus, substituting (26) into (24) and interchanging the sum-
mation order, we obtain

(27)

Next we assume that . In this case the series with
index in (27) consists of two geometrical series. These series
are, respectively, the potentials from all the point sources above
(below) the transverse lattice. Assuming, if necessary, that the
wave number as a small negative imaginary component (which
accounts for small losses and guarantees that the series con-
verge), we readily obtain that

(28a)

(28b)

In (28b) the sum with index “ ” is a shorthand notation for
the sum of two terms: one with “ ” sign and the other with “ ”
sign.

Formula (28) is the “spectral-like” representation of the lat-
tice Green function, relative to the transverse lattice defined by

and . It is valid only for . Nevertheless, we
can always find a point such that , and

for some integer. Since the Green function
is a Floquet wave with wave vector , we have that

, and thus we can use the spectral-like
representation to evaluate the Green function in an arbitrary
point of space.

We discuss next the convergence rate of the spectral-like rep-
resentation. From the previous arguments it is clear that we can
restrict our analysis to the case . We rewrite (28)
as follows:

(29a)

(29b)

In (29), we indicated explicitly in the argument of that
the transverse lattice is defined by and . As we assume
that , the auxiliary function can be effi-
ciently evaluated because the general term of the series decays
exponentially. Therefore, it is clear from (29) that if one of the
Green functions can be efficiently evaluated the other one also
can. In Section IV–B, we use this property to accelerate the con-
vergence of the layer Green function.

To conclude this section, and for the sake of completeness, we
note that the convergence rate of the spectral-like representation

of the lattice Green function is determined by the convergence
rate of the layer Green function. Hence, the series (28) converges
exponentially, except in the transverse plane where it
converges very slowly.

We also point out that the role of the primitive vectors , ,
and in (28) can be interchanged by considering cyclic permu-
tations of these vectors. Indeed, we can consider three distinct
transverse lattices. Therefore we have at our disposal three al-
ternative spectral-like representations for the lattice Green func-
tion. One of the representations is precisely (28). The other two
representations are analogous to (28), but with one important
difference: as the transverse lattice depends on the specific rep-
resentation, so does the respective convergence rate. In fact,
for each spectral-like representation, the region of slow conver-
gence is the respective transverse lattice. In general, as much
farther is from a transverse lattice (we assume without loss
of generality that is in the unit cell), the better is the conver-
gence of the associated spectral-like representation. However,
if is near the origin, the convergence rate is very poor for all
representations. Thus the formulas derived in Section III are in
general preferable.

B. The Acceleration Technique

Next, we explain how the layer Green function can be
computed using the results derived before.

We recall that is the dynamic potential from a double-
array of point sources at the lattice points .
The double-array is defined by the primitive vectors and ,
and can be regarded as a sublattice of the array defined by the
vectors , and third arbitrary vector . The potential from
the triple-array of point sources is the lattice Green function.
From (29) we have the key result, which establishes that the
layer Green function can be written in terms of the lattice Green
function

(30)

The formula is valid for . Note that (30) is valid
for an arbitrary vector , and that the left-hand side is indepen-
dent of .

The lattice Green function can be efficiently computed using
one of the mixed-domain representations derived in Section III.
On the other hand, the function is a double series that con-
verges fast provided . Thus, the layer Green func-
tion can be efficiently computed using (30).

The vector is chosen so that (30) converges as fast as pos-
sible. An adequate choice is

(31)

where is a unit vector normal to the transverse lattice defined
by and . Since the layer Green function is independent of

, we can assume that the wave vector is transverse. Thus,
from (31), we have that , and (29b) simplifies to

(32)
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Within the considered hypotheses, (30) is valid for
.

Thus, we propose the following strategy to compute the layer
Green function in an arbitrary point . If ,
the layer Green function can be efficiently computed using the
spectral representation (2), and thus no acceleration technique
is required. On the other hand, if , the layer
Green function is computed using (30), with given by (31),
and the lattice Green function calculated using a mixed-domain
representation.

Usually the calculation of the layer Green function involves
the computation of a double series [7], [9]. In contrast, the rep-
resentation (30) involves the computation of , and thus of
a triple series. Apparently, this might suggest that the compu-
tational burden increases. In fact that is not the case, because
the mixed-domain representation of lattice Green function con-
verges extremely fast, and so the efficiency of the method is very
good.

V. NUMERICAL SIMULATIONS

A. The Convergence Rate of the Method

In this section, we compare the efficiency of the derived re-
sults with other formulas available from the open literature.

First we consider the mixed-domain formulas introduced in
Section III for the lattice Green function. We compare our re-
sults with those yielded by Ewald’s formula [13], which has
Gaussian convergence rate. We implemented the numerical al-
gorithms using the software application MATHEMATICA.1

As an example, we assume that the lattice is simple cubic with
lattice constant (i.e., the primitive vectors are orthogonal and
such that ). The observation point is

, the wave vector is , and the
wave number is . We calculated the relative error
in percentage, as a function of the computation time (normalized
to arbitrary units). The result is depicted in Fig. 2. Note that
the vertical axis is in logarithmic units. The reference value was
obtained by summing the series with a very large number of
terms.

As seen in Fig. 2, the error function representation is the most
efficient, followed by the hyperbolic tangent representation. The
least efficient method is that of Ewald’s (curve ). Its computa-
tion time for the same numerical precision is about four times
larger than that of the error function representation. It can be
verified that theoretically the convergence rate of Ewald’s for-
mula is the same as that of the error function representation.
The reason for the different computation times is related to the
fact that Ewald’s formula involves the calculation of the error
function in the complex domain, which is computationally de-
manding. We also note that, in practice, a 0.1% error ( 10 dB)
in the Green function calculation is perfectly acceptable. In such
conditions the efficiency of the hyperbolic function seems to be
comparable to that of the error function.

The described conclusions are general and independent of the
observation point and wave vector. Thus, we conclude that our
mixed-domain representations are superior to Ewald’s formula.

1MATHEMATICA 4.0, www.wolfram.com.

Fig. 2. Relative error in percentage (logarithmic scale) as a function of
the computation time (normalized to arbitrary units). (a) Error function
mixed-domain representation. (b) Hyperbolic tangent mixed-domain
representation. (c) Ewald’s formula. The wave number is � = 2�=(0:3a).

TABLE I
COMPUTATION ERROR IN PERCENTAGE AS A FUNCTION OF PARAMETER N

Besides that, they are much easier to implement computation-
ally and thus they are of great relevance.

It is also appropriate to discuss the number of terms that we
need to sum in order to calculate the Green function with good
accuracy. Let us assume for simplicity that the summation range
of the triple series in (9) is , where is a non-
negative integer, , and is defined
similarly. Then, for a given , the number of terms required to
evaluate is 2 2 1 . This value is not optimized and
can be improved by imposing that only the terms of the series
smaller than a given value are summed. For a computation error
less than a few percent and a simple cubic lattice, it is in general
sufficient to take .

In Table I, we present the relative error in percentage as a
function of . The lattice parameters are the same as before.
As expected, the convergence rate of the error function represen-
tation is better asymptotically than that of the hyperbolic tangent
representation. Nevertheless, for small the efficiency of the
two representations is comparable. For fixed , the accuracy
gets better as the wave number decreases. For example, for

and , the error associated with the error
function and hyperbolic function representations is only 0.051%
and 0.39%, respectively.

In the rest of this section, we compare the convergence rate of
(30) with Jordan et al.’s formula [9] for the layer Green function.
We evaluated (30) always with the error function mixed-domain
representation, because it has better convergence rate than the
hyperbolic tangent representation.
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Fig. 3. Relative error in percentage (logarithmic scale) as a function of the
computation time (normalized to arbitrary units). Full line: our results. Dashed
line: Jordan et al.’s formula. The wave number is � = 2�=(0:3a).

Fig. 4. Relative error in percentage (logarithmic scale) as a function of the
computation time (normalized to arbitrary units). Full line: our results. Dashed
line: Jordan et al.’s formula. The wave number is � = 2�=(0:6a).

Jordan’s formula is the generalization of Ewald’s formula to
double arrays of point sources in the three-dimensional space.
Jordan’s formula is a double series with Gaussian convergence
rate and involves the computation of the error function in the
complex plane. As discussed before, this aspect decisively
worsens its global efficiency.

In the first example, we admit that the point sources are ar-
ranged into a square lattice with lattice constant . The observa-
tion point and the wave vector are as before. The wave number
is . In Fig. 3, we depict the relative error in per-
centage as a function of the computation time for representation
(30) and Jordan’s formula.

We see that the convergence rate of Jordan’s formula is
slightly better than that of (30), especially for a very high
accuracy. The reason is mainly connected to the fact that repre-
sentation (30) is a triple-series, whereas Jordan’s formula is a
double-series. But again, we note that in practical applications
a 0.1% error is perfectly acceptable.

In the second example, we consider that . In
Fig. 4, we depict the relative error as a function of the computa-
tion time. Now the convergence rate of both methods is approx-
imately the same.

The simulated results show that the efficiency of both repre-
sentations is comparable. Since (30) is easier to implement nu-
merically, and since in most applications the required accuracy
is moderate, we conclude that despite involving the calculation
of a triple series, (30) is of great relevance and may help im-
proving the performance of the existent electromagnetic solvers.

Next we discuss the number of terms that we need to sum
in order to compute the layer Green function with good accu-
racy. We remind that from (30) the layer Green function is the
sum of with the auxiliary function given by (32). We

Fig. 5. Relative error as a function of the position of the observation point
in the unit cell. Full line: scan on the source plane. Dashed line: scan on the
direction normal to the source plane.

consider for simplicity that the summation range of the double
series (32) is , where is a nonnegative integer
and . Then, for a given , the number of
terms required to evaluate is (2 1) . For a computation
error less than a few percent and a square lattice, an adequate
value for is also . So, it is clear that most
of the computational burden is related to the calculation of ,
which was discussed before.

The convergence rate of the proposed method is practically
independent of the position of the observation point in the unit
cell. This is demonstrated in Fig. 5, where we plot the relative
error in percentage as a function of the observation point coor-
dinates. In the calculations we considered (i.e.,
275 terms were summed). We studied two cases: the full line re-
sults assume that (scan on the source plane),
whereas the dashed line results assume that
(scan on the direction normal to the source plane), where

. The wave number and the wave vector are as in
the previous example. As seen in Fig. 5, the error is always less
than 0.2% for every observation point. This clearly evidences
the efficiency of the method.

B. Photonic Crystal Example

In this section, as an example of application of the derived
Green functions, we characterize the dispersion characteristic
of a three-dimensional array of square patches. The objective
is to compute the electromagnetic modes of the periodic struc-
ture, more specifically the (normalized) resonant frequencies

associated with a given wave vector . The unit cell of
the periodic medium is depicted in Fig. 6. The square patch in
the unit cell is denoted by . We assume that the host medium
is air and that the square patches are perfect conductors. The pe-
riodic medium is obtained by translations of the unit cell along
the primitive vectors.

In what follows, we briefly describe an integral equation
based formulation to compute the electromagnetic modes. This
formulation is conceptually equivalent to that described in [21].

Let be the current density over . As is well known,
the electromagnetic field radiated from the metallic obstacle can
be derived from a vector potential with the free-space kernel

. The total electromagnetic field in the photonic crystal is the
superimposition of the fields radiated by all the obstacles. Since
the current density over a generic obstacle is modulated by
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Fig. 6. Unit cell of a three-dimensional array of square patches.

the propagation factor , it is clear that the total field
is

(33)

where is the impedance of the host medium and is the
lattice Green function. We note that the Green function depends
on both and .

Next, we obtain an integral equation for the current density.
To this end, we impose that the tangential component of the
electric field given by (33) vanishes over the metallic patch. We
test (33) with a generic tangential density , and we integrate
the resulting equation over . Using the standard method of
moments procedure, we obtain that

(34)

In the above, the symbol “ ” stands for the conjugate of a
complex number and for the surface divergence. The pre-
vious result shows that an electromagnetic mode associated with
the wave number and the wave vector is such that the cor-
responding current density verifies (34) for an arbitrary test
density .

We can use the above result to compute the dispersion charac-
teristic of the medium. To this end, we expand the cur-
rent density in a basis of expansion functions

(35)

where are the unknown coefficients of the expansion. Sub-
stituting (35) into (34) and choosing the test functions equal
to the expansion functions, we obtain a homogeneous linear
system of the form , where .
Obviously, a nontrivial solution may exist only if the deter-
minant of the matrix vanishes. We use this fact to compute
the resonant frequencies of the periodic medium. More specifi-
cally, for a given , we compute the solutions of the equation

, where stands for the determinant
of the matrix. The zeros of the equation are calculated using the
standard bisection method.

The described procedure requires a lot of computational ef-
fort because in each iteration we need to assemble the matrix

for a different . This requires evaluating the lat-
tice Green function thousands of times. It is therefore of crucial

Fig. 7. Dispersion characteristic of the periodic medium (propagation along
the x-axis).

importance to compute the Green function efficiently, because
otherwise the global efficiency of the method will be very poor.

In Fig. 7, we depict the first few bands of the computed disper-
sion characteristic for propagation along the -axis (see Fig. 6).
We considered that the primitive vectors are oriented along the
coordinate axes, and that (simple cubic
lattice). The area of the square patch is 0.7 . We discretized
the current using 36 expansion functions. In the static limit, two
electromagnetic modes propagate in the periodic medium. The
wave associated with the first fundamental band is characterized
by a polarization (i.e., average electric field) along the -direc-
tion. This wave interacts strongly with the metallic patches, and
so it enters in cutoff in the frequency range

. On the other hand, the polarization of the wave associated
with second band is along the -direction. This wave does not
interact with the metallic patches: it is an undisturbed free-space
plane wave. The described structure can be used as a polariza-
tion-selective filter.

VI. CONCLUSION

In this paper, we proposed a new acceleration technique for
the efficient computation of periodic Green functions. Besides
having an excellent convergence rate, the proposed method is
perfectly general, valid for arbitrary lattices, and works equally
well irrespective of the relative position of the observation point
in the unit cell. The Green function derivatives can also be easily
computed from the derived formulas. The proposed formulas
can be easily implemented in existent electromagnetic solvers
and do not require the evaluation of complicated or cumbersome
special functions.

We derived a new approach with exponential convergence
rate to evaluate the layer Green function. Numerical simulations
demonstrated that the computation time of our method is com-
parable to that of Jordan’s formula (which is the unique method
reported in the literature that also has exponential convergence
rate). However, Jordan’s formula is much more difficult to im-
plement computationally.

In addition, we derived new representations for the lattice
Green function. The lattice Green function has important ap-
plications in the study of photonic crystals and homogeniza-
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tion theory. We believe that our approach to compute the lattice
Green function is more efficient than any other method reported
before in the literature.

To conclude, we note that in the characterization of FSSs and
photonic crystals using integral equation methods the ratio be-
tween the computation times of two implementations that use
different schemes to evaluate the Green function is approxi-
mately the same as the ratio between the computation times of
the involved Green function schemes.
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