
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 53, NO. 1, JANUARY 2005 59

Homogenization of Metamaterial Surfaces and Slabs:
The Crossed Wire Mesh Canonical Problem
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Abstract—The objective of this paper is to discuss the differences
between the homogenization of a bulk metamaterial and the ho-
mogenization of a thin metamaterial slab (complex surface). To
this end, we study the canonical problem of propagation of electro-
magnetic waves in a mesh of crossed metallic wires embedded in
a dielectric slab. We prove that it may not be appropriate to char-
acterize the complex surface with the same effective parameters
as the bulk metamaterial and the usual boundary conditions. We
develop a modified homogenization procedure that is suitable to
homogenize the complex surface using the bulk material effective
parameters. The results of our analytical model are compared with
full wave numerical results, yielding an excellent agreement for
long wavelengths. Our formulation is valid for slabs of arbitrary
thickness. We hope that this work may contribute to a more pro-
found understanding of the interaction of electromagnetic waves
with the emerging metamaterials.

Index Terms—Complex surfaces, homogenization theory, meta-
materials, wire medium.

I. INTRODUCTION

THE interaction of electromagnetic waves with structures
periodic in two-dimensions (2-D) is an important problem

in microwave engineering. These structures are known as
frequency selective surfaces (FSS) [1] when used to control
propagation properties. An example of an FSS is a periodic
array consisting of conducting patches or aperture elements.
Frequency selective surfaces find two major applications in
microwave engineering, which explore their frequency filtering
properties. The first one is the use of FSS as antenna radomes to
better control electromagnetic wave transmission and scattering.
The second one is in reflector antenna systems, where FSS
reflectors are used to separate feeds of different frequency bands
[1]. Recently it was also discovered that the high impedance
surface formed by a capacitive FSS above a ground plane
with interconnecting vias is the ideal ground plane for wireless
applications with low profile antennas [2]-[3].

In general, the characterization of FSSs and other related
complex surfaces requires intensive and time-consuming nu-
merical simulations [1], which provide no understanding or
insight into the physics of the problem. However, in the long
wavelength limit, it is possible to characterize the interaction of
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electromagnetic waves with thin screens by using approximate
boundary conditions. The idea is to impose an equivalent
boundary condition on the thin screen. In general, the boundary
condition relates the tangential electric field to the tangential
magnetic field through a sheet impedance. When available, this
approach provides an enormous reduction of the computational
costs. It has been successfully applied to the characterization of
the scattering from grids of wires standing in free-space [4], [5],
grids of wires and strips near a dielectric interface [6]–[8], and
arrays of scatterers with some rotational symmetry [9]. Also
related with this topic is the asymptotic boundary condition
(ASBC) proposed in [10], [11] to characterize grids of metal
strips and corrugated surfaces. The ASBC boundary condition
is asymptotic in the sense that it becomes more accurate the
smaller the period of the grid is in terms of the wavelength. This
approach is not limited to uniform periodicities of the strips
and corrugations, and can be applied to finite structures as well.

The characterization of high impedance surfaces using ho-
mogenization methods has also been considered. In a recent
paper [3], it was claimed that when the wavelength of opera-
tion is much larger than the period, the structure can be regarded
as an artificial anisotropic magneto-dielectric material. This is a
puzzling result since it raises the question: “To what extent can
a thin 1-cell complex surface be regarded as a metamaterial?”
Intuitively one would expect such interpretation to be possible
only for sufficiently thick slabs. In fact, the characterization of a
(unbounded) bulk metamaterial assumes interaction between a
3D-array of scatterers, while a complex surface is a thin 1-layer
structure. For example, an FSS screen is typically thick
[1]. A related question is: “Can the scattering by a complex sur-
face be somehow characterized using the bulk metamaterial ef-
fective parameters?”

The objective of this paper is to contribute to clarify and an-
swer the above questions through the study of a simple canon-
ical problem: we will investigate the scattering of plane waves
by a mesh of crossed metallic wires embedded in a dielectric.
The thickness of the metamaterial slab can be arbitrary. We pro-
pose a new analytical homogenization procedure that allows the
characterization of the scattering coefficients directly from the
bulk material effective parameters. It will be shown that the an-
alytical model describes very well the scattering of plane waves
by the wire mesh for long wavelengths, even for wide incident
angles and thin surfaces.

In addition, we homogenize the bulk metamaterial associ-
ated with the wire mesh (2-D-wire medium). Several methods
have been proposed in the literature to compute the effective pa-
rameters of periodic composite materials (metallic or dielectric
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Fig. 1. (a) Geometry of the 2-D-wire medium; (b) Geometry of the unit cell.

crystals) [12]–[16]. For a detailed review of the homogeniza-
tion methods see [16]. In this paper, we prove that the 2-D-wire
medium can be modeled as an effective medium, provided that
both spatial and frequency dispersion are taken into account.
More specifically, the artificial medium is characterized by a
permittivity dyadic that depends not only on the frequency, but
also on the wave vector.

Apart from the studies presented in [15], [17], we are not
aware of other works that model artificial media taking into ac-
count spatial dispersion. In [15], the reflection problem on an in-
terface between a half space of vertical parallel wires (1-D-wire
medium) and free space is solved for plane-wave excitation. In
[17], it is found that the 1-D-wire medium can be described by
a nonlocal dispersive uniaxial tensor. It is proven that the com-
posite structure exhibits strong spatial dispersion even in the
very large wavelength limit. None of these works investigates
the scattering of plane waves by thin slabs of artificial material.
The geometry of the artificial material considered in this paper
is significantly different from that of [15] and [17]. Indeed, we
investigate the interaction between electromagnetic waves and
a mesh of crossed metallic wires (2-D-wire medium slab). We
prove in this paper that the propagation characteristics in 1-D-
and 2-D-wire media are rather different.

To a large extent our approach can be generalized to other
geometries. We hope that the method may contribute to a more
profound understanding of the interaction of electromagnetic
waves with thin complex surfaces, and the relation between this
problem and the homogenization of bulk materials. Unlike full
wave numerical simulations, the computational effort required
by our analytical formalism is negligible. The formalism only
assumes that the permittivity of the bulk material is known, and
that the propagation in the long wavelength limit can be de-
scribed satisfactorily by the fundamental Floquet modes.

It is also important to point out the fundamental difference
between our approach, and the classic approach which involves
replacing the screen of scatterers by an equivalent boundary
condition [4]–[9]. The difference is that our homogenization
method relies on the effective parameters of the bulk material,
for example the plasma frequency of the wire medium, which is
a parameter defined uniquely for the unbounded structure. Con-
versely, the methods presented in [4]–[9] involve parameters
that characterize uniquely the FSS screen. The method proposed
in this paper can be applied in the homogenization of not only
thin screens, but also metamaterial slabs of arbitrary thickness.

The outline of this paper is as follows. In Section II we
characterize the propagation of electromagnetic waves in the
(unbounded) 2-D-wire medium. We calculate the dispersion
characteristic of the propagating modes and the average elec-
tromagnetic fields. Our theoretical model is validated using
full wave numerical simulations. In Section III, we formulate
and solve from an average perspective the problem of plane
wave scattering by a mesh of crossed wires. We explain how
to homogenize the problem taking into account the interface
effects. We discuss the differences between the homogeniza-
tion of the bulk artificial material, and the homogenization
of an interface between two different media. In Section IV,
we compare our analytical model with full wave numerical
simulations obtained using the periodic method of moments
(MoM). Finally, in Section V, some conclusions are drawn.

II. PERMITTIVITY DYADIC FOR THE 2-D-WIRE MEDIUM

Before addressing in Section III the problem of scattering
of plane waves by a mesh of crossed wires, we start by char-
acterizing the propagating modes in the associated unbounded
structure (a metallic crystal). The results will later be used to
homogenize a slab of the artificial structure, as explained in the
previous section.

The geometry of the periodic structure is depicted in Fig. 1.
It consists of an array of metallic wires with infinite length em-
bedded in a dielectric with permittivity . The wires are per-
fect electric conductors (PEC), and are oriented along the and

directions. The -oriented wires are centered at ,
where and are generic integers and is the distance be-
tween the wires (the lattice constant). The -oriented wires are
centered at , where and are defined as
before. Thus, the spacing in the direction between adjacent
wires is half-lattice constant.

Equivalently, we can say that the metallic wires are arranged
into a simple cubic lattice. The unit cell contains sections of
the wires as depicted in Fig. 1(b). The metallic crystal is ob-
tained by periodic translations of the unit cell along three inde-
pendent directions of space (the lattice primitive vectors). We
denote the metallic region in the unit cell by and its surface
by . The outward unit vector normal to is . The volume
of the unit cell is .

We denote the wire radius by and admit that ,
i.e., that the wire radius is much smaller (at least ten times) than
the lattice constant. Ahead, we will use this approximation to
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model the artificial material as an effective medium. To begin
with, we establish in next section some basic facts concerning
the homogenization of the Maxwell equations.

A. Homogenization of the Maxwell-Equations

Let be an electromagnetic Floquet mode in a generic
metallic crystal formed by a periodic array of metallic obstacles
embedded in a dielectric with permittivity . The wave vector
associated with is . In the dielectric
region the electromagnetic field satisfies the (frequency depen-
dent) Maxwell equations

(1a)

(1b)

where and are respectively the
wave number and impedance of the host medium. Over the
metallic interfaces the tangential component of the electric field
vanishes, i.e., . We define the average fields and

as follows:

(2)

Using (1) and the boundary conditions, it can be verified that

(3a)

(3b)

where denotes the surface of the metallic region in the unit
cell, and is the electric current over the metallic
surfaces. From (3), after some straightforward manipulations we
obtain

(4)

where is the identity dyadic, and .
We seek to model the artificial medium using uniquely a per-

mittivity dyadic. This is possible as long as the magnetic and
higher dipole moments are negligible in the frequency band of
interest. Within this hypothesis we can identify with the ho-
mogenized magnetic field (in general should be regarded
as the average induction field normalized to ). Thus, the (rela-
tive) permittivity dyadic (normalized to the host permittivity)
of the metallic crystal must be such that the following identity
holds for every and polarization

(5)

Note that if we expand the term in the right-hand
side of (5) in powers of the wave vector, the leading term is the
polarization vector associated with the metallic obstacles (the
average electric dipole moment in a unit cell). Substituting (5)

in (4), we obtain the expected characteristic equation for the
average field ([18, p. 202])

(6)

B. The Permittivity Dyadic

The objective of this section is to obtain the effective per-
mittivity of the 2-D-wire medium. Under the assumption that

, it was proved in [17] that the array of -oriented
wires can be described by the permittivity dyadic (normalized
to the host permittivity)

(7)

In the above, is the plasma wave number, and
is the wave vector. The result is expected to hold

up to the second order in and (i.e., powers of and
greater than two are neglected). Notice that the permittivity
dyadic depends not only on the frequency, but also on the wave
vector. Therefore, the effective medium exhibits both frequency
and spatial dispersion. To a first order approximation, the
plasma wave number satisfies [15]

(8)

This result can be trivially extended to the metallic crystal
under study. In fact, provided that there is low interaction be-
tween the vertical and horizontal wires, it is reasonable to expect

(9)

Within this model, it is well-known ([18, p. 202] using a dif-
ferent notation) that we must have

(10)

Assuming that the permittivity dyadic is given by (9), the
above equation has five different solutions in , which define
the dispersion characteristic of the electromagnetic
modes. One of the solutions is . It corresponds to static
fields and so it does not contribute to the solution of the prop-
agation problem. The other four solutions are the propagating
modes. Unlike the number of solutions may suggest all the elec-
tromagnetic modes can be generated from only two families of
Floquet waves. In fact, solving (10) for , with and
given by (9), we find that

(11a)

(11b)
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The above equation shows that there are only two solutions,
and , for (assuming that , and are fixed;

the propagation constant can be imaginary). Thus, for a fixed
frequency the proposed model predicts that the plane wave so-
lutions in the homogenized medium are either associated with
the wave vector or with the wave vector

, where is given
by (11a). The indices and identify the family of the
modes.

As is well-known, the average electric field associated with an
electromagnetic mode is given by ([18, p. 202] using a different
notation and assuming that the field is not transverse)

(12)

In the above, denotes the average field associated with
the mode, and denotes the average field associated
with the mode. Since the wave vector must satisfy the dis-
persion characteristic (10), in (12) we have that ,
where is defined by (11a). The average magnetic field is
calculated using (3a).

So far the discussion was completely general. In what fol-
lows, in order to give some insight into the properties of the
modes, we will characterize the solutions of (10) in the case

.
As mentioned before, (10) has four solutions associated with

propagating modes. Two of the solutions correspond to waves
that start propagating in the static limit . One of the modes
has the dispersion characteristic , and polarization
nearly parallel to the direction. The other quasistatic mode
interacts strongly with the metallic wires (the electric field is
almost parallel to the plane of the wires), and for a sufficiently
high frequency it is cutoff. Finally, there are two other solutions
that correspond to modes that start propagating near the plasma
frequency of the 1-D-wire medium. We claim that the dispersion
characteristic of these two modes is given by

(13)

The proof of this result is given in the next paragraph. In the
above is the dispersion characteristic of the
transverse magnetic to (TM) polarized mode in the 1-D-wire
medium [15]. The proposed formulas hold up to the second
order in (i.e., powers of greater than two are neglected),
and in the vicinity of the plasma frequency.

Next, we justify why (13) is compatible with (9). In fact, ex-
panding the auxiliary function , defined by (11b), in a power
series around the point , and neglecting
powers of and greater than two, we obtain that

(14)

Substituting the above equation into (11a), we conclude that to a
first order approximation indeed verifies (10) in the vicinity
of the plasma frequency. In Fig. 2, we depict the theoretical wave
normal contours . Note that

as a consequence of the medium being in-
variant under a rotation of 90 around the axis.

Next, we find approximate formulas for the polarization of
the fields. Using (9) and (13), and neglecting powers of greater
than two, we find that

(15a)

(15b)

Substituting the above equations in (12), we obtain that to a first
approximation

(16)

where is an arbitrary normalization constant.
From (16), we see that the average electric field is almost con-

tained in the plane. To a first order approximation, the po-
larization of the mode is along the direction (see
Fig. 1), and the polarization of the mode is along the direc-
tion . It is important to stress that (13) and (16) are
only valid for modes that propagate near the plasma frequency
and as long as .

The previous results clearly show that the electrodynamics
of the 2-D-wire medium is very different from that of the 1-D-
wire medium (the array of vertical wires). Indeed both the wave
normal contours and the polarization of the fields are completely
different in the two periodic structures.

C. Numerical Validation

In order to validate the proposed model, the dispersion char-
acteristic of the 2-D-wire medium was numerically obtained
using the full wave method proposed by the authors of this
paper in [19]. The numerical results refer to wires with radius

.
We computed the resonant frequencies of the plasma modes

for (the angle is the direction of
the wave vector relative to the axis). From (13), we expect
that . This term is the most
important difference in the dispersion characteristic, comparing
with the 1-D-wire medium. In Fig. 3 the full wave numerical
results (full line) are compared with the theoretical predictions
from the proposed model (dashed line), showing good agree-
ment. The dispersion characteristic of each individual mode is
also in good agreement with (13) (in order to simplify the figure,
only the difference between the two propagation constants was
plotted).

In addition, using also the numerical method proposed in
[19], we averaged the electromagnetic modes to obtain the po-
larization of the homogenized fields. We computed the angle
that the average electric field makes with the axis as a func-
tion of (the direction of the wave vector), and compared it
with (16). The result for the mode is depicted in Fig. 4 and
shows good agreement, especially for directions not too close
to the - and axes. The discrepancy along the wire axes is not
very important since the polarization of the plasma modes is de-
generate along these directions. Similar results are obtained for
the mode.

The previous results demonstrate that our theoretical model
accurately describes the propagation of electromagnetic waves
in the 2-D-wire medium from an average perspective.
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Fig. 2. Normalized wave normal contours for k = 0. Full line: � =

const. Dashed line: � = const.

Fig. 3. Plot of � �� as a function of the '-angle. Full line: numerical
results. Dashed line: theoretical results. The wire radius is r = 0:01a.

III. HOMOGENIZATION OF A 2-D-WIRE MEDIUM SLAB

In this section, we investigate the incidence of plane waves
in a slab of the 2-D-wire medium. The geometry is depicted
in Fig. 5. The slab consists of a finite number of layers, ,
of crossed wires. The thickness of each layer is (the lattice
constant). As in the previous section, the wires are embedded in
dielectric material with permittivity . The metamaterial slab
stands in free-space.

Each layer contains two sets of wires: one set of vertical
wires and one set of horizontal wires. The vertical wires in
the leftmost layer are located at , whereas the hori-
zontal wires in the leftmost layer are located at , where

. The interfaces of the metamaterial slab are co-
incident with the interfaces of the dielectric host (dashed lines
in Fig. 5). The leftmost interface is at and the rightmost in-
terface is at . The interfaces are, of course,
normal to the direction. Obviously, the definition of is
rather arbitrary if , i.e., if the wires stand in free-space.

Fig. 4. Direction of the average electric field as a function of the '-angle.
Full line: numerical results. Dashed line: theoretical results. The wire radius is
r = 0:01a.

Fig. 5. Slab of the 2-D-wire medium with two layers. The dashed lines
represent the interfaces.

A possible choice is . The formalism devel-
oped in this section works equally well for other choices (e.g.,

).
As depicted in Fig. 5, a free-space plane wave with wave

vector impinges on the left interface,
where . The objective is to obtain an an-
alytical model that allows the calculation of the scattered far
field. The incident field is assumed to be either a TE or TM
plane wave relative to the plane of incidence (defined by
and by the normal to the interface ), more specifically

or where the generic TE
and TM waves are of the form

(17a)

(17b)

and is the free-space wave number,
and .
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A. Modal Formulation of the Problem

Next, we formulate the scattering problem using a modal
approach. As is well-known [1], the total electric field for

can be written as

(18)

where we have

(19)

and is an arbitrary multi-index of integers, and
and are the (unknown) reflection coefficients.

Similarly, the total electric field for , can be written
as

(20)

where and are the (unknown) transmission coefficients.
In the 2-D wire medium slab, , we can expand

the electromagnetic fields in Floquet modes of the unbounded
artificial material. In general, the Floquet modes have complex
wave vector, and are associated with the host-medium wave
number . The modes that propagate in the positive direction
are denoted by , and are associated with the wave vector

, where is the index that identifies the mode. Similarly, the
modes that propagate in the negative direction are denoted by

and are associated with the wave vector . The projection
of and into the interface (i.e., the xoz plane) is ,
i.e., the transversal component of the incident wave vector is
preserved. We follow the rule that wave vectors that differ
by translations along the reciprocal lattice primitive vectors
are equivalent [20]. In general, the electromagnetic modes

and belong to the “complex” band structure of the
artificial material. An electromagnetic mode belongs to the
“real” band structure, only if its wave vector is real. We also
note that and are basically the analog of the free-space
electromagnetic modes used in the expansions (18) and (20).
From the previous discussion, we conclude that in the wire
medium slab we can write

(21)

where and are the (unknown) coefficients of the expansion
(the amplitudes of the forward and backward waves).

As is well-known, the unknown coefficients can be obtained
by matching the tangential components of the electric and mag-
netic fields at the interfaces and . Thus, we obtain
four independent vector equations, two for each interface. For

example, the continuity of the tangential electric field at
gives

(22)

The above equation must hold for an arbitrary and in the
plane .

B. Homogenization of the Problem

In this section, we explain how the scattering problem previ-
ously discussed can be homogenized. Our objective is to sim-
plify the equations that establish the boundary conditions, e.g.,
(22). Indeed, these equations involve an infinite number of un-
knowns: the reflection and transmission coefficients. The idea
is to obtain a simplified system with only a few unknowns. To
this end, we multiply both sides of (22) by , and
then integrate the resulting equation over the transversal unit cell
(i.e., in the - and -coordinates). More specifically, each vector
field is averaged as follows:

(23)

In the above equation, stands for a generic vector field, and
is the area of the transversal unit cell.

Since and vanish for , we
obtain from (22) that

(24)

where stands for calculated for , and
and are given by (17). So, the proposed procedure reduces
the infinite sum in the left-hand side of (22) to three unique
terms. However, the right-hand side of (24) has still an infinite
number of terms. To circumvent this problem, we assume that the
unique electromagnetic modes in the 2-D-wire medium that have
significant spectral content at the wave vector belong to the
two families of Floquet modes ( and modes) characterized
in Section II. This assumption seems reasonable, because in
the long wavelength limit only these modes can propagate in
the unbounded structure. Since the transversal component of
the incident wave vector is preserved, for a given frequency
there are four independent modes with the required properties.
Two modes, and propagate in the
positive direction (forward), and are associated with the wave
vectors

(25)

where is calculated using (11a) with

and . The other two modes,
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and , propagate in the negative direction (back-
ward), and are associated with the wave vectors

(26)

Using the hypothesis enunciated above, we conclude that (24)
simplifies to

(27a)

The three remaining equations that guarantee the continuity of
tangential components of the electric and magnetic fields at the
interfaces are homogenized in a similar manner, resulting in

(27b)

(27c)

(27d)

where and are obtained from and
using (3a) with the free-space wave number and the free-space
impedance.

Each of the vector equations in (27) generates two indepen-
dent scalar equations. So, we obtain an 8 8 linear system with
eight unknowns (the reflection and transmission coefficients,
and the amplitudes of the waves inside the homogenized slab).
The linear system can be solved numerically (or even ana-
lytically, although the expressions result rather cumbersome)
provided we known the homogenized fields ,
and . These fields are obtained by inserting

into (23), and are derived in the next section.
It is important to remember that the averaging in (23)

only affects the transversal coordinates, i.e., and . There-
fore, differ from the average fields

obtained in Section II. In fact, from def-
inition (2), are obtained by averaging the
electromagnetic modes over the whole unit cell,
i.e., in this case the averaging affects not only the transversal
coordinates, but also the longitudinal coordinate .

In general, it would be a mistake to identify
with . In fact,

these fields may be substantially different, especially if the
lattice constant is not significantly smaller than the wavelength.
For example, if such approximation were made in the case
under study, we would obtain a complete disagreement between
the cross-polarization level predicted by the theoretical model
and the full wave numerical results. We will discuss this aspect
with more detail in Section IV. In what follows, we derive the
correct relation between the different fields.

C. The Average Fields

The objective of this section is to calculate the (transversal)
average fields defined in the previous section. The formulation
presented here, is rather general and can be easily extended to
other periodic structures with metallic planar (or almost planar)
inclusions (at least when the unit cell has a single metallic in-
clusion). This geometry is rather common in FSS screens.

Let denote a generic electromagnetic mode in the
2-D-wire medium [for example the mode ], and let

stand for the field obtained by inserting
into (23). In what follows, we relate with de-
fined by (2).

To begin with, we note that is pseudo-periodic in
, and thus can be expanded into a Fourier series

(28a)

(28b)

In the above , and is a generic integer.
We note that .

Since differs from by a reciprocal lattice vector, for-
mulas (3)–(4) derived in Section II remain valid if we replace
by and by . Thus, by inverting the dyadic in the
left-hand side of (4), we obtain

(29a)

(29b)

At this point, we note that the wire inclusions are quasiplanar,
i.e., quasicontained in planes parallel to the plane. This
property follows from the assumption that the wire radius is
small. In analogy with the geometry of Fig. 5, the vertical wires
in the 2-D-wire medium are quasicontained in the planes

. Similarly, the horizontal wires are quasicontained in
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Fig. 6. Reflection coefficient (co-polarized wave) versus normalized frequency: TE-incidence and ' = 45 ; � = 15 ; 80 ; " = " . Full line: numerical results.
Dashed line: analytical model.

the planes . Within this approximation, the integral
in (29a) simplifies to

(30)

where and are, respectively, the surface of the wire
element inside the unit cell that is oriented in the - and direc-
tion. Assuming also that the current flows along the wire axes,
it is clear that the previous equation can be written as

(31)

Substituting (31) in (29a) and using (5), we obtain the important
result

(32)

The above formula establishes that depends uniquely on
. By inserting (32) into (28a), we finally obtain the desired

relation between the average fields

(33)

(34)

The dyadic is calculated in closed analytical form in the
Appendix.

In the remainder of this section, we calculate the average
magnetic field . In analogy with (28a) we have

(35)

From (3a) it is clear that , and, therefore,
we have

(36)

where .

IV. NUMERICAL RESULTS

In this section, we compare the results obtained with full
wave numerical simulations with results from the theoretical
analytical model developed before. The numerical results were
obtained using the periodic moment method [1]. In the sim-
ulations it is assumed that the wire radius is
and that (see Fig. 5). For other values of

the agreement between the numerical simulations and the
analytical model is similar.

The normalized plasma wave number for is
. The plasma frequency is given by , where

is velocity of light in vacuum. The physical meaning of the
plasma frequency is that for the TM- polarized waves
in the associated 1-D-wire medium are cutoff (when the wires
stand in air).

In Figs. 6 and 7, we plot the reflection coefficients of the
co- and cross-polarized waves, respectively, versus normalized
frequency, assuming TE-plane wave incidence. The direction
of incidence is given by , i.e.,
is measured relatively to the axis (see Fig. 5), and is
the angle that the projection of the incident direction onto the
xoz-plane makes with the axis. We consider that ,
and that or . We admit that the wire slab is
1-cell thick (i.e., it consists of a set of vertical wires and a
set of horizontal wires) and that the wires stand in free space:

. We plot the numerical results with full lines, and the
results obtained with the analytical model with dashed lines.

As seen in Figs. 6 and 7, the agreement between the analytical
and numerical results is very good, especially for ,
which corresponds to , where is the wavelength of
radiation in the host medium (air in this example). For

, the agreement deteriorates relatively fast, especially for
normal incidence and for the cross-polarization level. For

the agreement is very bad for the cross-
polarization. Thus, the range of the validity of the analytical
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Fig. 7. Reflection coefficient (cross-polarized wave) versus normalized frequency: TE-incidence and ' = 45 ; � = 15 ; 80 ; " = " . Full line: numerical
results. Dashed line: analytical model.

Fig. 8. Reflection coefficient (co-polarized wave) versus normalized frequency: TM-incidence and ' = 45 ; � = 15 ; 80 ; " = 2:2" . Full line: numerical
results. Dashed line: analytical model.

approach seems to be . This result is intuitively logical
because the range of validity of the effective permittivity dyadic
(9) is also expected to be approximately .

As shown in Fig. 7, the cross-polarization level increases with
frequency. It is interesting to note that if we had identified the
homogenized fields in the wire medium slab with those of the
periodic unbounded structure, the analytical model would in-
correctly predict that the cross-polarization level was exactly
zero for (note that when and it
can be shown that one of the modes given by (12) is such that

and and the other one is such
that and ). This clearly shows
that the field cannot be identified with , and that the
correct homogenization of the problem involves averaging only
the transversal coordinates, as described in the previous sec-
tion. This proves that in general the homogenized thin screen
cannot be identified with a slab of the homogenized bulk artifi-
cial material.

In Figs. 8 and 9, we plot the reflection coefficients of the
co- and cross-polarized waves, respectively, versus normal-
ized frequency, assuming TM-plane wave incidence, and that
the wires are embedded in a dielectric slab with permittivity

. For small frequencies the wire mesh blocks the
propagation of electromagnetic waves. Unlike in the TE- case,
near the static limit the amplitude of the reflection coefficient
decreases with the -angle. This property can be easily under-
stood noting that for normal incidence and TM-polarization
the incident electric field is parallel to the plane of the wires,

whereas for wide angles it becomes progressively oriented
along the axis and thus the interaction with the wires is
smaller.

As before, we obtain an excellent agreement between numer-
ical simulations and the analytical model, especially for

, which corresponds to . For
the agreement is very bad for the cross-polarization. There-

fore, the range of validity also seems to be in the
dielectric case. Note that since is the wavelength in the host
material the absolute range of validity of the model is worse in
the dielectric case than in the case in which the wires stand in
free-space.

A similarly good agreement between the numerical simula-
tions and the analytical model is obtained for the transmission
coefficients (both amplitude and phase), and for other incident
directions.

The previous results prove that despite the wire structure
being only one cell thick, it is possible to homogenize it with
excellent results using the bulk material effective parameters
and the homogenization procedure proposed in this paper.

Finally, in Fig. 10 we plot the reflected power versus the nor-
malized frequency for TM- incidence, and ,
and structures with different thickness. We numerically simu-
lated the cases in which the thickness of the wire slab is 1, 2,
or 3 cells. The wires stand in free-space. As in the previous
cases, we obtained a very good agreement between the numer-
ical data and the analytical model. As the number of layers in-
creases the response of the wire structure becomes increasingly
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Fig. 9. Reflection coefficient (cross-polarized wave) versus normalized frequency: TM-incidence and ' = 45 ; � = 15 ; 80 ; " = 2:2" . Full line: numerical
results. Dashed line: analytical model.

Fig. 10. Reflected power (in percentage) versus normalized frequency:
TM-incidence and ' = 45 ; � = 15 ; " = " . The thickness is 1, 2, or 3
cells. Full line: numerical results. Dashed line: analytical model.

flat for , i.e., below the cutoff frequency of the un-
bounded structure for normal incidence. Near the plasma fre-
quency, , the reflected power decreases steeply as the
number of layers increase, and the band gap properties become
increasing evident.

V. CONCLUSION

In this paper, we studied the canonical problem of scat-
tering by a mesh of crossed wires. We proved that the bulk
artificial material can be described (for long wavelengths) by
a spatially dispersive permittivity dyadic. We proved that near
the plasma frequency there exist two wave normal surfaces.
We characterized the polarization of the homogenized electric
fields, and compared the results with full wave numerical sim-
ulations. We discussed how the problem of scattering of plane
waves by a “slab” of crossed wires must be homogenized.
We proved that when the air-metamaterial interfaces are ho-
mogenized, the average fields in the artificial structure cannot
be identified with those of the unbounded crystal. We derived
the correct expression for the homogenized fields. We com-
pared the results obtained with the proposed analytical model
and full wave numerical results, with excellent agreement.
We proved that our model is accurate for both polarizations,
for normal incidence and wide incident angles, for different

host materials, and also for both thin and thick structures.
It is remarkable that even for 1-cell thick structures, the an-
alytical model accurately predicts the amplitude and phase
of the reflection and transmission coefficients (including the
cross-polarization). We have shown that at least for this par-
ticular structure it is possible to characterize the scattering by
thin screens directly from the effective parameters of the bulk
artificial material.

We hope that the presented theory may contribute to a more
profound understanding of the fundamentals of the homoge-
nization theory of surfaces, which will certainly be an important
tool for characterizing and designing emerging metamaterials
and complex surfaces. The generalization of the proposed for-
malism to other planar structures with a single inclusion in
the unit cell seems to be relatively straightforward, provided
the effective parameters of the associated bulk material are
known or can be computed.

APPENDIX

In this Appendix, we calculate the dyadic , defined by (34),
in closed analytical form. To begin with, we note that from (29b)
we can write

(A1)

where and . We
introduce the auxiliary scalar function

(A2)

It can be easily verified from the previous formulas that the
dyadic can be written as

(A3)
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So, all we have to do is to evaluate (A2). To this end, we use the
Poisson summation formula [18] to transform (A2) into a sum
in the spectral domain. In this way, we obtain

(A4)

The above series can be summed in closed analytical form. In-
deed, assuming that , it can be rewritten as a sum of two
geometrical series. We obtain

(A5)

In the previous formula, the sum with index “ ” stands for the
sum of two terms, one with “ ” sign and other with the “ ”
sign. We stress that (A5) is valid only for . However,
from the definition (A2), is a pseudo-periodic function
with wave number . More specifically, is
a periodic function of . Thus, it is clear that (A5) can be used
to evaluate in an arbitrary point of space, making use
first of the pseudo-periodicity to reduce the point to the unit cell

.
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