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A Hybrid Method for the Efficient Calculation of
the Band Structure of 3-D Metallic Crystals
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Abstract—In this paper, we propose a new hybrid method to
characterize the band structure of three-dimensional metallic crys-
tals. We formulate an auxiliary problem that has the same spec-
trum as the metallic crystal. We prove that the spectrum of the aux-
iliary problem can be efficiently computed using the plane-wave
method and the method of moments. Thus, the band structure of
the metallic crystal can also be efficiently calculated. Our approach
is much more effective than root-searching methods, because all of
the eigenvalues are obtained at once and degenerate cases pose no
difficulty. This is a generalization of a previously proposed method
for two-dimensional structures.

Index Terms—Electromagnetic bandgap materials, homogeniza-
tion theory, metamaterials, photonic crystals.

I. INTRODUCTION

I N RECENT years, the propagation of electromagnetic
waves in periodic dielectric/metallic structures has received

great attention [1]. A variety of potential applications to many
scientific areas and engineering have been suggested. Examples
include inhibition of spontaneous emission in semiconductor
lasers [2], high-impedance surfaces [3], exotic materials with
negative permittivity and permeability [4], improvement of
the radiation characteristic of antennas [5], and synthesis of
waveguide filters [6].

The analysis of periodic structures is thus a problem of
increasing importance. However, it is in general a difficult
problem because it involves the analysis of electrically large
complex structures, which is computationally demanding.
The calculation of the band structure of a periodic medium
is no exception. The problem involves the calculation of the
eigenvalues of a differential operator. Several methods have
been developed for the effect, e.g., the plane-wave method
[1], the order- method [7], and the transfer matrix method
(TMM) [8].

Recently [9], [10], the authors of this paper proposed a new
hybrid plane-wave-integral-equation-based method to compute
the band structure of periodic media with cylindrical inclusions
(two-dimensional (2-D) problem). In this paper, we generalize
the method to the three-dimensional (3-D) case.
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As discussed in detail in [11] and [12], the discontinuities
of the electric permittivity at the dielectric interfaces cause the
standard plane wave to converge slowly. Indeed, the plane-wave
expansions of the pertinent physical quantities fluctuate in-
tensely around the dielectric interfaces in a manifestation of the
well-known Gibbs phenomenon. Consequently, a very large
number of plane waves may be required for the accurate compu-
tation of the band structure of a dielectric crystal. In some cases,
the computational resources may be insufficient to reach conver-
gence [12], [13]. In the nondispersive metallic case, in which the
inclusions are perfect electric conductors (PECs), the situation is
particularly acute. Indeed, this case can be regarded as the limit
situation of a dielectric crystal with infinite dielectric contrast.
This configuration precludes the convergence of the standard
plane-wave method, which is not applicable in the metallic case.
To circumvent this situation, the authors of this paper proposed
in [9] a regularization procedure for the eigenfunctions of the
metallic crystal. The regularization procedure is also partially
related with the boundary integral resonant method utilized in
[14] and [15] to determine the resonant modes of metallic waveg-
uides and cavities. We proposed an auxiliary integral-differential
problem with the same band structure as the metallic crystal. It
was proven that the eigenfunctions of the auxiliary problem are
much smoother than the electromagnetic modes of the metallic
crystal, and thus that the plane-wave method was suitable to
compute the band structure of the auxiliary problem (which is
coincident with that of the metallic crystal) very efficiently. The
analysis of [9], however, is limited to the 2-D case in which the
inclusions are metallic cylinders with arbitrary cross section. In
this paper, we extend the proposed formalism to compute the
band structure of 3-D metallic crystals. The generalization is
far from trivial since the vector nature of radiation introduces
considerable difficulties. Indeed, apart from the philosophy
of the method that seeks to improve the regularity of the
electromagnetic fields using layer potentials, the formulation
and results are significantly different. The formulation for the
dielectric case will be presented elsewhere [10].

The outline of this paper is as follows. In Section II, we
present the formulation and describe the geometry of the
problem. In Section III, we prove that the band structure of
the metallic crystal is coincident with that of an auxiliary
integral-differential eigensystem. In Section IV, we explain
how the integral-differential is discretized numerically using
the plane-wave method and the method of moments (MoM)
and how the spectrum of the metallic crystal can be efficiently
computed numerically. In Section V, we present several numer-
ical examples that illustrate the application of the method, and
in Section VI we draw the conclusions.
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Fig. 1. Geometry of the unit cell associated with the metallic inclusionD.

II. FORMULATION

We study the propagation of electromagnetic waves in
metallic media with arbitrary inclusion shapes. The artificial
medium consists of a 3-D periodic array of PEC metallic
inclusions embedded into a host dielectric material. We assume
without loss of generality that the host medium is air.

The lattice primitive vectors are , and . The unit cell
is depicted in Fig. 1 for the case of the primitive vectors

being orthogonal. The metallic region in the unit cell is and
the boundary of is the surface . The outward unit vector
normal to is . The translation of into the lattice point

is , where is a
multi-index of integers.

The objective is to characterize the electromagnetic Floquet
modes of the metallic crystal. A generic mode satisfies
the following:

(1a)

(1b)

on (1c)

is periodic (1d)

where is the wave vector, is the impedance
of the host medium, is the free-space wavenumber,
is the angular frequency, and is the velocity of light in vacuum.
Equations (1a) and (1b) are the frequency-dependent Maxwell’s
equations, (1c) is the boundary condition at the metallic inter-
faces, and (1d) is the Floquet wave condition.

For a given wave vector , system (1) has nontrivial solu-
tions for a countable set of resonant wavenumbers. The reso-
nant wavenumbers form the band
structure of the metallic crystal. In this paper, we generalize the
hybrid method proposed in [9] to the 3-D case, and we compute
the band structure of several relevant metallic crystals.

To begin with, it is important to discuss some properties of
the Floquet eigenfunctions that satisfy (1). The eigenfunctions
of system (1) are assumed to be defined in all space. Indeed,
the mathematical formulation inherently assumes that the inclu-
sions are hollow. From the physical point-of-view, this is irrel-
evant, since a perfect conductor completely isolates the interior
and exterior of the inclusions. The tangential component of the
electric field vanishes at both sides of the metallic interfaces.
The electromagnetic modes relevant to describe propagation in
the metallic crystal are such that inside the
PEC inclusions (external solutions). Indeed, the propagation of

electromagnetic waves in the metallic crystal is mathematically
an exterior problem.

The eigensystem (1) has solutions that are not external. It is
easy toprove that thesolutionsof (1)canbewrittenasadirect sum
of external modes and internal modes. The external modes vanish
inside the inclusions and correspond to the Floquet modes of the
metallic crystal. On the other hand, the internal modes vanishout-
side the inclusions and correspond to the electromagnetic modes
of a metallic cavity with the same shape as a generic inclusion.
The internal modes must be removed from the spectrum of (1).

The internal modes can be easily detected since the associ-
ated bands are flat (dispersionless, i.e., independent of the wave
vector). Alternatively, we can recognize if a given eigenvalue
of (1) is associated with an internal mode by testing if the cor-
responding eigenfunction verifies inside the
metallic inclusions. Since the discussion is analogous to that of
[9], we omit further details here. We merely point out that, in
the important case in which the metallic inclusions can be con-
sidered infinitesimally thin (e.g., planar inclusions), there are no
internal modes. In that situation, the band structure of (1) coin-
cides exactly with the spectrum of the metallic crystal.

III. INTEGRAL-DIFFERENTIAL EIGENSYSTEM

In this section, we introduce an auxiliary integral-differential
eigensystem that is equivalent to the eigensystem (1) (i.e., both
systems have the same band structure). The important difference
between the two problems relates to the regularity of the respec-
tive eigenfunctions. Indeed, the normal component of the elec-
tric field and the tangential component of the magnetic field have
jump discontinuities at the metallic interfaces and, thus, the elec-
tromagnetic modes of the metallic crystal are discontinuous. In
contrast, the solutions of the auxiliary eigensystem are smooth
functions. In Section IV, we explain how to take advantage of
this fact to compute very efficiently the band structure of metallic
crystals. The proof of the results enunciated in this section was
moved to Appendix B to ease the readability of the paper.

The integral-differential eigensystem is defined by the fol-
lowing set of coupled equations:

(2a)

(2b)

(2c)

is periodic (2d)
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A generic eigenfunction is represented by the pair ,
where is a Floquet vector field defined over all space and is
a tangential vector density defined over surface (ahead we
shall see that can be related with a current density). Equation
(2c) must hold for an arbitrary tangential density de-
fined over . In (2), the symbol “*” stands for complex conju-
gation, and represents the surface divergence of a tangential
vector field.

The potentials and are the pseudoperi-
odic Green’s functions introduced next. As usual, the primed
coordinates refer to a generic source point.
The potential is the Floquet solution of the following equa-
tion:

(3)

where is a multi-index of integers, and
is generic lattice point. We refer to as

the lattice Green’s function [16]–[18]. On the other hand, the
Green’s function is the Floquet solution of

(4)

Both Green’s functions are Floquet potentials with wave vector
. The Green’s functions can be efficiently evaluated using the

formulas presented in Appendix A.
For a given wave vector , (2) is a homogeneous problem and

thus has nontrivial solutions only for specific resonant
wavenumbers , As proven in Ap-
pendix B, the vector field is smooth everywhere since it has
continuous derivatives up to order two in all space, including on
the metallic interfaces. We also prove in Appendix B that the
eigenvalues of (2) are coincident with those of system (1). In-
deed, there is a one-to-one mapping between the eigenfunctions
of (1) (represented by the vector field ) and the eigenfunctions
of (2) (represented by the pair ). The mapping
is defined by the following equations:

(5)

(6)

In the above, , where and refer to
the magnetic field H calculated from the outer side and from
the inner side of , respectively. Thus, the tangential vector
is proportional to the electric current over the metallic surface

. The inverse mapping is obtained from (6) by
rearranging the terms.

IV. NUMERICAL SOLUTION OF THE

INTEGRAL-DIFFERENTIAL EIGENSYSTEM

In the following, we discretize the integral-differential eigen-
system (2) and explain how it can be solved numerically.

A. Discretization of the Eigensystem

The objective of this section is to reduce (2) into the matrix
form. Since the auxiliary field is a smooth vector field with
continuous derivatives up to order 2 in all space, it is appropriate
to expand it into a fast converging plane-wave series. From (2b),
the vector field is transverse, and thus it can be expanded into
transverse plane waves as follows:

(7)

where is an arbitrary multi-index of integers that
identifies the wave vector of the plane wave, identifies
the polarization of the plane wave, and are the unknown
coefficients of the plane-wave expansion, and the fields
and are defined by

(8a)

(8b)

where and are real vectors that define the polarization of
, and is the plane wave as follows:

(9)
where denotes the volume of the unit cell
and , and are the primitive vectors of the reciprocal
lattice defined by [1], where

if and otherwise.
For convenience, we define the following scalar product over

the unit cell:

(10)

where and stand for generic vector fields.
We substitute (7) into (2a) and calculate the scalar product of

both sides of the resulting equation with the generic plane wave
. Since plane waves with different indexes are orthonormal,

we obtain

(11)
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Integrating by parts and using the fact that and are Floquet
waves associated with the wave vector , we find

(12)

The rightmost identity is a consequence of the plane wave being
transverse, i.e., .

On the other hand, from the spectral representation of the
lattice Green’s function (A1), we obtain

(13)

Thus, (11) simplifies to

(14)

To keep the notation short, we define the following scalar
product over :

(15)

where and are generic vector fields. Using this definition,
we can rewrite (14) as

arbitrary

(16)

The above concludes the discretization of (2a).
Next, we discretize (2c) using the MoM. To this end, we ex-

pand the tangential density as follows:

(17)

where is a generic expansion function (a tangential vector
field), and is the corresponding expansion coefficient.

We remind the readers that in (2c) the test density is an
arbitrary tangential vector field. For simplicity, we admit that
the test functions are equal to the expansion functions. Thus,
we replace in (2c) by the expansion function . We obtain

arbitrary (18)

where is the scalar product over , and and
are the following sesquilinear forms:

(19)

where and are generic vector fields and

(20)

where and are generic scalar functions defined over .
In Appendix C, we prove that the sesquilinear forms have her-
mitian symmetry and that is a scalar product.

Substituting (7) and (17) into (16) and (18), we obtain the
discretized form of the eigensystem (2) as follows:

(21a)

(21b)

where is an arbitrary multi-index, , and is arbitrary.
The above equations form a generalized matrix eigensystem

[20]. The eigenvalues are , and the eigenvectors correspond
to the coefficients , and of the expansions (7) and (17).
As discussed in Section III, the eigenvalues coincide with the
resonant wavenumbers of (1).

Next we rewrite (21) in a matrix form. To this end, we define
the matrices

, and as follows:

(22)

(23)

(24)

(25)

We also define the following vectors: ,
and . It is clear that (21) is equivalent to the following
generalized matrix eigensystem:

(26)

where stands for the Hermitian conjugate of
.
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The two matrices in (26) are self-adjoint. Indeed, is real
and diagonal, and, since the sesquilinear forms are Hermitian
symmetric, the matrices and are also self-adjoint, i.e.,

and .

B. Solution of the Generalized Eigensystem

In this section, we explain how the generalized eigensystem
(26) is solved numerically. To begin with, we note that matrix

is nonnegative as follows:

arbitrary (27)

Indeed, from (23) we have

arbitrary (28)

The rightmost identity is a consequence of the sesquilinear form
being a scalar product (see Appendix C). Thus, it is clear that

if and only if . This condition
does not imply . In fact, the functions are in general
linearly dependent, in spite of the vector fields being linearly
independent. We conclude thus that in general is degenerate,
i.e., there is some vector such that .

A consequence of matrix being degenerate is that it is
not invertible. In particular, it follows that the matrix on the
right-hand side of (26) is not invertible. This situation precludes
the generalized eigensystem to be transformed into a standard
eigenvalue problem.

To circumvent this drawback, we proceed as follows. So far,
the expansion functions were assumed to be arbitrary tangen-
tial fields. We admit hereafter that the expansion functions can
be split into two sets. The functions in the first subset,

are such that form a linearly independent set.
The functions in the second subset, are such
that their surface divergence vanishes, i.e., . Obvi-
ously, the set of all functions must be complete. An appropriate
choice for the expansion functions is

(29)

where is the surface gradient and
form a basis for the scalar functions over .

From the previous considerations, (17) becomes

(30)

Vector is split into . In the same way, the
matrices , and are now written as

(31)

The submatrix is defined as
[compare with (23)]

(32)

The other submatrices are defined similarly. From the properties
of the expansion functions, it is clear that

and that is positive definite. Moreover, and are
self-adjoint, , and is positive definite.

From the previous considerations, we conclude that (26) can
be rewritten as

(33)

The last line of the matrix on the right-hand side of the above
equation identically vanishes. As is invertible (because it is
positive definite), the subvector can be written as a function
of , and . Replacing in the remaining equa-
tions of the above system, we conclude that

(34)

where matrix is given by

(35)

The matrices in (34) are self-adjoint. Moreover, the matrix
on the right-hand side is positive definite and thus invertible.
Hence, the eigensystem (34) can be transformed into a standard
eigenvalue problem. The eigenvalues are and correspond
to the resonant wavenumbers of (1).

The inversion of the positive definite matrix in (34) breaks the
Hermitian symmetry of the system. This is undesirable because
the numerical computation of the spectrum of a self-adjoint ma-
trix is much more efficient than the computation of the spectrum
of a generic matrix. To avoid losing the Hermitian symmetry of
the system, we can alternatively factorize the right-hand-side
matrix using the Cholesky algorithm and then proceed as ex-
plained in [20].

We have thus proven that the calculation of the band struc-
ture of a metallic crystal can be reduced into a standard ma-
trix eigenvalue problem. Due to the smoothness of the vector
field , the plane-wave expansion (7) converges fast, and only
a few terms are needed to obtain very accurate results for the
first few bands. Under these circumstances, most of the compu-
tational effort is related to the calculation of the matrix entries



894 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 52, NO. 3, MARCH 2004

Fig. 2. Band structure of a simple cubic lattice of nearly touching metallic
spheres embedded in air. The �-points correspond to data extracted from [21].
The points �; X;M , and R are defined as usual [21].

in (34). This computational effort is comparable to that required
for characterizing a single metallic inclusion using the MoM.

V. NUMERICAL EXAMPLES

The objective of this section is to validate the proposed
method and discuss its efficiency and computation time. We
investigate propagation in media with sphere- and disk-type
inclusions, media with wire inclusions (long thin dipoles and
the 3-D wire medium), and left-handed media (two different
structures similar to Smith’s original configuration [4]).

A. Media With Spherical Inclusions

In order to validate the method, we study the propagation of
electromagnetic waves in a structure that consists of an array of
metallic spheres arranged into a simple cubic lattice. The lat-
tice constant is mm and the diameter of the spheres
is mm. In [21], the band structure of this metallic
crystal was computed numerically using a multiple scattering
technique (which involves the computation of the zeros of a non-
linear equation). The comparison of numerical data and experi-
mental results is also presented in [21].

We computed the band structure of the same artificial material
using the hybrid method proposed in this paper. We expanded
the unknown surface current in vector spherical harmonics [19,
p. 170] (the scalar functions in (29) are taken to be equal to
spherical harmonics ; we considered that in the simu-
lations, i.e., 70 vector functions). The auxiliary field is expanded
into 686 plane waves. The computation time is about 5 min for
each wave vector on a standard personal computer (Pentium III
800 MHz). Most of the computation time is spent assembling the

and matrices; in [21], the computation time is not given.
In Fig. 2, we show our results superimposed on data extracted

from ([21, Fig. 1]) (the -points; the frequency range of the re-
sults of [21] is limited to GHz). The agreement is
very good. Note that the considered test example is extremely
demanding because the metallic spheres nearly touch and so the
induced current has strong variations over the inclusion’s sur-
face (this is why we had to consider so many expansion func-
tions). There is a complete bandgap between the second and
third bands [21].

As depicted in Fig. 2, there is a flat band around
GHz (indeed it is a triply degenerate flat band). This

flat band corresponds to the lowest frequency of resonance of
the spherical cavity. It occurs at the free-space wavenumber

, where is the radius of the spheres [22,
p. 385] (this frequency is the zero of an equation involving
spherical Bessel functions). Thus, theoretically, the lowest
(internal) frequency of resonance for the considered spherical
inclusions is GHz. This value agrees very well
with the one obtained from our numerical computations (the
error is 0.05%). This further validates the proposed method.
As discussed in Section II, the internal resonant frequencies do
not belong to the band structure of the periodic medium and
thus must be removed. We did not remove these bands merely
to illustrate that they can be easily detected in the computed
results by direct inspection. Alternatively, a scheme analogous
to that described in our previous paper [9] can be implemented.
We stress that, if the volume fraction of the inclusions is
not too high, the internal resonant frequencies of the associated
cavity do not interfere with the first few modes of the periodic
material.

We also obtained an excellent agreement in the long-wave-
length limit with the model described in [22, p. 763] for di-
lute mixtures (the effective index of refraction of the material
is written in terms of the electric and magnetic polarizabilities
of a sphere and using an interaction constant; the exact value for
the interaction constant is [18]). Indeed, for the volume
fraction %, we obtained from the slope of the disper-
sion characteristic at the -point that (using
250 plane waves and 6 expansion functions for the surface cur-
rent), whereas the result predicted by the formulation of [22] is

.

B. Media With Finite-Length Wire Inclusions

In this section, we characterize the propagation of electro-
magnetic waves in the so-called wire medium. The inclusions
are long, thin, straight metallic wires. The wire medium was
initially proposed in the artificial dielectric context [23], but
recently it was pointed out that its frequency-polarization-angle
selective properties might find other interesting applications
[24].

In [23], the periodic MoM is utilized to determine the effec-
tive permittivity of the wire medium. The dispersion character-
istic of the artificial medium is determined by setting the de-
terminant of an impedance matrix to zero (i.e., the problem is
reduced to finding the zeros of a nonlinear equation). In [24],
an approximate periodically loaded transmission-line model is
used to characterize the wire medium.

The numerical results presented here were obtained by
solving (34) using the thin-wire approximation. In this way,
we admit that electric current (which as referred before is
proportional to the vector density ) flows along the wires
and is constant in the cross section. We expand in triangular
subdomain functions ( is a triangular sub-
domain function; it vanishes at the ends of the wire). Within
the thin-wire approximation, the splitting of the expansion
functions described in Section IV-B is not necessary because
the set is linearly independent. This situation does not
occur in the general case in which the variation of the current
in the cross section is not neglected.
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Fig. 3. Effective permittivity of the wire medium as a function of the
normalized wavelength, superimposed on results (�-points) extracted from
[23]. The geometry is described in the text.

We admit that the wires are arranged into an orthogonal lattice
and stand in air. The primitive vectors are

, and . A generic wire has length
and radius . The geometry of the unit cell is analogous to
that depicted in Fig. 1, with the wire axis oriented along the
direction.

We discretized the current density with 16 basis functions and
the auxiliary field with 125 plane waves. The typical compu-
tation time for each wave vector is about 1 min.

In order to validate the numerical implementation of the
method, we compute the effective permittivity of the wire
medium. We admit that the wire length is ,
the wire radius is , and . The relative
permittivity in the direction, , is computed from the
slope of the dispersion characteristic in the segment of the
Brillouin zone [1], where is the origin and .
The calculated results are depicted in Fig. 3. We superimposed
on our results data extracted from [23, Fig. 3]. The agreement
is satisfactory. The small discrepancy for long wavelengths is
probably due to the results of [23] having not reached conver-
gence. This is suggested by the variation of the permittivity
curves with the number of expansion functions in [23].

The calculated permittivity is almost insensitive to the
number of terms in the plane-wave expansion as we increase
the number of plane waves from 1 (with wave vector and
polarization parallel to the wires) up to 729. At least the first
digit after the decimal point in remains unchanged in such
a situation. This is due to the smoothness of the auxiliary field,
which ensures that the Fourier series converges quickly. The
error is larger for high frequencies. The described situation
clearly proves the efficiency of the proposed method. We note
that the standard plane-wave method (which only applies to the
dielectric case) does not have this property by any means. The
convergence of the plane-wave method may be very poor, even
in the static limit [25].

For long wavelengths, we obtained in excellent
agreement with the static homogenization method proposed by
the authors in [26]. For , the permittivity is practi-
cally independent of frequency. For , a bandgap

Fig. 4. Band structure for theE-polarized waves (125 plane waves: solid line;
729 plane waves: dashed line). The geometry is described in the text.

emerges, and the permittivity becomes complex. A good esti-
mate for the frequency range where the homogenization results
apply is [26].

It can be easily verified that within the thin-wire approx-
imation the plane waves with polarization normal to the
wires ( -polarized waves) propagate undisturbed in the wire
medium. The -polarized plane waves are thus Floquet modes
in the wire medium. We name the remaining Floquet modes
as “ -polarized modes.” The results presented in this section
refer exclusively to the -polarized modes. Based on the
free-space case, we expect that the minimum number of plane
waves required for computing the first bands of the

-polarized modes is approximately (we remove
the -polarized waves from the plane-wave expansion, and for
simplicity we consider that the sum range in (7) is the same
in the indexes , and ). Thus, to calculate the first five
bands, we need at least 125 plane waves.

In Fig. 4, we depict the band structure calculated with
125 plane waves (solid line) superimposed on the band
structure calculated with 729 plane waves (dashed line).
The inset of the figure represents the Brillouin zone,
and , and

.
As seen in Fig. 4, there is practically no difference between

the solid line and dashed line results. Only in the fourth band
is some discrepancy perceptible. The results illustrate that the
proposed method allows calculating the dispersion character-
istic of artificial materials accurately, with a number of plane
waves very close to the minimum.

The dispersion characteristic along the segments and
shows that the wire medium has large bandgaps for

the considered polarization, and propagation in the
plane (normal to the wires). The first bandgap is defined by

. Along the direction (i.e., along
the wires), there is no bandgap since the free-space plane waves
propagate undisturbed.

C. 3-D Wire Medium

In this section, we investigate the propagation characteristics
in the 3-D wire structure depicted in Fig. 5. This structure con-
sists of an array of metallic wires with infinite length. The wires
are oriented along the coordinates axes and form a simple cubic
lattice with lattice constant (the lattice constant is the smallest
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Fig. 5. Geometry of the 3-D wire medium.

distance between parallel wires; we consider that the distance
between adjacent perpendicular wires is half-lattice constant).

The characterization of the 3-D wire medium is important
because apparently it behaves as an ideal isotropic material with
negative permittivity in the long-wavelength limit [27]. This has
important applications in the left-handed media context [4], [29]
(see Section V-D).

It is commonly accepted [4] that for long wavelengths the
wire medium can be described by the (relative) effective per-
mittivity , where and is the
plasma frequency. However, recent results [28] suggest that this
model may insufficient to describe the electrodynamics of the
3-D wire medium. Indeed, in [28] it was proven that the one-di-
mensional (1-D) wire medium is characterized by strong spatial
dispersion in the long-wavelength limit (i.e., the permittivity de-
pends explicitly on the wave vector). The 1-D wire medium is
a metamaterial in which the wires are all oriented in the same
direction. In [28], it was proven that ,
where is the component of the permittivity dyadic along the
direction of the wires (the permittivity dyadic evaluates to unity
in the transverse directions).

The objective of this section is to assess numerically if the
classic plasma model describes accurately the wave propagation
in the 3-D wire medium. To our best knowledge, the unique
band structure analysis of the 3-D wire medium published in
the literature is based on experimental data [27] (the topology
of the structure described in [27] is slightly different from the
one considered here).

We applied the method proposed in this paper to compute the
dispersion characteristic of the 3-D wire medium. We used the
thin-wire approximation described in the previous section. The
surface current over the three wire sections in the unit cell was
expanded into 15 expansion functions (the current over each
wire is now a Floquet wave). The wire radius is .
We restrict our attention to wave propagation in the
plane. In the simulations, we assume that the wave vector is
of the form with . We
computed the resonant frequencies of the 3-D wire medium as a
function of the angle (which defines the direction of the wave
vector). We are interested uniquely in the long-wavelength limit.
The simulation results show that in the long-wavelength limit
there are five relevant electromagnetic modes. Two electromag-
netic modes propagate only at frequencies much smaller than
the plasma frequency of the metamaterial. The study of these
two modes is beyond the scope of the present paper and will be

Fig. 6. Normalized wavenumber for the plasma bands as a function of the
' angle. The solid lines correspond to numerical results and the dashed lines
correspond to the theoretical model discussed in the text.

discussed elsewhere. Near the plasma frequency, the simulation
results show that three distinct electromagnetic modes propa-
gate. The dispersion characteristic of these three modes is de-
picted in Fig. 6 as a function of the angle (solid line curves).

It is now appropriate to compare the numerical results with
the standard plasma model. As is well known [1, p. 162], the
plasma model predicts that the electromagnetic modes are trans-
verse electromagnetic with the dispersion characteristic

. There is also a dispersionless band associated
with longitudinal modes [1]. Thus, since we considered that
was constant, the computed dispersion characteristic should be
flat. As seen in Fig. 6, only the second band is flat, and it actu-
ally compares very well with , which is shown as a dashed
line in Fig. 6 (the plasma frequency was computed, as explained
in [28] and is approximately ). Why is there a dis-
crepancy in the other bands?

Based on the results of [28], it seems reasonable to assume
(provided the orthogonal wires do not interact significantly)
that the permittivity dyadic in the 3-D wire medium is diagonal
and evaluates to in the direction.
We investigated if this theoretical model does describe the
electrodynamics of the 3-D wire medium. To this end, we
inserted the permittivity dyadic in the well-known dispersion
model for electromagnetic waves in anisotropic media [22,
p. 202], and then we solved the equation in the vicinity of

(we calculated the first term of the Taylor series
of the solutions in powers of ). Assuming that ,
we found that the theoretical model predicts the existence of
three electromagnetic modes near the plasma frequency. The
theoretical dispersion characteristic of the modes is

, and
. In Fig. 6 we depict the results predicted by the theoretical

model (dashed lines) superimposed on the numerical data. The
agreement is excellent, and thus it seems that the proposed
model accurately describes the 3-D wire medium.

We have also computed the polarization of the average
fields numerically (we calculated the eigenfunctions of the
eigensystem (1); the eigenfunctions were averaged over the
unit cell). The polarization of the mode with dispersion is
along the axis (the wave is transverse electromagnetic). On
the other hand, the polarization of the mode with dispersion
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Fig. 7. (a) Dispersion characteristic of the SRRs (solid line) and SRRs + wires (dashed line). (b) Geometry of the crystal and of the SRR particle.

is roughly independent of the wave vector direction:
. Note that the described results assume

always that . It can be proven that the results are
consistent with proposed permittivity model. In the particular
case in which the wave vector is along a coordinate axis,
the three electromagnetic modes are degenerate. Two modes
can be taken as transverse, and a third mode can be taken as
longitudinal (the existence of a longitudinal mode was also
suggested in [27] based on experimental data). From the results
described here, it is apparent that the propagation in the wire
medium is much more intricate than it was thought and that
there is no isotropy near the plasma frequency. This new result
may have important consequences in the left-handed media
context. A detailed study of the wave propagation in the 3-D
wire medium, together with an analytical proof that further
justifies the proposed permittivity model, will be presented
elsewhere.

D. Left-Handed Media

In recent years, the study of periodic structures in the long-
wavelength limit regained interest after the extraordinary break-
through that it is possible to synthesize a material having simul-
taneously negative permittivity and permeability over a certain
frequency band [4]. These materials are known as left-handed or
double negative materials, and their unconventional electrody-
namics were investigated a long time before they were actually
discovered [29]. In this section, we characterize artificial mate-
rials with a topology equivalent to that described in [4] and [30]
and briefly discuss bianisotropic effects.

In the first example, the unit cell contains a wire section and a
split-ring resonator (SRR), as illustrated in Fig. 7(b). The radius
of the wire is , which corresponds to the plasma
normalized frequency . The periodic structure
resembles that of Smith et al.’s [4]. The main difference is that
to ease the numerical implementation we considered that the
SRR consists of two concentric tori instead of planar rings. The
tori geometry is shown in Fig. 7(b). The radii of the inner and
exterior tori are consistent with the (half-width) radii of the rings
in [4] ( and ). The gapwidths

and are not specified in [4] and
so may not agree with our choices. The tori cross section is

characterized by the radius (the diameter of the
cross section is the same as the width of the rings in [4]).

We assume propagation in the direction indicated in Fig. 7(b).
We computed the dispersion characteristic of the metamaterial
first without the wires (solid line) and then with the wires and
the SRR particles (dashed line). The result for the relevant elec-
tromagnetic mode is depicted in Fig. 7(a).

Our results are qualitatively equivalent to those described in
[4]. When the wires are added to the crystal, a new band emerges
in a frequency region previously forbidden (where the SRR par-
ticles see a negative permeability). The slope of the dispersion
characteristic shows that the composite medium is character-
ized by left-handed behavior. The lower edge of the new band
corresponds to the free-space wavelength . The cor-
responding value for the SRR particle considered in [4] is

.
As seen in Fig. 7, the new band does not completely occupy the

bandgap of the SRR crystal. In [30], it was shown that this effect
can be explained in terms of the bianisotropy of the SRR particle.
To avoid bianisotropy, a modification of the standard SRR was
proposed in [30] (the modified split-ring resonator (MSRR) par-
ticle). This particle consists of two parallel rings with the same
radius (as before, each ring has a gap and the gaps are rotated by
180 ). Based on analytical results, it was predicted that a crystal
with wires and MSRR particles has left-handed behavior and no
bianisotropy. Thus, within this model, the dispersion character-
istic of a medium with wires and MSRR particles occupies com-
pletely the bandgap of the crystal without wires.

We tried to assess numerically the validity of the theory de-
scribed above. As before, we modeled each ring with a torus
section. The dimensions of the two rings are same as the di-
mension of the exterior ring in the previous example. The dis-
tance between the tori is . The computed dispersion
characteristic is depicted in Fig. 8. As predicted by Marqués et
al. [30], the gap is now completely occupied by the dispersion
characteristic of the composite structure. The lower edge of the
new band occurs now at . We have also computed
the average electromagnetic fields, and using that information
we were able to further verify that the first structure discussed
in this section suffers from bianisotropic effects, whereas the
second does not. The results and a more detailed discussion will
be presented elsewhere.
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Fig. 8. Dispersion characteristic of the MSRR (solid line) and MSRR+ wires
(dashed line). The inset of the figure illustrates the geometry of the crystal.

E. Media With Disk-Type Inclusions

The disk-type medium consists of a 3-D array of metallic
disks with radius . The thickness of the disks is assumed to
be negligible. The filtering properties of the disk-type material
were used in [6] to design monolithic waveguide filters. In this
paper, we study the bandgap width as a function of the lattice
parameters for normal incidence.

Before that, we present experimental data that further vali-
dates the hybrid method presented in this work. We fabricated a
sample of the disk-type material with cross section

mm mm and length mm. The sample con-
sists of 10 layers of disks. Each layer consists of an 8 4 rectan-
gular array of metallic disks imprinted on a dielectric slab with
relative permittivity (RT/Duroid). The area frac-
tion of the disks (relative to the cross section of the sample) is
44.1%. The sample is inserted into an -band rectangular wave-
guide terminated in a short circuit (the sample completely fills
the waveguide cross section). The geometry is similar to the one
considered in [6].

From frequency swept waveguide measurements, we ob-
tained the reflection coefficient at the air-sample plane (the
sample is illuminated with the fundamental mode).
The frequency span was 8–10 GHz. This frequency band
corresponds to , where is the radiation
wavelength in the host dielectric material (the experimental
procedure described here is only appropriate to characterize the
long-wavelength regime). The measured reflection coefficient
data can be used to obtain the dispersion characteristic of the ar-
tificial material. Indeed, we can assume to a first approximation
that the propagation in the sample is described by an unknown
propagation constant and by the transverse wave impedance

(the formula is obvious from the theory of
metallic waveguides [22]). The reflection coefficient at the
air-sample plane can be easily written in terms of the unknown

. Thus, from the experimental data, we can compute as a
function of the frequency. We compared the measured , with
the one calculated using the hybrid method (in the simulations
the medium is modeled as a crystal with primitive vectors such
that , and ; the wave vector is
of the form , the notation being evident). The

Fig. 9. Normalized longitudinal wave vector as a function of the normalized
host material wavelength (solid line: calculated results; dashed line:
experimental data).

results are depicted in Fig. 9. The agreement is good, except for
some irregular behavior in the measured data mainly related to
imperfections in the experimental setup.

We have also compared our simulation results with those
obtained using the transmission-line model described in [6]
and [22]. The transmission-line model allows characterizing
the bandgap properties of the structure, provided that the disk
area fraction is moderate and the disk planes are sufficiently
distant so that single-mode propagation can be assumed. We
found good agreement for the first few bands. The comparison
is not presented here for conciseness.

Unlike the transmission-line models presented in [6] and [22],
our full wave results allow characterizing the dispersion char-
acteristic of the artificial material for closely packed disks and
large radii. As discussed in [6], these configurations have very
good filtering properties. In the rest of this section, we inves-
tigate numerically how the bandgap is affected by the distance
between the disk planes.

We consider that the disk area fraction is 50%. In each layer,
the disks are arranged into a square lattice with lattice constant

. The distance between adjacent disk planes is . We study
two distinct configurations: either the disk planes are aligned or
alternatively the disks are shifted by a half lattice constant (in
this case, ).

The electric current over the disk surface is expanded using
Chebyshev polynomials (radial coordinate) and complex expo-
nentials (angular coordinate). The boundary edge singularity of
the current is taken explicitly into account to improve the con-
vergence rate of the method. The details of the implementation
and an appropriate splitting basis are described in [18]. The re-
sults presented here were obtained with 250 plane waves and
42 expansion functions. The computation time for each wave
vector is approximately 2 min. Since the inclusions are planar,
the structure has no internal resonant frequencies (thus, no flat
bands occur in the calculated band structure).

We computed the bandgap between the second and third
bands for normal incidence (i.e., propagation is along the
direction normal to the disks or, equivalently, the wave vector
is restricted to the segment of the Brillouin zone). The
corresponding gap–midgap ratio, defined as the quotient be-
tween the bandgap width and the center frequency, is depicted
in Fig. 10 as a function of the normalized distance .
The gap–midgap ratio increases as the disk planes are brought
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Fig. 10. Gap–midgap ratio as a function of the normalized disk-plane distance
for normal incidence (solid line: aligned planes; dashed line: shifted planes). The
disk-area fraction is 50%.

together, provided that . For smaller distances, the
gap–midgap ratio decreases quickly down to zero.

For , the gap–midgap ratio is practically inde-
pendent of the relative position of the disk planes. For smaller
distances, the gap–midgap ratio for aligned disk planes is larger
than that for shifted disk planes. Thus, the aligned disk-plane
configuration favors the band-gap opening in the normal direc-
tion. The results predict that the optimal distance for a large
bandgap is . In general, both the low– and high-fre-
quency limits of the bandgap increase as the disk planes are
brought together. The upper edge of the bandgap can be esti-
mated using the formula (the formula is very accu-
rate for ). The optimal distance decreases slowly
with the disk area.

VI. CONCLUSION

In this paper, we extended the hybrid method proposed in [9]
to the 3-D metallic case. The 3-D case is much more elaborate
because the vector nature of radiation complicates considerably
the smoothing of the electromagnetic fields with layer poten-
tials. We have proven that the band structure problem is equiv-
alent to an auxiliary integral-differential eigensystem that can
be conveniently solved using the plane-wave method and the
MoM. Unlike other root-searching-based methods proposed in
the literature [21], [23], our formalism reduces the problem to
a standard matrix eigensystem. This approach is much more ef-
fective, since for one side all of the eigenvalues are obtained at
once, and on the other side there is no possibility of missing so-
lutions. Numerical results and computation time show that the
method is very efficient and thus may contribute to the charac-
terization of emerging artificial materials. Most of the numer-
ical effort is related to the assembly of the MoM matrix. We
stress that the standard plane-wave method cannot, to the best
of our knowledge, be directly applied to dispersionless metallic
structures, and so we believe that our method is an important
contribution to redeem that shortcoming. To illustrate the appli-
cation of the developed formalism, we investigated wave prop-
agation in several relevant periodic structures, which include
disk-, wire-, and sphere-type media and metamaterials that ex-
hibit left-handed behavior. The validity of the plasma model in
the 3-D wire medium and the role of bianisotropy in left-handed

materials were discussed. We also studied the variation of the
bandgap width with lattice parameters in the disk-type medium.
The method was extensively validated against the open litera-
ture and with experimental data.

APPENDIX A

Here, we explain how the Green’s functions introduced in
Section III can be efficiently calculated. The solution of (3) (the
lattice Green’s function) has the following spectral representa-
tion [18]:

(A1)

where is the volume of the unit
cell, is a multi-index of integers, and ,
and are the reciprocal lattice primitive vectors. The above
representation converges slowly and is of very limited interest
in the numerical evaluation of the Green’s function. A more
preferable representation for the Green’s function is the mixed-
domain representation proposed by the authors in [16] (which
is coincident with that of [17] for the case considered here). The
result is

(A2)

where is the error function, ,
and . The symbols and stand for
a generic triple-index. The parameter is an arbitrary positive
constant that defines the relative convergence rate of the spa-
tial-like parcel (the sum with index ) and the spectral-like parcel
(the sum with index ). A good choice for the parameter, which
ensures a similar convergence rate for the spatial-like and spec-
tral-like sums, is . The mixed-domain represen-
tation has, irrespective of the observation point, Gaussian con-
vergence. Therefore, it has an excellent convergence rate. Alter-
native representations for the Green’s function and a more com-
plete discussion on this topic can be found in [16] and [18].

The spectral representation of the Green’s function , the
solution of (4), is given by

(A3)

This result can be verified by direct substitution in (4) using
(A1). Again the spectral representation converges slowly and is
not appropriate for the numerical evaluation of . Next we ob-
tain an alternative mixed-domain representation for the Green’s
function with Gaussian convergence rate. More specifically, we
propose a solution of the form

(A4)
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where is some function to be determined and
. Inserting the above formula into (4) and comparing with

(A2), it is clear that must satisfy

(A5)

The solution of (A5) is given by

(A6)

If we insert the above formula into (A4), the series with index
converges quickly, except for the term associated with the third
parcel in (A6). However from (A2), it is easy to verify that (see
also [16]–[18])

(A7)

Therefore, we conclude that can be calculated using the fol-
lowing mixed representation:

(A8)

The mixed representation has a Gaussian convergence rate irre-
spective of the relative position of the observation point in the
unit cell. As before, an appropriate choice for the parameter
is .

APPENDIX B

Here, we prove the equivalence between the original eigen-
system (1) and the integral-differential eigensystem (2).

To begin with, we prove that the mapping , de-
fined by (5) and (6), transforms solutions of (1) into solutions
of (2). Let represent a generic electromagnetic mode, i.e., a
solution of (1). The auxiliary field defined by (6) is contin-
uous over all space. Indeed, the second term on the right-hand
side of (6) is continuous because the vector potential has the
same regularity properties as in the free-space case [19, p. 59].
Similarly, the third term is also continuous because the singu-
larity of for is not as severe as that of . On the
other hand, the first term is clearly discontinuous because the
normal component of the electric field is discontinuous over the
metallic interfaces. Let , where and rep-
resent the electric field calculated from the outer side and from
the inner side of , respectively. Since the tangential compo-
nent of the electric field is continuous, we have that the “jump
discontinuity” at is . Finally, the fourth

term in (6) is also discontinuous because it has the same jump
discontinuity as the single layer potential in the free-space case
[19, p. 51]. We then have

(B1)

where the rectangular brackets represent as before the jump dis-
continuity of a vector field over the metallic interface, i.e., refer
to the vector inside brackets calculated from the outer side of
minus the vector calculated from the inner side of . However,
from (5), we have

(B2)

Hence, we conclude that the discontinuities of the first and
fourth parcels in (6) cancel out and the auxiliary field is
indeed continuous.

Equation (3) implies that for and
. Thus, from (6) and using (1) and (4), we find that for

(i.e., off the metallic interfaces)

(B3a)

(B3b)

To obtain (B3b), we used the identity (note that
)) [19, p. 61]

(B4)

Since is continuous, (B3) holds in the distributional sense
over all space (note that, if were discontinuous, delta-function
distributions would arise for ). We also note that the
right-hand side of (B3a) is continuous over all space. Indeed, its
jump discontinuity is given by

(B5)

where is the outward unit vector normal to and the rect-
angular brackets stand for the jump discontinuity at the metallic
interface. To obtain the above result, we used the fact that the
vector potential has the same regularity properties as in the free-
space case [19, p. 59]. Thus, its curl satisfies the jump relation

(B6)

Since (i.e., the normal component of the magnetic
field is continuous), it follows from (5) that the right-hand side
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of (B5) vanishes and that can be extended to all space as
continuous vector field.

From (B3), and using (1), (3), and the vector identity
, we obtain

(B7)
Using (B4), the previous equation can be rewritten as

(B8)

Since and can be extended continuously to all space
(as has been proven before), the above formula is valid in the dis-
tributional sense over all space. Using arguments analogous to
those employed before it can also be verified that the right-hand
side of (B8) is continuous over all space. Thus, the vector field

and its derivatives are necessarily continuous up to order two
(inclusive) over all space (including on the metallic interfaces).
Moreover, using (6), it follows that indeed verifies (2a).
In what follows, we prove that also verifies (2c) and thus
that the mapping indeed transforms solutions of (1)
into solutions of (2).

We note that from (1c) the tangential component of the elec-
tric field vanishes on the metallic interfaces. Thus, using (6), we
obtain

(B9)

where is an arbitrary tangential density defined on
. Next we integrate (over the coordinates) both sides of the

equation over . Using standard vector identities, we readily
obtain (2c). Thus, we have proven that the mapping
transforms solutions of (1) into solutions of (2).

Reciprocally, it is easy to verify that the mapping
obtained from (6) transforms solutions of (2) into solutions of
(1). Indeed, (1c) is equivalent to (2c), whereas (1a) and (1b) are
equivalent to

(B10)

which readily follow from (2) and (6).
It can also be verified that the mapping is indeed

the inverse of and, thus, the proof is concluded.

APPENDIX C

Here, we study some properties of the sesquilinear forms de-
fined by (19) and (20). To begin with, we note that due to (A1)
and (A3) we have that and

. This implies that the forms have Hermitian symmetry
as follows:

(C1a)

(C1b)

The form is positive definite, i.e., if
. In fact, from (20) and (A1), we have

(C2)

Since the form is positive definite, we also conclude
that it defines a scalar product over .
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