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In this paper, we propose a periodic Green’s function–based method for computing the
static effective permittivity of metallic crystals. The method is valid for arbitrary lattice
structures and inclusion shapes. We show that the homogenization problem can be
reduced to an integral equation over the boundary of a generic metallic inclusion. The
kernel of the integral equation is a periodic Green’s function. This Green’s function
corresponds to the static potential from a three-dimensional array of point charges
plus a uniform density of charge. Different representations of the Green’s function
are presented and discussed. We apply the developed formalism to characterize the
effective permittivity of a three-dimensional array of thin metallic wires.
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Introduction

Artificial materials are composite structures formed by metallic(dielectric inclusions, peri-
odically or randomly embedded in a host medium. As long as the wavelength of radiation
is much larger than the characteristic dimension of the composite structure, the interac-
tion of electromagnetic waves with artificial materials can be described by an averaged
electromagnetic response, in analogy with the propagation of radiation in matter (Kranen-
donk & Sipes, 1977). Within this macroscopic average perspective, the artificial structure
is characterized in the long wavelength limit by an effective permittivity and an effective
permeability (Collin, 1991).

Our interest in artificial materials at the long wavelength regime is mainly related to
their application to lens antennas, an idea thoroughly investigated in the sixties (Brown,
1969) that is becoming interesting again due to current advances in microfabrication
techniques. The simpler-to-fabricate artificial media are in general anisotropic. Based on
this fact, we recently proposed the synthesis of lens antennas with anisotropic artificial
material substrate, explicitly taking into account the effect of anisotropy (Silveirinha &
Fernandes, 2002).
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Computation of the effective parameters of artificial media is an old subject. The
first systematic analysis of this problem seems to date back to the work of Lord Rayleigh
(Rayleigh, 1892), who investigated the influence of spherical obstacles, arranged into
a cubic lattice, on the properties of a medium. Rayleigh’s formalism was later made
numerically exact and generalized to other lattice structures (McPhedran & McKenzie,
1978; Doyle, 1978) and multiphase materials (Whites, 2000; Wu & Whites, 2001). It also
inspired the KKR (Korringa-Kohn-Rostoker) band-structure procedure (Callaway, 1991),
utilized for computing the dispersion characteristic of periodic structures. The effective
permittivity can be obtained from the slope of the dispersion characteristic at the origin
of the Brillouin zone (Lamb, Wood, & Ashcroft, 1980).

Although Rayleigh’s formulation is numerically exact, it is restricted to media with
spherical inclusions. The plane wave expansion method presented in Datta et al. (1993)
allows characterizing dielectric crystals with arbitrary inclusion shapes. However, for
high dielectric contrasts the method may suffer from convergence problems. An alterna-
tive method for computing the effective parameters of a composite material consists in
matching the fields scattered from a truncated sample of material with those scattered
from a homogeneous ideal material with the same canonical shape (Siqueira & Sarabandi,
2000).

The homogenization problem in periodic crystals can be reduced to a boundary value
problem in a unit cell. In Karkkainen, Shivola, and Nikoskinen (2001) the boundary value
problem is solved using a finite difference method and periodic boundary conditions.
An alternative solution based on the boundary element method is presented in Sareni,
Krahenbuhl, and Beroual (1996) and Sareni et al. (1997). The approach involves the
discretization of the metallic–dielectric interfaces of the composite medium, as well as
the boundary of the unit cell (to enforce the appropriate periodic boundary conditions).

In Wu and Whites (2001), a very interesting methodology is developed for computing
the effective permittivity of simple cubic lattices of particles. It is still based on the
boundary element method, but unlike the method proposed in Sareni, Krahenbuhl, and
Beroual (1996), it does not require the discretization of the unit cell boundary. This is
accomplished by incorporating the interaction between the inclusions directly into the
kernel of the integral equation. However, the method fails to describe noncubic lattices,
and the numerical evaluation of the integral equation kernel is inefficient.

In this paper, we propose a periodic Green’s function formulation for calculating
the effective permittivity of a metallic crystal. The method is general and is valid for
arbitrary lattice structures and inclusion shapes. We reduce the homogenization problem
to the solution of an integral equation over the boundary of a generic metallic inclusion.
The kernel of the integral equation is the normalized electric potential from a three-
dimensional array of point charges at the lattice points of the crystal and from a uniform
density of charge, which guarantees the electric neutrality of the source distribution. We
present and discuss different representations for the periodic electric potential, which
allow the efficient computation of the integral equation kernel and thus of the effective
permittivity.

We apply the developed formalism to calculate the static effective permittivity of
a three-dimensional array of thin straight metallic wires, known as “wire medium”
(Blanchard, Newman, & Peters, 1994; Peters & Newman, 1995; Moses & Engheta,
2001). We adopt the usual thin wire approximation for solving the pertinent integral
equation. We derive an analytical formula for the periodic analog of the thin wire kernel
used in the theory of linear antennas. Finally, we present numerical examples that illus-
trate the dependence of the effective permittivity of the wire medium on the parameters
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that define its geometry. These results are useful for dimensioning the medium parameters
in a practical application.

Previous studies on wire media are based on the computation of the dispersion
characteristic. Blanchard, Newman, and Peters (1994) and Peters and Newman (1995)
utilized the periodic moment method to set up a matrix equation for the currents in a
unit cell. The dispersion characteristic is then calculated by setting the determinant of the
impedance matrix to zero. Moses and Engheta (2001) used instead an approximate peri-
odically loaded transmission line model. Each elementary plane of the artificial material
is characterized using the periodic moment method. Single mode propagation is assumed
in the interplane region, and the periodic structure theory is utilized to determine the
dispersion characteristic of the overall medium.

Homogenization Problem in Metallic Crystals

We consider a periodic (three-dimensional) array of metallic inclusions embedded in air.
The lattice primitive vectors are a1, a2, and a3. The periodic structure is invariant to trans-
lations along the primitive vectors. The primitive vectors may be rather arbitrary, apart
from being independent. We denote the crystal unit cell by � and a generic observation
point by r = (x1, x2, x3). We take � as

� = {α1a1 + α2a2 + α3a3 : |αi | ≤ 1/2}. (1)

The geometry of the unit cell is as depicted in Figure 1. We denote the metallic
region in � by D. For simplicity, we assume that domain D is connected and does not
intersect the unit cell’s boundary ∂�. The boundary of D is denoted by ∂D, and the
corresponding unit normal vector oriented to the exterior of D, by v̂.

We investigate the relation between the local properties of the periodic structure and
its macroscopic behavior. Our analysis considers that the radiation wavelength is much
larger than the spacing between the inclusions. In these circumstances a purely static
analysis is sufficient to characterize the effective medium parameters. Of course, for
smaller wavelengths—sometimes still large when compared with the lattice constant—the
metallic crystal cannot in general be described only in terms of permittivity–permeability

Figure 1. Geometry of the unit cell. The metallic region within the unit cell is D. The outward
unit vector normal to the inclusion’s boundary also is depicted.
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dyadics, since chiral effects (Lindell et al., 1994), or in general bianisotropic effects, may
emerge. Moreover, for wavelengths comparable to the lattice constant, the crystal has in
general directional band-gaps (Sakoda, 2001). All these effects are out of the scope of the
present analysis, which applies only for very large wavelengths. Ahead, we shall discuss
with more detail the validity of the method.

Because we consider the static regime, the electric field E derives from an electric
potential φ. The electric potential satisfies Laplace’s equation and is constant over the
metallic inclusions. We have thus:

E = −∇φ, (2a)

∇2φ = 0, φ = cI over ∂DI, (2b)

where cI is a constant and ∂DI is the boundary of the Ith metallic inclusion, which
corresponds to the translation of D into the lattice point rI = i1a1 + i2a2 + i3a3 (I =
i1, i2, i3) is a multi-index of integers).

We look for periodic solutions for the electric field E. The corresponding electric
potential is necessarily of the form

φ = φav + φs, φav = −Eav.r, (2c)

where Eav is the average of the electric field over the unit cell and φs is a periodic
potential. Potential φav is the electric potential from the (macroscopic) average field,
while potential φs can be regarded as a scattered potential. As is well known (Shivola,
1999), the macroscopic average field differs from the “applied field” originated by the
external sources.

Because the metallic crystal must be electrically neutral, the total charge in a con-
nected inclusion must be zero. Therefore, we have the additional condition:∫

∂D

σcds = 0, σc = −ε0∂φ/∂v, (2d)

where σc is the surface density of charge at inclusion D, ε0 is free-space’s permittivity,
and ∂/∂v stands for the normal derivative at ∂D.

The metallic crystal effective permittivity is calculated as follows. For a given (macro-
scopic) average electric field, the corresponding electric displacement D is

D = ε0Eav + 1

Vcell
p, (3)

where Vcell = |a1 × a2.a3| is the volume of �, and p is the electric dipole moment of
the metallic inclusion contained in �:

p =
∫
∂D

rσcds. (4)

The (relative) effective permittivity dyadic is defined so that D = ε0εr,eff Eav for every
macroscopic average field. Let E(n) = −∇φ(n) be the electric field with average Eav,(n) =
Eavûn, where ûn is a unit vector directed along the xn-axis, n = 1, 2, 3. We have, thus,

ûm.εr,eff .ûn = δn,m + ûm.p(n)
Vcellε0Eav

, n,m = 1, 2, 3, (5)
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where δn,m is the Kronecker δ-symbol and p(n) is the electric dipole moment correspond-
ing to field E(n).

Integral Equation Formulation of the Homogenization Problem

We derive next an integral representation for the electric potential φ, in terms of the
surface density of charge at the boundary of a generic metallic inclusion. To this end,
we introduce the periodic Green’s function �p0(r|r′), which satisfies

∇2�p0 = −
∑

I

δ(r − r′ − rI)+ 1

Vcell
, rI = i1a1 + i2a2 + i3a3, (6)

where r is the observation point, r′ is a source point, I + (i1, i2, i3) is a multi-index of
integers, and δ is Dirac’s δ-distribution. Green’s function �p0(r|r′) is the normalized
electric potential from an infinite array of point charges placed at r′ + rI and from the
uniform density of charge corresponding to term 1/Vcell. The average charge in a unit
cell, (i.e., the average of the right-hand side of (6)), is zero. This condition ensures that
potential �p0 is periodic. As �p0 is an (normalized) electric potential, it is defined apart
from the sum of an arbitrary constant. In the appendix we present several representations
for �p0 and discuss their relative convergence rates.

To begin with, we note that from (2.b) and (2.c), the periodic potential φs verifies
Laplace’s equation. Thus, from (6) and from the Green’s theorem we have that

∇′.{�p0(r|r′)∇′φs(r′)− φs(r′)∇′�p0(r|r′)}

= φs(r′)
(∑

I

δ(r − r′ − rI)− 1

Vcell

)
,

(7)

where the prime in symbol ∇′ indicates that the gradient operates over the primed co-
ordinates. Since φs is periodic we have that φs(r − rI) = φ2(r). Therefore, the above
equation can be rewritten as

∇′.{�p0(r|r′)∇′φs(r′)− φs(r′)∇′�p0(r|r′)}

= φs(r)
∑

I

δ(r − r′ − rI)− φs(r′) 1

Vcell
.

(8)

Next, we integrate both sides of the previous equation over the air region of the unit cell,
i.e., �−D. From the divergence theorem the integral corresponding to the left-hand-side
term of (8) can be transformed into two surface integrals: one over the boundary of the
unit cell and the other over the boundary of D. Since both �p0 and φs are periodic
potentials, the surface integral over the boundary of the unit cell vanishes. We obtain,
thus,

φs(r) = C +
∫
∂D

φs(r′)
∂�p0

∂v′ (r|r′)−�p0(r|r′)∂φ
s

∂v′ (r
′)ds′, (9)

where the observation point r lies in the air region of the metallic crystal and C stands
for a generic constant independent of the observation point.
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On the other hand, since φav = −Eav.r verifies Laplace’s equation, it satisfies an
identity analogous to (7). Integrating the referred identity over the metallic region D, and
transforming the divergence term into a surface integral over ∂D, we have that

0 =
∫
∂D

φav(r′)
∂�p0

∂v′ (r|r′)− ∂φav

∂v′ �p0(r|r′)ds′ + C. (10)

In the previous formula, the observation point r lies in the air region of the metallic
crystal, and C stands for a constant. Adding now equations (9) and (10) term by term,
and using (2.d), we conclude that

φs(r) = C +
∫
∂D

φ(r′)
∂�p0

∂v′ (r|r′)+ σc(r′)
ε0

�p0(r|r′)ds′,

r in the air region.

(11)

However, since from (2.b) potential φ is constant over ∂D, it can be verified that∫
∂D

φ(r′)
∂�p0

∂v′ (r|r′)ds′ = φ|∂D
∫
∂D

∂�p0

∂v′ (r|r′)ds′ = C,

r in the air region,

(12)

where C stands for a generic constant, and the second identity is a consequence of (6) and
of the divergence theorem. It follows thus that potential φ = φav + φs has the following
integral representation:

φ(r)+ Eav.r = C +
∫
∂D

σc(r′)
ε0

�p0(r|r′)ds′, r in the air region. (13)

From this integral representation we can obtain an integral equation for the unknown σc.
Indeed, letting the observation point r approach the (connected) metallic surface ∂D and
using (2.b), we find that

Eav.r = C +
∫
∂D

σc(r′)
ε0

�p0(r|r′)ds′, r ∈ ∂D, (14)

where C stands for a constant. Thus, for a given macroscopic average field Eav, we
can determine the corresponding surface density of charge by solving the above integral
equation subject to the electric neutrality condition (2.d) (which allows determining the
value of constant C).

Straight Thin Wire Inclusions

Next we consider the particular case in which the inclusions are straight thin metallic
wires, with radius aw and length Lw. The corresponding metallic crystal commonly is
named “Wire medium” (Moses & Engheta, 2001).

The plane defined by the primitive vectors a1 and a2 is referred to as the transversal
plane. The direction normal to the transversal plane is by definition the ⊥-direction. A
generic vector r has the decomposition r = r‖ +r⊥û⊥, where û⊥ is a unit vector directed
along the ⊥-direction, r⊥ is the projection of r onto û⊥, and r‖ is the projection of r
onto the transversal plane.
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We assume that the wire inclusions are parallel to the ⊥-direction. Moreover, we
consider that aw � Lw, so that the thin wire condition holds. Thus, the density of
charge σc induced at the surface of the inclusions is, to a first approximation, invariant
to rotations around the wire axis.

To be more specific, let us consider the following parameterization for the wire
contained in the unit cell:

∂D = rw = aw(cosϕûT ,1 + sin ϕûT ,2)+ r⊥û⊥,

r⊥ ∈ [−Lw/2, Lw/2], ϕ ∈ [0, 2π ],
(15)

where ûT ,1 and ûT ,2 form an orthonormal base of the transversal plane. Then, within the
thin wire approximation, we have σc(r⊥, ϕ) ≈ σc(r⊥), and therefore integral equation (14)
simplifies to

Eav.r + C ≈ 2πaw

∫ Lw/2

−Lw/2
σc(r

′⊥)
ε0

(
1

2π

∫ 2π

0
�p0(r|r′

w)dϕ
′
)
dr ′⊥, r ∈ ∂D, (16)

where r′
w = aw(cosϕ′ûT ,1 + sin ϕ′ûT ,2)+ r ′⊥û⊥. Strictly speaking, this integral equation

does not have solution for r ∈ ∂D, because we have reduced the degrees of freedom of
the unknown. To avoid this situation we could, for example, restrict the observation point
to the axis of the wire. We follow, however, a slightly different approach. We replace r
in (16) by rw, and integrate both sides of the resulting equation in order to ϕ. In this
way we obtain

r⊥Eav.û⊥ + C = 2πaw

∫ Lw/2

−Lw/2
σc(r

′⊥)
ε0

Kp0,w(r⊥|r ′⊥)dr ′⊥,

r⊥ ∈ [−Lw/2, Lw/2],
(17)

where we have defined Kp0,w(r⊥|r ′⊥) as the static periodic thin wire kernel, given by

Kp0,w(r⊥|r ′⊥) = 1

(2π)2

∫ 2π

0

∫ 2π

0
�p0(rw|r′

w)dϕ
′dϕ. (18)

This kernel can be calculated in closed analytical form using the spectral-like represen-
tation of the periodic Green’s function derived in the appendix. In fact, from (32.a) we
readily obtain

Kp0,w(r⊥|r ′⊥) =
∑

J

A�0,J(u⊥)[J0(aw|k0
J,‖|)]2, u⊥ = r⊥ − r ′⊥, (19)

where J0 is the Bessel function of first kind and order 0, and the rest of the symbols
are defined as in the appendix. Formula (19) is valid provided |u⊥| < |a3⊥|, where
a3⊥ = a3.û⊥. However, as �p0 is invariant to translations along the primitive vector a3,
we can prove that in general we have

Kp0,w(r⊥ + la3⊥|r ′⊥) =
∑

J

A�0,J(u⊥)e
jlk0

J,‖.a3 [J0(aw|k0
J,‖|)]2,

l arbitrary integer,

(20)
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where, as before, |u⊥| < |a3⊥|. In the particular case of a3 being orthogonal to the
transversal plane, function Kp0,w is periodic.

Kernel Kp0,w has a logarithmic singularity at points of the form u⊥ = la3⊥, where
l is an arbitrary integer. This result follows from the fact that the free space’s thin wire
kernel used in the theory of linear antennas has the same singular behavior at the source
point (Pearson, 1975). The spectral-like representation (19) converges slowly close to the
singular points. The convergence problems can be avoided by computing Kp0,w directly
from (18), using the mixed-domain representation derived in the appendix.

Integral equation (17) is solved numerically using the method of moments (MoM).
The unknown density σc(r⊥) has a boundary edge singularity at the ends of the wire.
It grows to infinity as 1/

√
d , where d is the distance to the end of the wire. We

thus assume in the numerical implementation that σc(r⊥) is of the form σc(r⊥) =
f (r⊥)/

√
(Lw/2)2 − r2⊥, where f(r⊥) is a well-behaved function. Function f (r⊥) is ex-

panded in subdomain triangular functions. The details of the discretization of the integral
equation are standard, and thus are omitted.

Numerical Examples

In this section we present numerical examples that illustrate the application of the devel-
oped formalism and characterize the effective permittivity of the wire medium.

The direct lattice primitive vectors are assumed to be of the form a1 = (a‖, 0, 0),
a2 = (0, a‖, 0), and a3 = (0, 0, a⊥). The wire axes are normal to the plane formed by
a1 and a2.

From (17) it is clear that within thin wire approximation, the effective permittivity
dyadic is of the form

εr,eff = (û1û1 + û2û2)+ εr⊥û⊥û⊥. (21)

Therefore, the wire medium is uniaxial anisotropic. Since the volume fraction of the
wire inclusions is in general very small, the magnetic effects can be neglected in the
long wavelength limit.

The numerical results are computed using 16 subdomain expansion functions in the
MoM implementation. The computation time for a specific geometry is about 1 minute
in a Pentium-III 800MHz.

The previous analyses of the wire medium are mainly focused on the study of its
dynamic properties (Blanchard, Newman, & Peters, 1994; Moses & Engheta, 2001).
Nevertheless, we have compared successfully the long wavelength results of the referred
papers with our method. For example, our method yields that the relative effective per-
mittivity of a crystal with aw/a‖ = 0.1, Lw/a⊥ = 0.86, and a⊥/a‖ = 7 is εr⊥ = 4.2,
in good agreement with the asymptotic behavior of the results of (Blanchard, Newman,
& Peters, 1994), as the number of expansion functions in their MoM implementation
increases.

In the first example we consider that a‖ is kept fixed. The normalized wire radius
is aw/a‖ = 0.1, and a⊥/a‖ is 1, 5, or 7. The corresponding effective permittivity in the
⊥-direction (parallel to the wires) is depicted in Figure 2 as function of the normalized
wire length. As expected, εr⊥ increases with the wire length and a⊥/a‖. It is apparent
from the figure that by choosing the wire medium parameters adequately, it is possible
to synthesize an artificial medium with a desired anisotropy ratio.
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Figure 2. ⊥-direction relative permittivity in function of the normalized wire length: (a) a⊥/a‖ =
1, (b) a⊥/a‖ = 4, (c) a⊥/a‖ = 7. The normalized wire radius is aw/a‖ = 0.1.

As the normalized wire length Lw/a⊥ approaches unity, the ends of adjacent wires
are progressively closer, and thus permittivity εr⊥ approaches infinity. In the limit sit-
uation of a crystal with infinitely long wires, the extraordinary wave degenerates into
a transverse electromagnetic wave (relative to the wire axes), which sees an infinite
permittivity along the ⊥-direction.

In Figure 3 we present the variation of εr⊥ with the normalized wire radius, for
a⊥/a‖ = 7 and Lw/a⊥ = 0.8. It is remarkable that, even for very thin wires and thus for
extremely low inclusion volume fractions, the anisotropy ratio remains relatively high.

In Figure 4 we depict εr⊥ as a function of the wire distance in the ⊥-direction. The
wire length and the wire radius are kept fixed, equal to Lw/a‖ = 0.8 and aw/a‖ = 0.1,
respectively. As expected, permittivity εr⊥ increases as the wire distance decreases.

To conclude, we investigate the scope of application of the presented results. This
requires studying the dependence of the effective permittivity with frequency. To this end,
we have computed the band structure of the wire medium using the 3D analog of the
hybrid method proposed in Silveirinha and Fernandes (in press). Then, from the slope of

Figure 3. ⊥-direction relative permittivity in function of the normalized wire radius. In this
example a⊥/a‖ = 7 and Lw/a⊥ = 0.8.
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Figure 4. ⊥-direction relative permittivity in function of a⊥/a‖. In this example aw/a‖ = 0.1 and
Lw/a‖ = 0.8.

the appropriate fundamental band we have extracted εr⊥ as a function of the radiation
wavelength λ.

The result for a crystal with Lw/a⊥ = 0.86, a⊥/a‖ = 7, and aw/a‖ = 0.1 is depicted
in Figure 5. The method presented in this paper yields the value 4.2 for the effective
permittivity of the metallic crystal. That value agrees exactly with that extracted from
the slope of the dispersion curve. From Figure 5 it is apparent that for λ/a⊥ > 10 the
effective permittivity is approximately constant, in accordance with a well-known rule of
thumb. For smaller wavelengths the effective permittivity increases very fast. The crystal
has a band gap (for propagation in the transversal plane), beginning at λ/a⊥ = 1.8.

Assuming that a⊥ ≥ a‖, the frequency region where the results of this paper apply is
approximately defined by λ/a⊥ > 2

√
εr⊥. This rule is based on elementary results from

photonic band gap theory, as discussed next. Indeed, nearby the origin of the Brillouin
zone, the dispersion characteristic for propagation in the transversal plane is to a first
approximation β = k/

√
εr⊥, where β = 2π/λ is the free-space wave number and k is

the amplitude of the wave vector. The largest sphere that fits in the Brillouin zone has

Figure 5. ⊥-direction relative permittivity in function of the normalized free-space wavelength. In
this example aw/a‖ = 0.1, Lw/a⊥ = 0.86, and a⊥/a‖ = 7.
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radius k = π/a⊥, which corresponds approximately to the wave number π/(a⊥
√
εr⊥).

It is thus reasonable to expect that for β > π/(a⊥
√
εr⊥) the wire medium may not be

described in terms of a permittivity dyadic (at least without considering either spatial
or frequency dispersion). We find thus that our static results apply in case of λ/a⊥ >
2
√
εr⊥. In particular, we conclude that the bandwidth of the wire medium decreases as

its permittivity increases.

Conclusions

We presented a new efficient method for the computation of the effective permittivity of
metallic crystals. The method is valid for arbitrary lattice structures and inclusion shapes.
The homogenization problem was reduced to an integral equation over the boundary
of a generic inclusion. Several representations for the kernel of the integral equation,
a triple-periodic Green’s function, were derived. Of particular relevance is the mixed-
representation, which has Gaussian convergence irrespective of the observation point
position within the unit cell. This property is fundamental for the efficient computation
of the effective permittivity of metallic crystals. The derived results were particularized to
the wire medium case. Numerical examples that illustrate the dependence of the effective
permittivity of the wire medium on the wire spacing, wire radius, and wire length were
presented. A simple rule, concerning the validity of the proposed method, was derived.

Although in this paper we assumed the inclusions to be metallic, the proposed method
can be easily generalized to dielectric crystals and also to the magnetic permeability
homogenization problem (Silveirinha & Fernandes, 2002).

Appendix

In this appendix we derive different representations for the solution of equation (6), the
periodic Green’s function, and discuss their relative convergence rates. To begin with,
we introduce an auxiliary Green’s function, �p(r; k), that satisfies

∇2�p = −e−jk.r
∑

I

δ(r − rI), rI = i1a1 + i2a2 + i3a3, (22)

where k = (k1, k2, k3) is a wave vector and I = (i1, i2, i3) is an arbitrary multi-index
of integers. It can be verified by direct manipulations that �p0, defined as follows, is a
solution of (6):

�p0(r|r′) = lim
k→0

(
�p(u; k)− 1

Vcell

e−jk.u

|k|2
)
, u = r − r′. (23)

In the following sections, we derive different representations for �p, and then, using the
above formula, for �p0.

Spectral Representation for the Periodic Green’s Function

Since the auxiliary Green’s function �p(r; k) is a Floquet wave with wave vector k,
it can be expanded into plane waves. A generic plane wave has wave vector kJ =
k+j1b1 +j2b2 +j3b3, where J = (j1, j2, j3) is an arbitrary multi-index of integers, and
b1, b2, and b3 are the reciprocal lattice primitive vectors defined by Callaway (1991):

an.bm = 2πδn,m, n,m = 1, 2, 3. (24)



658 M. G. Silveirinha and C. A. Fernandes

Straightforward calculations show that the spectral representation of �p is

�p(r; k) = 1

Vcell

∑
J

e−jkJ.r

|kJ|2 , (25)

where Vcell is the volume of the unit cell. From (23) we obtain thus the spectral repre-
sentation of �p0:

�p0(r|r′) = 1

Vcell

∑
J �=0

e−jk0
J .u

|k0
J|2

, k0
J = j1b1 + j2b2 + j3b3. (26)

The spectral representation converges very slowly, and so it is useless for the numerical
evaluation of the Green’s function.

Since potential �p0 is static, it is defined apart from the sum of an arbitrary constant.
Using, however, (23) to define �p0 the arbitrariness on the definition disappears. Indeed,
�p0 defined as in (23) is the unique solution of (6) that satisfies

∫
�

�p0(u)d3u = 0. (27)

Spectral-Like Representation

Next we derive an alternative representation for �p0 with improved convergence rate.
As before, we compute first the auxiliary Green’s function �p. This Green’s function
corresponds to the static potential from a three-dimensional phase-shifted array of point
sources. The phase-shift between adjacent elements of the array is defined by the wave
vector k. The idea is that we can regard the three-dimensional array of point sources as
the superimposition of double-periodic arrays of point sources. To be more specific, let
�H be the solution of

∇2�H = −e−jk.r
∑

I

δ(r − rI), (28)

where r is an observation point, rI = i1a1+i2a2 is a (transversal) lattice point, I = (i1, i2)
is a generic multi-index of integers, and k is the wave vector that defines the phase shift
between the point sources. Function �H corresponds to the static version of the usual
“periodic Green’s function” employed for characterizing double-periodic systems in a
three-dimensional space (e.g., frequency selective surfaces, etc.). From (22) it is clear that

�p(r; k) =
∑
n

�H (r − na3; k)e−jnk.a3 , (29)

where n is an arbitrary integer. Function �p is thus the superimposition of potentials
from double-periodic arrays of point sources.

For convenience, we define the transversal plane as the plane defined by primi-
tive vectors a1 and a2. The unit vector normal to the transversal plane is by definition
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û⊥. As is well known, Green’s function �H has the following spectral representation
(e.g., Jorgenson & Mittra, 1990):

�H(r; k) = 1

Acell

∑
J

e
−|kJ,‖||r⊥|

2|kJ,‖|
e
−jkJ,‖.r, Acell = |a1 × a2|, (30)

where kJ,‖ = k‖ + j1b1‖ + j2b2‖, J = (j1, j2) is a multi-index of arbitrary integers, k‖ is
the projection of k onto the transversal plane, r⊥ is the projection of r onto û⊥, and b1‖
and b2‖ are reciprocal lattice vectors that satisfy an.bm‖ = 2πδn,m for n,m = 1, 2, and
lie on the transversal plane. It can be verified that b1‖ and b2‖ are equal to the projections
of vectors b1 and b2, defined as in (24), onto the transversal plane.

The interesting point is that when we insert (30) into (29), the sum with index n can
be calculated in closed analytical form, since it corresponds to two geometrical series
(Silveirinha & Fernandes, in press). Indeed, provided |r⊥| < |a3⊥| where a3⊥ = a3.û⊥,
we have that

�p(r; k) = 1

Acell

∑
J

e
−jkJ,‖.r

2|kJ,‖|

(
e
−|kJ,‖||r⊥| +

∑
±

e
±|kJ,‖|r⊥

e
|a3⊥|(|kJ,‖|±jkJ,⊥) − 1

)
, (31)

where kJ = k + j1b1 + j2b2, kJ,‖, is the projection of kJ onto the transversal plane,
and kJ,⊥ is the projection of kJ onto û⊥. In the above formula the sum with index
“±” is a shorthand notation for the sum of two terms: one with the “+” sign and the
other with the “−” sign. We refer to formula (31) as the spectral-like representation of
�p relative to the transversal plane defined by a1 and a2. This representation is valid
for |r⊥| < |a3⊥|. However, since �p is a Floquet potential with wave vector k, it is
always possible (by translations along primitive vector a3) to transform a point that does
not satisfy |r⊥| < |a3⊥| into an equivalent point where formula (31) can be applied.
Thus, we can assume without loss of generality that |r⊥| < |a3⊥|/2. In this interval the
spectral-like representation converges exponentially, except in the case |r⊥| = 0, where
the convergence is rather slow. Indeed, it is easy to verify that the convergence properties
of �p mimic those of �H .

It is important to note that the roles of the direct lattice vectors a1, a2, and a3 can
be interchanged by considering cyclic permutations of these vectors. In fact, we can
consider three distinct transversal lattices. Therefore, we have at our disposal a total
of three alternative spectral-like representations for �p. One of these representations
is precisely (31). The other two representations are analogous to (31), but with one
important difference: as the transversal plane depends on the specific representation, so
does the respective convergence rate. In fact, for each of these representations the region
of slow convergence is the transversal lattice. Using this property it is easy to verify
that it is always possible to choose a spectral-like representation such that |r⊥| �= 0, and
thus such that the convergence is exponential. The only exception to this rule is the case
r = 0, which requires the use of acceleration techniques analogous to those employed
for the computation of �H (e.g., Jorgenson & Mittra, 1990), or alternatively the use of
a different representation of the Green’s function (see the next section).
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From (23) and (31) we can now obtain the corresponding spectral-like representation
for �p0:

�p0(u) =
∑

J

A�0,J(u⊥)e
−jk0

J,‖.u, (32a)

A�0,J(u⊥) =




1

2Acell

(
−|u⊥| + u2⊥

|a3⊥| + |a3⊥|
6

)
if J = 0,

1

Acell2|k0
J,‖|


e−|k0

J,‖||u⊥| +
∑
±

e
±|k0

J,‖|u⊥

e
|a3⊥|(|k0

J,‖|±jk0
J,⊥) − 1


 if J �= 0,

(32b)

where k0
J

= j1b1 + j2b2. The convergence rate of the above formula is analogous to
that of the case discussed previously. As before there exist three distinct spectral-like
representations for �p0, each with a different region of slow convergence.

Mixed Representation

We present next a mixed-domain representation for �p0. This representation is derived
using Ewald’s error function representation of �p (Ewald, 1921), together with formula
(23). The result is:

�p0 = 1

Vcell

∑
J �=0

(
1

|k0
J|2
e−|k0

J |2/4E2
e−ju.k0

J

)

− 1

Vcell

1

4E2
+
∑

I

1

4πρI
(1 − erfEρI)),

(33)

where u = r − r′, ρI = |u − rI|, and k0
J = j1b1 + j2b2 + j3b3. Symbols I and J denote

a generic triple-index, and “erf” the error function. Parameter E is an arbitrary positive
constant that defines the relative convergence rate of the spatial-like parcel (the sum with
index I) and the spectral-like parcel (the sum with index J). A good choice for parameter
E, which ensures similar convergence rates for the spatial-like and spectral-like sums,
is E = √

π/V1/3
cell . The mixed-domain representation has, irrespective of the observation

point, Gaussian convergence. Therefore, it has an excellent convergence rate.

Spatial Representation for the Periodic Green’s Function

To conclude this appendix, and for the sake of completeness, we present a spatial repre-
sentation for the periodic Green’s function.

From elementary electrostatics (Jackson, 1999), the solution of (6) can be written as
follows:

�p0 =
∫ (∑

I

δ(u′ − rI)− 1

Vcell

)
�0(u − u′)d3u′, u = r − r′, (34)
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where �0(r) = 1/(4πr). The integration range in (34) is all space. The term inside the
brackets corresponds to the total density of the electric charge (in normalized units).

In order to evaluate (34) we have to proceed with some care. Indeed, we cannot
break (34) as a sum of two integrals, because, as the integration range is all space, they
would diverge.

We thus make the following preliminary definitions. Let V be a bounded volume of
space such that V = −V , i.e., that V is invariant to an inversion (or alternatively if r
is in V then −r also is). For example, V can be sphere or a parallelepiped centered at
the origin of space. We define the set n.V as the set that contains the points of the form
nr, where r is a generic point of V and n is greater than 1. Geometrically n.V is an
expansion of the original set V . Obviously, if we let n go to infinity then n.V becomes
all space. Therefore we can rewrite (34) as

�p0 = lim
n→∞

∫
n.V

(∑
I

δ(u′ − rI)− 1

Vcell

)
�0(u − u′)d3u′. (35)

The last equation is also equivalent to

�p0 = lim
n→∞

∑
rI∈n.V

�0(u − rI)− 1

Vcell

∫
n.V

�0(u − u′)d3u′. (36)

The first term in the right-hand side of equation (36) is the static potential from the point
charges inside volume n.V , while the second term is the static potential from the uniform
density of charge inside the same volume. In order to evaluate this second term we note
that from the divergence theorem we have∫

n.V

�0(u − u′)d3u′ = 1

2

∫
n.S

(u′ − u).v̂′�0(u′ − u)ds′, (37)

where surface S is the boundary of volume V , and v̂ is the outward unit vector normal
to S. The right-hand side of the above equation is a surface integral over n.S. After
straightforward calculations it can be verified that∫

n.V

�0(u − u′)d3u′ = n2C�0,V − 1

2
u.L.u +O(1/n), (38a)

C�0,V = 1

8π

∫
S

û′.v̂′ds′, (38b)

L = 1

4π

∫
S

v̂′û′

|u′|2 ds
′, (38c)

where C�0,V is a constant, L is a dyadic, and O(1/n) is a term that converges to zero as

n approaches infinity. It is important to note that constant C�0,V as well as dyadic L are

independent of n and are completely determined by V . Moreover, dyadic L only depends

on the geometrical shape of V and not on its specific volume. Very interestingly L is the
so-called depolarization dyadic, utilized for determining the local field in homogenization
theory (Shivola, 1999, p. 55). The depolarization dyadic is calculated in Yaghjian (1980)
for several volume shapes.
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From the previous results we conclude thus that the periodic Green’s function has
the following spatial representation:

�p0(r|r′) = lim
n→∞


 ∑

rI∈n.V
�0(u − rI)− C�0,V

Vcell
n2


+ 1

Vcell

1

2
u.L.u. (39)

The first term of the spatial representation corresponds to a regularized sum of
the point potentials, while the second term is a quadratic form. It is important to note
that volume V defines the summation order of the point potentials. In fact, the series
must be summed exactly as suggested by the limit form of equation (39), because it is
not absolutely convergent. We also stress that the quadratic form only depends on the
geometrical shape of the summation volume and that for different geometrical shapes we
obtain, in general, different quadratic formulas. The convergence rate of formula (39) is
poor. The periodic Green’s function, defined as in (39), is not in general coincident with
definition (23). The two representations differ from a constant.

An alternative proof of the derived results, for the case of the lattice primitive vectors
being orthogonal, can be found in Silveirinha and Fernandes (2001).
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