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Efficient Calculation of the Band Structure of
Artificial Materials With Cylindrical
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Abstract—in this paper, we present a new hybrid method that method [4], the transfer matrix method (TMM) [5], finite-dif-
makes the calculation of the band structure of artificial materials  ference methods [6], plane-wave method [7], [8], etc.
with cylindrical metallic inclusions very efficient. We derive an The orderN’ method is based on the finite-difference time-
auxiliary problem whose band structure is that of the metallic . .
crystal along with several dispersionless bands. The eigenfunctionsqomaIn (FDTD) methOd' The t'me'd_e_pendem Maxwell equa-
of the auxiliary problem have continuous derivatives up to order tions are solved for given initial conditions and boundary con-
2. Thus, the spectrum of the auxiliary problem can be efficiently ditions. The spectral intensity, whose peaks correspond to the
computed using the plane-wave method. The band structure of the resonant frequencies, is then computed using a Fourier trans-
metallic crystal is then obtained by extracting from the computed form. An important feature of this method is that the computa-

results the dispersionless bands. tional effort scales linearly with the size of the system.

Index Terms—Artificial materials, band structure, metallic The TMM is a multiscattering method, and allows for the
crystals. computation of the complex band structure and reflection-trans-
mission coefficients in truncated crystals.
|. INTRODUCTION The plane-wave method involves the expansion of the electro-

magnetic fields in a Fourier-like series. The Maxwell equations

. . : e reduced into a matrix eigensystem. The eigenvectors rep-
photonic crystals, after the pioneering work of Yablonowtcfbsem the electromagnetic Floquet modes and the eigenvalues
etal.[1]. As is well known, these structures can have a full phq—

tonic band PBG) where th " felect egresent the respective resonant frequencies. Nonetheless, this
onic bandgap ). where the propagation of elec romagnem thod is restricted to dielectric crystals since it assumes the

waves is forbidden in every direction of space and for every po- i \m permittivity to be finite and nondispersive.

Iar_lrzr?tuljanthate._ hen the latt . Indeed, the plane-wave method suffers from convergence

€ regime emerges when the lattice constant is COBtoblems that are particularly acute for high dielectric contrasts,
parable to the wavelength of radiation. On the other hand, if t &ar close-packing ratios, and high frequencies [8], [9]. A
Wavelength of radiation is much Iarge_rthan the Iattice_ ConStaEFystal with perfect electri’c conductors (PECs) can, 'in prin-
the photonic crystal can be characterized by an effective pem?fﬁble, be regarded as the limit situation of a dielectric crystal

tivity and permeability [2], [3]. This corresponds to the eﬁecm’%vith infinite permittivity inclusions. However, as the dielectric

m.ed|um_reg.|me, and_ Is of particular interest for a_rt|f|C|qI dIemcﬁontrast in this configuration is infinite, the plane-wave method
tric applications. This concept was thoroughly investigated

Bils completely.

the 1960s, and regains interest due to current advances in microgy, . ojow convergence of the plane-wave method is related to
f_at_mcatlon _technlques. Atthe Io_ng wav_elength regime, the ar{ je discontinuity of the dielectric constant and, consequently,
ficial material can be characterized using quasi-static methg the electromagnetic fields. These discontinuities cause the

[3]. Despllte that fa.ct., gnd In order_tp prgd|ct the d("\pendence;%ne—wave expansions of the pertinent physical quantities to
the effective permittivity permeability with frequency, the Calfl¥ctuate intensely around the dielectric interfaces, in a mani-

culation of the fundamental bands of the periodic structure isl%station of the Gibbs phenomenon. Thus, a very large number
gr?f;:t relevancet.. f elect " . iodic st of plane waves may be required for the accurate computation
¢ € pr(;)paggblog g elec roma:cgnebm v(\j/at\;]es n pTerr]lo 'C SUGF the band structure of a dielectric crystal. This is memory and
ures Is described by means of a band theory. The compuig;, consuming since the number of operations for diagonal-

tion of the band structure is, in general, very in_tensive. Seveyg g a Hermitian matrix scales as the cube of the dimension.
methods have been proposed for the effect, i.e., the dvder- In metallic crystals, the discontinuous behavior of the elec-

tromagnetic fields is even more critical. Indeed, if the inclusions
are perfect conductors, the boundary conditions impose not only
Manuscript received April 12, 2002; revised November 9, 2002. This wolhe normal component of the electric field to be discontinuous,
was supported by the Fundagéo para Ciéncia e a Tecnologia under Project BOSI . . L .
34860/99. but also the tangential component of the magnetic field. In this
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ul > wave vector is normal to the cylinders axes. In the general

A case, the Floquet wave solutions can be constructed from the
solutions of the on-plane case, in analogy with the propagation
of electromagnetic waves in PEC metallic waveguides [17].
L In fact, the metallic crystal can be regarded as a metallic
waveguide with infinite inner conductors. From this remark, it
is evident that the metallic crystal supports infinite transverse
electromagnetic waves and, in additioA;polarized waves
Q-cell (transverse magnetic t9) and H-polarized waves (transverse
electric toz).

In the on-plane case, the geometry of the problem is intrin-
sically two-dimensional, and the coordinate along the cylinder
axes can be discarded. Thus, we denote a generic observation
) o ] ) ] __pointbyr = (z1, z2).
restricted to cylindrical inclusions with arbitrary cross section. We puty) = E. in the E-polarization case, and = H. in

The general three-dimensional and dielectric cases [10] will 'l?l?eH-polarization case. In order to be a Floquet wavenust

Fig. 1. Unitcell in the square lattice case. The metallic inclusian &snd the
lattice primitive vectors are, anda..

presented elsewhere. satisfy

The proposed method is described below. To begin, we in-
troduce an auxiliary extended problem. The band structure of V23 + 2 =0 1)
this problem contains that of the metallic crystal, along with a Pt =0, ondD (E-polarization (2a)
set of dispersionless flat bands. The flat bands are associated ay Jov = 0, ondD (H-polarization) (2b)

to the resonant frequencies of the interior Dirichlet problem in
a metallic waveguide with the same cross section as a generic

inclusion. We prove that the extended problem is equivalegherek — (k1, ko) is the wave vectord/dv is the normal

to an integral-differential eigensystem. The eigenfunctions g&rivative,V is the (transversal) gradient,= w/c is the free-

this eigensystem are smooth and, thus, can be expanded §g8ce wavenumbes,is the angular frequency of radiation, and

a fast converging Fourier series. In this way, the band strycis the velocity of light in vacuum. In th&-polarization case,

ture of the extended problem can be efficiently computed usingsatisfies the Dirichlet boundary condition (2a) at the inclu-

the plane-wave method. As the flat bands do not depend on Higns’ surface, while in thél-polarization case, it satisfies the

wave vector, they can be easily extracted from the band strggsymann boundary condition (2b). The superscrigtih these

ture of the extended problem, thus leaving the band structigiguations indicates that the corresponding field quantities are to

of the metallic crystal. The proposed method is partially relateg evaluated at the outer sided.

to the boundary integral resonant method [11], [12], Wh|Ch iS For agiverk inthe reciproca' space, System (1)_(3) has non-

utilized for the calculation of the resonant modes in metalligivial solutions for an infinite numerable set of wavenumbers.

waveguides. We can write@ = ((k), being the previous function multi-
Previous work on the analysis of metallic crystals includgg|yed. Each branch of the functigh(k) yields a band. The

[13], where the band structure of an array of PEC cylinders épjective is to determine the band structure.

calculated using a generalized Rayleigh identity method, [14]|n the general off-plane case, the wave vector has a longi-

which uses the TMM method, and [15], which studies the digadinal component, and the dispersion characteristic satisfies

persive case. B%(k1, ko, k3) = *(k1, k2, 0) + k3, being the notation evi-
This paper is organized as follows. In Section II, we presegent. Thus, in PEC metallic crystals, the band structure of the

ical results. In Section 1V, we present conclusions. case.

pexp(jk-r) is periodic 3)

Il. FORMULATION A. Extended Problem

We consider a two-dimensional lattice of metallic cylinders In (1), v is defined only outside the PEC inclusions. Never-
in air. The lattice primitive vectors are, anda,. We take the thelessy can be mathematically extended to the interior of the
unit cell as the parallelograf = {a1a; + asas: |o;| < 1/2}. inclusions as a continuous solution of (1) in all space. In the
The square lattice case is depicted in Fig. 1. Inside the unit célipolarization case, the last assertion is clear: we just need to
is an infinite PEC metallic cylinder with arbitrary cross secdefiney) = 0 inside the inclusions. ThH -polarization case is a
tion D. We denote the inclusion’s boundary b\D, and the bit more elaborated and is treated as follows. We can obviously
corresponding outward unit normal vector by The periodic restrict the analysis to the unit cell. Let be + calculated at
(metallic) crystal is obtained by translationgbélong the prim- the outer side 09D, andy~ be1) calculated at the inner side
itive vectors. For convenience, we introduce the reciprocal laif thed D. We then define) inside D as the solution of (1) that
tice [16] primitive vectorsb; andb,, defined by the relations satisfies the boundary conditian™ = ¢y~ ondD (i.e., is the
a,, - by, = 270,,, », Whered,, , is the Kronecker delta symbol. solution of an interior Dirichlet problem).

The objective is to compute the Floquet electromagnetic We introduce an extended problem, whose solutions are the
modes. We can assume without loss of generality that tbentinuous functions that verify (1)—(3) in all space (including
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the interior of the inclusions). The objective will become clear In order to obtain an integral representation fome intro-

in the following section. The Floquet solutions of the extendedlice the lattice Green functiah, (r|r") solution of

problem are the Floquet solutions of the metallic crystal, (ex- e

tended continuously to the interior &f, as explained earlier), V2@, = —¢ /) Z‘S(r_rl_rl) (72)

along with a set of internal modes that vanish in the exterior of ) ) o I

the inclusions. ®, exp (jk - (r — r')) is a periodic function (7b)
As the solutions of the extended problem are continuous, the(7), r = (21, z2) is an observation point = (/, =) is a

internal modes vanish at the boundary of the metallic inclusiorgurce pointl = (i1, i2) is @ multindex of arbitrary integers,

independently of the wave polarization. Therefore, the inter@hdr; = i,a; + i»a. is a lattice point. The details on the com-

modes can be identified with the Dirichlet modes of a meta”igutation of the Green function are presented in the Appendix_
waveguide with the same cross section as a generic inclusionFrom (6) and (7), we obtain the following identity:

The internal modes are independent of the wave vector and wave ) ,

polarization. VA(V'®,0 — 8, V'0) = —0(x')e™/* =) 25(1‘ —r' —ry)
Thus, the band structure of the extended problem is equal to ®)

the band structure of the metallic crystal, together with a SShere the prime indicates that the gradient operates

of flat bands that correspond to the resonant frequencies of H?Er the r'-coordinates. From (6b), we have thafr —

interior Dirichlet modes. We can obtain the band structure 9 )exp(—jk - r1) = 6(r) for every lattice pointr. Therefore

the metallic crystal by extracting the flat bands from the bar{ e right-hand side of the above equation simplifies to '

structure of the extended problem. Alternatively, we can check

if a given resonant frequency belongs to the band structure of the V'-(V'®,0 — ©,V’6) Z S(r—1' —r1).  (9)

metallic crystal by testing if the corresponding eigenfunction is

zero in©2 — D (i.e., in the unity cell excluding the inclusion). Next, we integrate (in order tg) both sides of (9) over the unit
The eigenfunctions of the extended problem are continuoygg|| 2. The integral of the right-hand side4d(r). The integral
ie.,[¢] = ¢+ — 4~ = 0. On the other hand, the first-orderof the left-hand side term can be transformed into two surface
derivatives are discontinuous &D. This causes a Fourier ex-jntegrals: one ovefD and the other over the boundary ©f
pansion ofy to converge slowly. To circumvent this situation;Thjs |ast integral vanishes since, from (6b) and (7b), the term

we derive in the following section an integral-differential eigennsijde the divergence operator in (9) is a periodic functiorf in
system with the same band structure as the extended problef@nce, we obtain that

but with smoother eigenfunctions. 9 90
— p / _ | 2= / /
o) = [T el - || @atole) s

reQ—aD. (10)

B. Band Structure of the Extended Problem

Let ¢ be an arbitrary extended solution of (1)—(3), i.e., con- ) _ ) o
tinuous in all space. We consider an auxiliary functipthat N (10), the terms in brackets are the jump discontinuitie$ of

satisfies and of its normal derivative at the boundary of the inclusion.
Since[f] = 0, we conclude [remembering the definitionfbin
V2¢p = —p3%) (4a) (5)] that
xp(jk - r) is periodic 4b
pexp(jk-r)isp (4b) / F()®, (x|t ds’ (11a)
We note that ag is continuousg has continuous derivatives 5 5 Sut
up to the second order in the unit cell (including the boundary of f=- { ] { ‘q - b- L (11b)
the inclusiond D). In what follows, we prove that is solution I v v I
of an integral-differential eigensystem. In the former equationf is a density defined ove?D. The
To begin with, we define second term of the right-hand side of (11a) is a (pseudoperiodic)
single-layer potential.
0=19—¢. ®) Using (2) and (11a), we easily obtain an integral equation for
From (1)—(5), we obtain that, for an arbitrary poinin €2 — f interms of¢. In fact, ifr € 8D, we have
oD / F(')®,(xlt) ds'  (E-pol. (12a)
V20 =0, inQ—oD (6a) -

0%, o1
0= 200wy [ 56 D (el ds' — L () (H-pol).

JOD
Although (6a) is a homogeneous equatigh,s nontrivial (12b)
because, o@D, its normal derivative is discontinuous, i.e., The integral equation (12b) was obtained using the jump re-
[06/0v] = 00T Jov — 86~ /ov # 0 (althoughd is continuous, lations of the single layer potential [18]. These jump relations
i.e.,[f] = 6T — 6~ = 0). These results follow from the fact state that the normal derivative of the single-layer potential is
of ¢ being a continuous function with discontinuous normaliscontinuous, i.e., its value calculated from the outer siddbf
derivative on the inclusion boundary, andaving continuous is different from the value calculated from the inner side. In fact,
derivatives up to order 2. the normal derivative calculated from the exterioddf is equal

6 exp(jk - r) is periodic (6b)
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to the two right-most parcels in (12b), while the normal derivas an arbitrary multiindex, and the symbe!*refers to complex
tive calculated from the interior is obtained from the former bgonjugation), and integrating both sides over the unit@eilve

replacing the term-f(r)/2 by +f(r)/2, [18]. conclude that
We define the integral operators (ov&b) L, M., andM _ 1
as follows: * ez cilki* + o1 + /aD flo1|®p)ds’ =0 (17a)
— / / / 1 er
Li= [ 50)e el s (138) i)~ i [ e am

M, f= / () % (r|r") ds’ — (il f(r)) (13b) Using (A2), given in the Appendix, we can integrate (17b)
' oD’ ov 2 explicitly. We find that
From (12), we conclude that, providédandM , are invert-

1,
ible, we have (91]®p) = T’ (r'). (18)
f= _L_1¢0;E'p0|arizati0'j Inserting (18) into (17a), we now obtain
_ N1 3 i ati 1 1 1
f M £y (H-polarizatior). (14a) T o + T (gtlf)op = 7 . (19)
Finally, from (4) and (11a), we conclude thais a solution I I _ _
of the following homogeneous equation: In the previous equation, we defined thg internal product
(9lhYop = faD g*h ds, whereg andh are arbitrary functions
V2p + 32 (qﬁ + / fo, ds'> =0 (14b) defined on the boundary of the inclusiéD. Using (14) and
/oD (15), we obtain the final result

¢ exp(jk - r)is periodic  (14c) 1 1

1
—1
Thus, we have proven that to every solutioof the extended [ 1~ [ 12 Z cx (gr|L7"ga)yp = 3 (E-pol.)
problem corresponds a solutiah of the integral-differential J

system (14). The mapping that transforghsnto ¢ is defined (202)
by (11). Reciprocally, it is easy to verify that to every solution ! _ o1 — 1 Z c3 <(11 ML aﬂ> - 1 cx (H-pol.).
¢ of the integral-differential system (14) corresponds a solutio1/|> lkil* SN v Sy P

1 of the extended problem. The respective inverse mapping is (20b)

defined by (11a) and (14). Furthermore, functivris a non- . ) . L
trivial solution of the extended problem if and only if the cor- Equation (20) defines an eigensystem with eigenvalyigs.

respondingp is a nontrivial solution of (14). Hence, it follows Tp solye It numerlcally, we truncaie the Fguner series (15) and
that both problems are equivalent. d|scre"t|ze the mtegra_ll operators (13) using, fc_>r example, t_he
The integral-differential system (14) is also an eigenval strdom method, which is particularly efficient in the analysis

problem. In fact, for a given wave vectRr it has nontrivial so- of two-dimensional problems [18].
lutions only for cer'Fain wavenumbefs As pointed out qbove, D. Band Structure of the Metallic Crystal
the nontrivial solutions of system (14) lead to nontrivial solu- ] ] )
tions of the extended problem (and reciprocally). Thus, we con-As referred in Section II-A, the band structure of the metallic
clude that both problems have the same band structure. Hd&hystal is obtained from the band structure of the extended
ever, the eigenfunctions of (14) are much smoother than tREblem by removing the flat bands. The band structure of the
eigenfunctions of the extended problem. In fact, they have cdxtended problem is calculated solving the matrix eigensystem
tinuous derivatives up to order two (inclusive), while, in generaﬂ,zo)- _ _

the eigenfunctions of the extended problem have discontinuoud N€ flat bands are associated to the resonant frequencies of
first-order derivatives. Due to the referred regularity, the eigeH1€ internal Dirichlet modes. When the inclusion area fraction
functions of (14) can be expanded into a fast converging Fouri&rlow. the internal resonant frequencies are high and, conse-
series. In this way, the band structure of (14) can be emcienﬂ;}lently, do not interfere with the first bands of the metallic

calculated by means of the plane-wave method. crystal. The flat bands can be extracted from the band structure
of the extended problem using one of the following techniques.
C. Numerical Solution of (14) « The simpler one consists of directly detecting the disper-
Since¢ is a smooth Floquet wave, we expand it in a Fourier ~ sionless flat bands in the computed band structure. Gen-
(pseudoperiodic) series erally, this approach works well, but some ambiguity may
arise in metallic crystals with very flat bands.
$(r) = XJ: c1ga(r)- (15) « Asecond alternati\ye consists of px;ecalculating the internal

mode frequencies, using the fact that the internal modes
vanish outside the inclusion (for canonical inclusion cross
sections, these frequencies may even be known analyti-

In (15),J = (41, j2) is a multiindex of arbitrary integers; is
a constant, angy is a plane wave

93(X) = ——— ¢ JKax (16a) cally). This approach is developed in what follows, and is
\ Vco_ll ) partially related to results from [11].
ky =k +jib1 + j2b> (16Db) In a first step, we compute the resonant frequencies of the
whereV..; = |a; X as| is the area of the unit cell. Replacingextended problem with an arbitraky and E-polarization (in-

(15) in (14b), multiplying the resulting equation by (whereI ~ dependently of the metallic crystal polarization case; this is so
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because, as we have referred to before, the internal resonantfre-  gon

guencies are common to both polarization cases). 1
From the eigenvectors of (20a), we obtain the eigenfunctions

of (14), which are given by the Fourier expansion (15).4.ée

one of these eigenfunctions. Suppose thdtas wavenumber 0.6

(£ and that we want to test whether or ribtorresponds to an

internal mode of the extended problem. From (11a) and (14a), 04
the mode of the extended problem associategflitogiven by 0.2 .
r
" o
v =) - [ Leew . @) M F X M
oD

. . Fig. 2. Band structure for a square array of circular cylinders with fill
Thus, the wavenumbgkcorresponds to an internal mode if anGraction 21.29%.E-polarization (dashed line) anH-polarization (solid line)

only if ¢ given by the previous formula vanishes o¥er D. superimposed on the results from [13].
From the jump relations of the single-layer potential [18], the

normal derivatives ofy) overdD are given by 1. N UMERICAL RESULTS

+

W= _ 0 _ M.L™'¢ (22) In this section, we present numerical examples that illustrate
Ov Ov the application of the described method.

wheredy /dv is the normal derivative of on the outer side ~ The results presented here were calculated using 49 terms in

of 8D, anddy)~ /dw is the normal derivative of on the inner the plane-wave expansion (15). The integral operators, defined

side ofdD. by (13), were discretized using the Nystrom method with 32
If the wavenumber3 corresponds to an internal mode, ifpoints on the inclusion’s boundary. For edcln the Brillouin
is clear from the above discussion thaw™/0v = 0 and zone, the computation time is less than 1 s on a Pentium I

v~ /Ov # 0. Similarly, as every noninternal solution of theB00 MHz.

E-polarization extended problem vanishes in the interior of the In the first example, we calculate the band structure of a
metallic inclusions, the noninternal modes satigfy" /ov # 0 square array of PEC circular cylinders in air. The lattice con-
andoy~/ov = 0. stant isa and the cylinder area fraction is 21.2%. In Fig. 2, we

From the preceding considerations, we propose the féiresent the first few bands of each polarization, superimposed
lowing criterion to decide whether the resonant wavenumb@p data extracted from [13] (the crosses correspond té'the-

/3 does or does not correspond to an internal mode. A resonkgitzation points extracted from [13], while the stars correspond
wavenumbey is labeled as internal if the norm [with respecto the H-polarization points). The inset of Fig. 2 represents the
to the internal product o@D defined in (19)] ofdyT /v Brillouin zone of the square lattice. Poiit is the origin of

is much smaller than the norm @f)~/dw. If the norm of thek-space, and pointd/ and X are given, respectively, by
&y /0w is much is greater thafk)~ /v, the mode is labeled X = 0.5b; andM = 0.5(b; + by). The computation time of
as noninternal. If the norms of the normal derivatives hayBe data extracted from [13] is 16 h on a DEC Alpha Worksta-
approximately the same magnitude, there is some ambigufipn. As illustrated in Fig. 2, the calculated results agree well
The ambiguity is, in general, due to a lack of numerica¥ith those of [13].

resolution (although some degeneracy may occur if someln the E-polarization case, the cutoff free-space wavelength
noninternal mode has a resonant frequency very close to thatsok. = 27/8 = a/0.67, i.e.,A\c = 1.49a. Thus, for this polar-

an internal mode). To remove the ambiguity, if it occurs at all, ization, only wavelengths smaller than 1.4@an propagate in

is, in general, sufficient to increase the number of plane waviée metallic crystal. In the long wavelength limit, the medium
in expansion (14). We note, however, that we only need €&n be modeled as plasma with negative permittivity.
accurately determine the first few internal resonant frequenciesOn the other hand, in thE -polarization case and long wave-
more precisely, those that lie in the frequency range where V@@gths, the medium behaves as a natural medium characterized
wish to determine the band structure of the metallic crystdly a permittivity dyadic and magnetic permeability. Thus, the
Every resonant wavenumber labeled as internal (if any) astificial medium can be used as a polarizer that inhibitpo-
stored in memory. larization and is transparent f6-polarization.

In a second step, we calculate the band structure of then order to investigate the accuracy and convergence rate of
metallic crystal by performing the usuil sweeping of the the proposed method, we have calculated the relative error in
Brillouin zone. Toward this end, the eigensystem (20) is solvede frequency of the first internal mode, as a functioq,dV,
for several wave vectork. The internal resonant frequenciesvhere N, is the number of plane waves in expansion (15).
(which were previously stored in memory) are removed froiince, in the present example, the inclusion’s cross section is
the band structure yielded by (20). It must be pointed oaircular, the referred frequency is known in closed analytical
that, due to the involved numerical approximations, the storéasm [17]. For the fill fraction 21.2%, the corresponding nor-
internal frequencies are not exactly reproduced in the calculatadlized wavenumber satisfigs = 9.26. We have compared
band structure. In fact, the removed eigenvalues are those tiég value with that obtained from the numerical results. We
are closer to the stored internal frequencies. discretized the integral operators with 32 points @b and
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% IV. CONCLUSIONS
08~ :'S‘mlmli.°“ We have presented a new method for the efficient calcula-
- H-polarization . . .
06 tion of the band structure of arrays of PEC cylinders with ar-
' * bitrary cross section. We derived an auxiliary integral-differen-
04 tial eigensystem that contains the band structure of the metallic
’ x crystal. It was shown that, due to the smoothness of eigenfunc-
0.2 tions of the auxiliary problem, its band structure could be com-
. x puted very efficiently using the plane-wave method. In this way,
X o X% ¥ New o wx » we have reduced the problem of calculating the band structure
5 10 15 20 25 30 \/N,,

of PEC metallic crystals to a conventional matrix eigensystem.
Fig. 3. Relative error (in percentage) in the resonant frequency of the fir-gpls approach is fa_r more_ efficient than other rOOt_Sfear(_:hmg
internal mode as a function of the square root of the number of plane wavesMethods presented in the literature. Typical computation times,
even for highly concentrated systems, and a high-accuracy spec-
ification for the first few bands, are less than 1 s in a standard
personal computer. In fact, due to the smoothness of the eigen-
functions, the plane-wave expansion method converges fast, and
only a few plane waves are needed to yield accurate results. The
theoretical results were validated with numerical results avail-
able from the open literature.

The extension of the proposed method to the three-dimen-
sional problem, and dielectric crystals, will appear shortly.

pal2nt

0.8
0.6
0.4

0.2

0 APPENDIX
K r M K

In this section, we present closed-form formulas for the solu-

Fig. 4. Band structure for a triangular array of elliptical cylinders with a filtion of (7). That solution corresponds to the= 0 case of the
fraction of 35%.E-polarization (dashed lineJ -polarization (solid line). more general equation

_ o V20, + 28, = —e TN (e — 1 —1y)
considered thak = 0.05b;. In the E-polarization case, the I

first internal frequency is the sixth resonant frequency of the (Ala)
extended problem, while in th& -polarization case, it is the . N -

: ' . r ) ik - (r — is a periodic Alb
ninth resonant frequency. The calculated relative error is shown ? exp(sk - (r = 1)) P (ALD)
in Fig. 3. The accuracy of the computed results is excellent. Thdaere is a given wavenumber. We refer §g, as the “lattice
relative error is less than 0.6% fQf N, > 5. The convergence Green function.” A well-known representation of this pseudope-
rate is also very good, irrespective of the polarization case. riodic Green function is given in [19]

In the second example (Fig. 4), we consider a triangular lat- 1 o—iks-u
tice, with lattice constant (i.e., the primitive vectora; and ®p(u) = > (A2a)
) Veell k3|2 -3
a; make an angle of 60and have a norm; we assume that o _
ay is oriented in ther;-axis direction). The inclusions are now ky =k + jib; + jobo (A2b)

metallic cylinders with an elliptical cross section. The area fil|here = (j1, 7») is @ multindex of integersy..; is the area
fraction is 35%, and the axis ratio of the elliptical cross sectiqf} the unit cell 7énd1 = (u1, up) = r—r’. The convergence rate

is two. The Brillouin zone of the triangular lattice is the hexagogr (a2) is poor. Next, we derive an alternative representation for
shown in the inset of Fig. 4. Also shown are the polithe ¢ with exponential convergence. The final result is
origin of thek-space),M = 0.5by, and K is the upper right

corner of the regular hexagon. The larger axis of the elliptical d,(u) = L Z e IKn /s
cross section is oriented in gk -direction. lai] &= 27
The free-space cutoff wavelength for the-polarization T
case increases relatively to the previous example, and is now (e‘””'“i' + Z c r )
A = a/0.96 = 1.04a. There is no bandgap in thé-polar- T eloat |t 1) -1

ization case and, for long wavelengths, the medium behaves (A3a)
as an anisotropic effective medium. We verified that, except _ /K > _ g2 A3b
near thel’ K-direction, there is a bandgap between the first T =\ 1K, /P =1 (A3D)

and second bands of thE-polarization. The reason for thewhereK,, = k + nby, K,, ,, is the projection ofK,, onto
bandgap absence in tHéK-direction seems to be that thethea;-direction, andk,, |, a2, andu are, respectively, the
elliptical cylinders form to a first approximation a guided-waverojections ofK,,, a5, andu onto a unit vector normal ta; . In
structure (of parallel metallic plates) oriented in Ih& -direc- (A3a), the sum with indext" is the shorthand notation for the
tion. This is so because the ellipse larger axis is oriented in thiem of two terms: one with thet” sign and the other with the
I'K-direction. “—" sign.
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Formula (A3) is only valid fottu | < |azy |. However, since  [9] P. R. Villeneuve and M. Piché, “Photonic bandgaps: What is the best

®, is a pseudoperiodic function, we can relégcalculated in ;gmﬂilcaz'gzpfgsg:taﬁon of periodic structureg?Mod. Opt, vol. 41,
an arb'trary pointa, with (I)P calculated in a pointi obtained [10] M. Silveirinhé and C. A. Fernandes, “An hybrid method for the cal-

from u by translations along the primitive vectors. As we can culation of the band structure of 2D photonic crystals,Pimc. IEEE

always choose such that it satisfiegi; | < |azy |/2, @, can AP-S/URSI Sympvol. 4, San Antonio, TX, June 2002, pp. 348-351.
b luated i bit int of [11] G. Conciauro, P. Arcioni, M. Bressan, and L. Perregrini, “Wideband
€ evaluated In an arbitrary point ot space. modeling of arbitrarily shaped -plane waveguide components by the

The demonstration of (A3) is as follows. The Green func- ‘boundary integral-resonant mode expansion methd¢BEE Trans. Mi-
tion @, is the potential from a two-dimensional array of point _crowave Theory Techvol. 44, pp. 1057-1066, July 1996.

. e . . [12] P. Arcioni, M. Bressan, G. Conciauro, and L. Perregrini, “Wideband
sources, with phase shifts |mposedlbyThe two-dimensional modeling of arbitrarily shaped’-plane waveguide components by the

array can be regarded as the superimposition of one-dimensional boundary integral-resonant mode expansion meth&EE Trans. Mi-

arrays point sources. The potential from each one-dimensional_ crowave Theory Tecivol. 44, pp. 2083-2092, Nov. 1996.
[13] N. A. Nicorovici, R. C. McPhedran, and L. C. Botten, “Photonic band

f';lrray IS a Iayer _Gre_en function. Th's Iayer.Green functl(_)n gaps for arrays of perfectly conducting cylinderBfiys. Rev. E, Stat.
is the usual periodic Green function used in the analysis of  Phys. Plasmas Fluids Relat. Interdiscip. Togl. 52, pp. 1135-1145,

single-periodic structures in a two-dimensional space [20]. Th?14] 1995.

G f tiond thus b itt £ G D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M.
reen tunctore, can thus be written as a sum ot "layer reen Soukoulis, “Experimental and theoretical results for a two-dimensional

functions.” Using the spectral representation of the “layer Green  metal photonic band-gap cavity¥ppl. Phys. Lettvol. 65, pp. 645-647,
function” [20], we can verify that the sum of the layer potentials 1994.

ds tot tri . d. th b | 1%8] M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic
correspondas 1o two geometric series and, thus, can be evalua photonic band-gap materialsPhys. Rev. B, Condens. Matteol. 52,

in closed form. The result is (A3). pp. 11 744-11751, 1995.

The representation (A3) converges exponentially, excepgibl K. Sakoda,Optical Properties of Photonic Crystalser. Opt. Sci.
80. Berlin, Germany: Springer-Verlag, 2001.

whenu = 0. Neverthele_ss, itis obvious that' by interChan_ging[ﬂ] R. E. Collin,Field Theory of Guided Waveg2and ed. New York: IEEE
the roles ofa; and a; in (A3), we obtain an alternative Press, 1991.

representation fO@p- This second representation is ana|ogous[18] D._Colton and R. K_resslnverse Acogstic and Electromagnetic Scat-
he first but th . f sl diff | tering Theory Berlin, Germany: Springer-Verlag, 1992.
to the first one, bu € region of slow convergence dirers. n[19] N. A. Nicorovici, R. C. McPhedran, and B. Ke-Da, “Propagation of elec-

fact, it can be verified that for eveny in the unit cell, at least tromagnetic waves in periodic lattices of spheres: Green’s function and
one Of these representatlons Converges exponentla”y, except |f lattice SUmS,’PhyS. Rev. E, Stat. F’hyS Plasmas Fluids Relat. InterdISCIp.

- . . . . Top, vol. 51, pp. 690-702, 1995.
u = 0.Atthe Orlgln,@p diverges, and has the same |Ogar|thm|C[20] R. Jorgenson and R. Mittra, “Efficient calculation of the free-space pe-

singularity as the free-space Green function. Neat 0, we riodic Green’s function,IEEE Trans. Antennas Propagatol. 38, pp.
can write®, = @ + ®,.,, Whered is the free-space Green 633-642, May 1990.

function and®,., is a regular term. Alternatively, we can

accelerate the convergence of (A3) using the usual techniques

employed for the “layer Green function” [20]. In fact, the first

term of (A3a) (the one that converges slowly) is precisely théario G. Silveirinha (S'99) was born in Portugal, in 1975. He received the
“laver Green function.” Llcgnmado degree in electrical engineering from_the University of Coimbra,
4 Coimbra, Portugal, in 1998, and is currently working toward the Ph.D. degree
in electrical engineering at the Technical University of Lisbon, Lisbon, Portugal.
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