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Abstract— Joint symbolic and geometric planning is one of
the core challenges in robotics. We address the problem of
multi-agent cooperative manipulation, where we aim for jointly
optimal paths for all agents and over the full manipulation
sequence. This joint optimization problem can be framed as a
logic-geometric program. Existing solvers lack several features
(such as consistently handling kinematic switches) and efficiency
to handle the cooperative manipulation domain. We propose a
new approximate solver scheme, combining ideas from branch-
and-bound and MCTS and exploiting multiple levels of bounds
to better direct the search. We demonstrate the method in a
scenario where a Baxter robot needs to help a human to reach
for objects.

I. INTRODUCTION

Planning manipulation sequences fundamentally involves
both, reasoning about the smooth motion of all involved
agents and objects as well as making categorial decisions
about the type and order of manipulations and which objects
are involved. Siméon et al. [14] was one of the first to
pinpoint this combined geometric and logic structure of ma-
nipulation problems, which can also be viewed as a repeated
alternation of piece-wise smooth paths and discontinuous
kinematic switches [17].

The field of combined task and motion planning (TAMP)
addresses this problem in the single agent settings and
mostly from the perspective of finding feasible manipulation
paths. Srivastava et al. [15] proposed a standardized interface
between path finding algorithms (e.g. RRTs or PRMs) and a
logic planner. [9], [5] presented a reduction to CSP methods
and an adaptation of the FastForward planner to TAMP.
These and similar approaches are impressive in terms of the
demonstrated scaling to large number of objects. However,
they rely on sampling in the configuration space (e.g., pre-
sampling potential grasp configurations), which is good as it
potentially inherits the convergence (probabilistic complete-
ness) properties of sampling algorithms, but is less promising
in terms of scaling to high-dimensional kinematics. Further,
these methods focus on finding feasible manipulation se-
quences instead of optimal ones.

In contrast, in prior work [17] we proposed an optimiza-
tion formulation of TAMP, on which our work builds. The
formulation allows us to leverage non-linear mathematical
programming (NLP) techniques to efficiently find smooth
and locally optimal paths in high dimensional systems,
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while sampling is only used to search over the inherently
discontinuous aspects of the problem. However, the concrete
solver given in [17] is yet limited and tailored to situations
where the so-called effective end-state kinematics is a good
heuristic to explore manipulation sequences.

In this paper we address the problem of finding (near)
optimal solutions to multi-agent (in our case, four ma-
nipulators) sequential manipulation problems with high-
dimensional kinematics (in our case, 43 dimensions in total)
where additional degrees-of-freedom (dofs) become subject
to optimization whenever objects are manipulated. To tackle
such problems we generalize the solver of [17] to account
for multiple agents, and to exploit a hierarchy of bounds
(as in branch-and-bound) that can be computed using NLP
methods and allow us to prune branches of the search tree.
The extension to the multi-agent setting is based on prior
work on representing cooperative multi-agent manipulation
processes as semi-MDPs [19].

The resulting method is less powerful in terms of scaling
to many objects than the above mentioned feasibility ap-
proaches to TAMP, but scales well to the high-dimensional
kinematics. The optimality formulation entails a series of
sub-problems that have not yet been considered part of
TAMP, but are fundamental and yet un-addressed challenges
in itself. Our method equally tackles those problems in one
coherent formulation:

(1) When grasping an object the grasp parameters (e.g.,
object-hand transformation) have a strong influence on the
optimality of later actions with this object, e.g. when it
is required to place the object upside-down, or when the
object is used as a tool. In general, such long-term depen-
dencies of optimization variables are non-trivial to formulate
exactly in NLP formulations while still retaining a form
that is efficient to solve. We propose a novel approach to
represent such optimization variables by adding and deleting
effective dofs to the configuration kinematics at different
time slices, depending on the manipulation sequence. This
is an exact formulation of optimizing such action parameters
that correctly accounts for the long term dependencies while
retaining the Markovian structure of the path optimization
problem that is essential to ensure the linear-in-7" complexity
of computing Newton steps in the NLP.

(2) The path optimization method we exploit can be
viewed as a standard optimal control method, e.g., as used
in model-predictive control (MPC). However, we extended
the solver to handle optimization across kinematic switches,
where the kinematics and configuration space dimensionality
may vary across time steps. To our knowledge, this is the first
optimal control method we are aware to handle this case.
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After discussing related work we first recap the logic-
geometric programming framework and the present in detail
our novel solver scheme based on multiple levels of bounds.
We then discuss the specific path optimization methods used
and the extension to the multi-agent setting before reporting
on experiments.

II. RELATED WORK

Concerning Combined Task and Motion Planning
(TAMP), a number of approaches [9], [8], [7] rely on a
discretization of the configuration space or action/skeleton
parameter spaces to leverage CSP methods. Siméon et
al. [14] describe complex, multi-interaction planning of the
manipulation of a single object, but does not bridge to
relational/logic representations of environments with many
objects. Others [15], [5] devise a symbolic description that
includes predicates to abstract geometric feasibility condi-
tions and represent action operator preconditions on the
symbolic level. For a given task plan, the predicates are
evaluated on demand, as well as the Obstructs predicate
added depending on which objects make a path finder fail.
Such backtracking depending on geometrical reasoning is
also the core idea in [11], [3], [1]. To our knowledge our
prior work [17] is the first to propose a full optimization
formulation of TAMP.

Concerning multi-agent cooperative manipulation, in [19]
we presented a reduction of concurrent multi-agent decision
processes to semi-MDPs. This work considered only the
symbolic level—here we focus on the geometric optimality.
[4], [6] describe work on multi-robot cooperative assembly,
similar to our setting. However, the symbolic planning and
geometric execution phases are rather decoupled, and the
system does not aim for (locally) optimal concurrent robot
manipulation paths.

Path optimization across manipulation sequences has been
demonstrated by [10] based on a contact-invariant optimiza-
tion approach that originated in locomotion research. Equally
impressive, but not aiming at sequential manipulation plan-
ning, are recent methods on trajectory optimization through
contacts [12]. Both methods, however, do not address opti-
mization over paths where the kinematics and configuration
space really changes, as it is the case in our formulation, and
ensure that effective dofs (or skeleton parameters) are jointly
optimized with the full multi-agent path. They also neglect
symbolic search over alternative manipulation sequences.

III. LoGIC-GEOMETRIC PROGRAMMING

We recap the Logic-Geometric Programming (LGP) for-
mulation of sequential manipulation of [17]. As a starting
point, let us recap the notion of "kinematics’: Given a system
with configuration space X, the system kinematics describe
all possible paths of motion in X. We may more concretely
define it as the collection of tangent spaces

T.X={¢| & =a(zx,u), ueR"}

where u are some controls that articulate the system.

In our case we are concerned with m rigid objects and
n-articulated joints of potentially multiple agents; the con-
figuration space is X € R™ x SE(3)™. However, not all paths

are possible in this space: only n joints are articulated, and
the maximally n-dimensional tangent space 7, X depends on
which objects and manipulators are in contact or connected
in the configuration z. We want to capture the state space
kinematics in terms of path constraint functions

hpath(x7i‘) =0 ) gpath(x7j“) S 0 ’

which must hold for any = and imply 7, X.

When during manipulation a contact or connection is
created or destroyed, this implies a discontinuity in the
constraint functions Apan, gpah: €.8., the row space of their
Jacobians instantly changes to span other dimensions, which
can also be viewed as a flip of the tangent space 7, X.
In our view, these discontinuities are the core of why
sequential manipulation optimization is hard, in particular
the combinatorics implied by such discontinuities.

In this paper we use a first-order logic language £, similar
to PDDL, to describe kinematic structure. This means that we
require two properties to hold: First, we have a mapping from
every configuration z to a discrete relational state! s(z) € £
such that the constraint functions h, g

hpalh(xajc |s(z)) =0, gpath(xai |s(x)) <0

are smooth in x, & for a constant s(x). This describes a par-
titioning of the configuration space. Second, there exist first
order rules (e.g., PDDL-like) that enumerate all possible suc-
cessor states s € succ(sg.1), that is, all possible kinematic
switches from s. This describes the connectivity of configu-
ration space partitions. We further assume that the boundary
between two partitions (which corresponds to a kinematic
switch such as creating/destroying a contact/connection) can
be described by smooth constraint functions

Powiten (2 (k) | S, 581) =0, Gswiten (@ (tr) | Sky 58-1) <O .

In our experiments we will use a PDDL-like logic
modified to represent concurrent cooperative manipulation
domains, as described in [19], which contains predicates
grasp, place, handover that imply geometric constraints
as described in Sec. V-C.

In essence, we introduced a relational state to make the
conditional problem smooth, leading to piece-wise smooth
paths while s, € £ is constant, and categorial decisions
about kinematic switches s, € succ(sy.1). Based on this, the
overall sequential manipulation optimization problem can be
formulated as a Logic-Geometric Program of the form

min

T
pomin /0 c(z(t),£(t), 2(t)) dt + foou(x(T))
st hgoa(2(T)) =0, ggou(z(T)) <0

Vieo,7] Ppan (z(t), (1) | s5(r)) = 0
Vie(o,1] Ipatn (T(2), Z() [ k(1)) < 0O
Vi;l hswiten (z(tx) | Sk, Sk1) =0
Vie1 Gowiteh((tr) | Sk, sx1) <0
Vie=1.K Sk € SuCC(Sk_l)

SK ': Jgoal

By relational state we denote a conjunction of grounded literals.
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Here, c(x,,%) are typical control costs, and the terms
with subscript g, specify (optional) goal aspects, including
geometric costs and constraints and a symbolic goal con-
straint sx = ggoa (€.g., which contacts/connections are to
be established). The path and switch constraints are as above.
Finally we mention that an LGP differs from a mixed-integer
NLP in the same way that a PDDL problem differs from an
integer program.

IV. A MULTI-BOUND TREE SEARCH APPROACH TO
SOLVING LGPs

A. Multi-Bounds as search heuristics

[17] considered a basic solver for LGPs that focuses only
on the final effective kinematics to decide on candidate sym-
bolic sequences. Only for the best such symbolic sequences
the full sequence and path optimization is performed.

This is not sufficient to solve the more complicated
problems considered in this paper, where geometric cost
estimates of decisions are essential to guide tree search early
on. Tree search should be organized in a way that decisions
which are found to be geometrically infeasible or very costly
are avoided during tree search. For instance, in our example
domains there could be ~ 20 possible decisions in the start
state, while geometrically only about 4 of them are feasible.
Interweaving geometric feasibility and costs systematically
in tree search can therefore significantly reduce the branching
factor.

The approach we take here is a mixture of basic ideas from
branch-and-bound, admissible heuristics of A*-search, and
Monte-Carlo Tree Search. We start by defining our notion
of a lower bound.

A NLP P = (f,g,h) is a tuple of a cost function f and
two constraint functions (g, h). An NLP P is a lower bound
of another NLP P iff

P feasible = P feasible A f* < f* (1)

where f* = min, f(z) s.t. g(x) < 0,h(z) = 0 is the
optimum of P, and analogously for f *,

In the LGP, every terminating symbolic sequence si.x
with si | g implies a remaining NLP P(s1.x). To guide
search we are not only interested in bounds given a full
terminating sequence Si.x, but also in sequential bounds,
which roughly state that sub-sequences must be cheaper.
Let P(s1.,) assign an NLP to any symbolic sub-sequence
S1.x- We say that P bounds itself sequentially iff, for any
symbolic sub-sequence si.; and any possible continuation
Sk+1:k> P(s1:1) is a lower bound of P(s1.x), that is,

P(s1.x) feasible =
P(s1:.x) feasible A f*(s1k) < f*(s1:x) - (2)

In words, if P finds that the sub-sequence sp.; leads to an
infeasible NLP, then there can be no continuation sequence
(81:k, Sk+1:x ) that would lead to a feasible solution. Further,
the optimal cost of a sub-sequence is less than the optimal
cost of any continuation sequence.

Finally, we call a set of bounds (P4, .., P) a multi-bound,
if for each 4, P; is lower bound of P;,;, each P; bounds

itself sequentially, and Py, is the full NLP (path cost) of the
original LGP.

In the case of sequential manipulation it is natural to
construct such multi-bounds: Concerning the sequentiality
of bounds, it is clear that the cost of grasping and placing
something must be greater than that of grasping only. Con-
cerning the bound levels @ = 1,.., L, we detail below how
exactly we choose them. However, there is a simple generic
way to construct such bounds based on the following trivial
observation:

Lemma 1: Given an NLP P with an objective function
f(z) that is a sum of positive terms. It holds that (i) dropping
terms from f leads to a lower bound P, and (ii) dropping
constraint function terms from g or / leads to a lower bound
P.

_Proof: (i) Dropping a constraint term, the feasible set
of P is a superset of that of P. As f is unchanged, the
optimum can only decrease or stay equal. (i) As g,h are
unchanged z* is also feasible for P. As f drops a positive
term, f(z*) < f(«*) and therefore also f* < f*. [ |

In the LGPs we consider, the objective function f(x)
is always a sum-of-squares. Therefore, our approach to
constructing a series of bounds Pq,.., Py is to drop terms.
One special case of dropping terms it to choose a course
time-discretization of the path:

Corollary 1: If x = 1.7 is a path and P an NLP over the
path. Let £ = x, .+ be a sub-sample of the path, with coarser
time discretization. If all constraint terms depend only on
individual time slices z;, and those cost function terms
that depend on higher-order tuples (velocities, accelerations)
guarantee f(Z) < f(x), then the NLP over the coarse path
2 which drops the corresponding single-time slice terms is
a lower bound of P.

The specific choice of Py, Py, P3 we use in the experi-
ments will follow exactly these constructions.

B. Multi-Bound Tree Search (MBTS)

Our algorithm builds a tree of nodes, each node n contain-
ing:
— the list of child nodes
— the symbolic sub-sequence s1:+(n) of relational states from root
to this node,
— the ten best returns R;(n), j = 1,..,10 from MC rollouts,
where R; < Rj,1 through this node (see details below)
— the series P;(n), ¢ = 1,..,L of NLPs, where P;(n) =
Pi(s1:t(n)), and P;=1 is the coarsest bound and P;—r the
original full LGP

— for each i, whether P;(n) has been given to an optimizer
yet (a;(n) € {0,1}), whether the optimizer found a feasible
solution (b;(n) € {0,1}), and the minimum found by the
optimizer f;(n) € R

While a parallelised implementation would improve com-

putation time, for simplicity we chose a round robin scheme
to schedule which computations are made in each round.
Specifically, in each round the algorithm:

1) selects kg leaf nodes (detailed below) to be expanded

2) selects ki leaf nodes to contribute a new MC rollout

3) and for each : = 1,.., L, selects k; nodes (if adequate

ones exist, detailed below) to pass the NLP P;(n) to
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an optimizer
The numbers kg g1,.r determine how much computation
time we dedicate to the various heuristics. In our experiments
we chose kp = ko = ks =1, k1 = 5 and kr = 50.

In this scheme there are two essential ingredients to the
algorithm: how exactly the nodes are selected in each round,
and how detected infeasibilities (when a P;(n) is found
infeasible) feed back to the tree itself to prune branches.

Concerning node selection, in 1) and 2) we use the same
soft-max tree policy to choose a leaf node. We descend the
tree sampling the child ¢ according to

p(c) x exp{—LR1(c)}

where R;(c) is the best return found by MC rollouts through
child ¢, and 3 a temperature. We choose 5 = 2, where returns
are typically in the range [2,10] (returns are costs that we
minimize).

Selecting nodes in 3) for optimization could also be
described in terms of tree policies, but we find it simpler
to present the selection process in terms of prioritized
candidate queues. For each bound level ¢ we maintain a
list of candidates that are adequate to be passed to the
NLP solver. Depending on the bound we may require that
a node is adequate for optimization only when its parent
has been optimized before (we impose this on the level
of pose optimization P;); or when the node is a symbolic
terminal node (we require this for the sequence level P,
and the finest/full level P3). These rules define current sets
of candidate nodes for each optimization level ¢. These sets
are now prioritized simply by f;1(n), that is, the minimum
found by the next coarser optimization level.

C. Bound generalization across branches

To motivate another mechanism we first give an example.
When agent A aims to grasp a screwdriver which is initially
out of reach, the above method quickly finds that directly
reaching for the screwdriver is infeasible, e.g., with P1(n)
where n represents the direct grasp. However, this prunes
only the branch that starts with the direct grasp. Combinato-
rially many other branches exist which have the direct grasp
in second or third place, with fully unrelated actions in the
first step, e.g., agent B first grasping for an apple, then A for
the screwdriver. Clearly we know that this is still infeasible.
The bound Pi(n) (e.g., its infeasibility) should therefore
transfer to all branches that include the direct grasp if the
screwdriver or agent A has not been moved by a preceding
action.

For simplicity we adopted the approach of [15] to generate
such a type of generalization of bounds across branches,
which however is only able to generalize the symbolic
knowledge of infeasibility. Future research should try to
generalize also the optimistic costs. The approach of [15]
artificially introduces an infeasible predicate of the re-
spective decision in the relational state that blocks the
precondition of the decision. An interesting issue is where
exactly the predicate is introduced: introducing it at the root
state may be incorrect as it might have been a later action that
rendered a decision infeasible (e.g., the object was placed on

a distant table), and therefore the infeasible predicate only
holds after that action. We insert the infeasible predicate at
the tree node that last manipulated the object related to n,
when P;(n) finds an infeasibility.

Inserting an infeasible predicate somewhere in our search
tree implies a change of the structure of the tree (some
branches become symbolically unreachable) and therefore
the symbolic returns from MC rollouts have to be recom-
puted. This is the reason for why we explicitly store the
ten best MC returns at each leaf: In the respective branches
we delete all MC scores in internal nodes and backup all
explicitly stored returns from reachable leafs to the internal
nodes, without need to repeat these rollouts.

V. PATH OPTIMIZATION AND THE SPECIFIC
MULTI-BOUND LEVELS OF APPROXIMATION

A. Path optimization and kinematic switches

The MBTS algorithm out-sources sub-problems P;(s1.x)
to an NLP solver. These sub-problems are path optimization
problems that try to find a feasible and optimal path con-
sistent with the first £ symbolic decisions. We describe the
specific bound approximations made for ¢ = 1,2, 3 below.
Here we describe the path optimization problem and solver
used. It turns out that correct and efficient path optimization
across kinematic switches raises a number of interesting
issues.

As backbone we use the k-order Motion Optimization
(KOMO) method described in [18], which addresses prob-
lems of the form

min
ZTo:T

T
Z ft(zt—k:t)Tft(l"t—k:t)
t=0

ht(xt—k:t) =0. (3

Here, x; is the system configuration (not phase state) in time
slice ¢, and xy_g.; is a k+1 tuple of consecutive configura-
tions. This form assumes that the cost and constraint terms
may only depend on such k+1 tuples of consecutive configu-
rations (e.g., on finite difference velocities and accelerations
for £ = 2). The cost function is assumed to be a sum-of-
squares.

This particular formulation shares with other path opti-
mization methods (e.g., iLQG [16], DDP [2], CHOMP [13])
that (quasi-) Newton steps can be computed in complexity
linear in T, due to the bandedness of the Hessian, see details
in [18]. KOMO additionally handles constraints using the
Augmented Lagrangian method.

Below we specify how symbolic decisions si.; translate
to specific objective and constraint functions that reflect the
grasps, placements and hand-overs implied by s;.;,. However,
a more fundamental issue beyond these specific objectives is
how to handle kinematic switches accurately and generically
within this framework.

Consider a sequence where a robot picks up a screwdriver,
then places it on a table, then a human picks up the
screwdriver. On the first grasp a rigid connection is created
between the robot end-effector and the screwdriver (literally
switching the kinematic tree); however, the parameters of this

st Vi gi(wi—pgt) <0,
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connection are subject to optimization and heavily influence
the costs that arise when the robot places the screwdriver
again. Similarly, the parameters of where the screwdriver is
placed are subject to optimization and heavily influence the
costs that arise when the human grasps the screwdriver.

Approached naively, this raises issues in the context of
KOMO and any other methods that exploits banded Hessians
and local gradients, because the costs depend non-locally on
configurations: early (grasp) configurations have influence on
costs that appear much later in a (placing) configuration.
Technically, path optimizers require correct gradients and
the question arises how gradients are correctly “propagated
along” the trajectory to account for non-local effects of such
kinematic switches.

B. Effective kinematics and two complementary zero velocity
constraints to ensure correct gradient propagation

Our approach is to optimize paths over effective kinemat-
ics® as follows. When an object is grasped we introduce a 6D
free joint between object and end-effector in the kinematics,
thereby increasing the configuration space dimension; when
an object is placed on a table we introduce a 3D zyp-
joint (planar translation and rotation) between object and
table. These novel dofs represent what is classically called
action parameters [9], the geometric parameters of a grasp
or placement. Introducing them as effective dofs in the
kinematics allows us to optimize over them consistently and
jointly with the overall path. Technically we had to extend the
KOMO code to deal with the fact that the configuration state
space may frequently change dimensionality (while transition
costs, e.g., are still well-defined), and that the effective dofs
behave as expected. We achieve this by introducing two
complementary equality constraints:

(1) Effective joints are non-actuated and constrained to
zero velocity: All created and destroyed effective joints are
not articulated by true motors. Therefore, they must remain
fixed throughout their existence: a screwdriver placed on the
table remains fixed relative to the table; an object grasped
remains fixed relative to the hand. However, note that in the
first time slice of the joint existence, the respective dofs are
“free” and subject to optimization: where the screwdriver is
placed on the table, or how the object is placed into the
hand; equally the dofs in the last time slice of the joint
existence are subject to optimization: where the screwdriver
is picked from the table; how the object is positioned in the
hand when releasing it. The zero velocity constraint implies
that the start and end relative poses are optimized subject to
being equal. This is the underlying key of how gradients of
long-term geometric dependencies are correctly propagated
while still being conforming to our KOMO framework and
the implied banded Hessian that leads to efficient Newton
steps. However, this constraint does not ensure consistency
at creation/destruction of effective joints: objects would still
“jump”’.

(2) (De-)linked bodies have same relative velocities: In
time slice ¢ we detect all joints present in time slice ¢-1 but

2The concept was introduced only for final configurations in [17]. Here
we generalize it to kinematic switches across the path

not in time slice ¢ and vice versa (all created and destroyed
joints). For each pair of bodies (i,j) for which a joint is
created or destroyed we compute their difference in linear
velocity [p;(t) — pi(t-1) —p;(t) +p;(¢-1)] /7 as well as their
difference in angular velocity (derived properly from their
quaternion finite differences). We constrain these velocities
to be zero.

Note that the first constraint is formulated in configu-
ration space, while the second is in the involved objects’
pose spaces. These two complementary constraints ensure
consistent handling of switching kinematics.

Numerically one might be concerned that zero-velocity
constraints on effective joints are imprecise and small errors
accumulated along the existence of an effective joints could
lead to significantly different start and end poses. However,
this turns out not to be the case: We are computing exact
Gauss-Newton steps which is, as shown in [18] analogous
to Dynamic Programming (Riccati sweeps) and computing
exact (subject to the local LQ approximation) cost-to-go
functions. With respect to the effective joints this means
that the start configuration of an effective joints “sees” the
exact cost-to-go function w.r.t. the equality constraint and
therefore w.r.t. the end configuration. In this sense, there are
no “errors accumulating along the zero-velocity constraint”.
The iterates correctly compute gradients and Hessians across
time and kinematic switches.

C. Modeling grasp, place, and hand-over constraints

The path constraints hpam, gpah in our LGP include joint
limit and collision constraints as well as the just ex-
plained generic constraints for consistency across kinematic
switches. We now explain the specifics of how we defined
the switch constraints Agwiwch, gswiteh conditional to a grasp,
place and handover decisions in our experiments.

A decision grasp(t,e,o) states that a time slice ¢
end-effector e wants to grasp object o. This represents a
switch from si; to s where a joint from table to object
is destroyed and an effective ball joint between the end-
effector’s grasp center and object created. Geometrically it
additionally imposes

— a small-weighted sum-of-squares costs to align the end-effector

vertically downward,

— sum-of-squares costs to enforce downward and upward velocity

just before and after the grasp.
Note that the effective ball joint identically enforces the
object to be positioned in the grasp center after the grasp;
and the 2nd consistency constraint transfers this to before
the grasp.

A decision place (t,e,o,p) states that a time slice ¢
end-effector e wants to place object o onto p. This represents
a switch from sy to s; where the effective joint between
hand and object is deleted and a new effective 3D zye-
joint between table and object is created. Geometrically it
additionally imposes

— end-effector vertical alignment and up and down velocities as

for grasp,

— inequality constraints (four of them for a table) that indicate
whether the object’s center is within the table’s support.
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Note that the xyp-joint identically enforces the object touch-
ing the table after the placement; and the 2nd consistency
constraint transfers this to before the placement.

A decision handover (t,el,o,e2) 1is the straight-
forward combination of grasp and place, where the object
is placed into the 2nd end-effector e2 and a new effective
6D joint between e2 and o is created. Note that in this
case it is perfectly feasible that the handover is happening
in flight: The 2nd consistency constraint only requires the
relative velocities el-o and e2—o to be equal.

D. Used path optimization bounds

We use three levels Pq, Po, P3. The finest level P3 is the
full path optimization with fine time steps that reflects the
original LGP. The next courser level P5 is exactly the same
KOMO problem as P3, but with a much coarser time resolu-
tion, namely only two time steps® for one symbolic decision.
This means that Py only optimizes over the sequence of
key frames plus one intermediate frame. E.g., a manipulation
sequence with 5 manipulation decisions amounts to an NLP
over only 10 configurations z;, which is comparably fast
to optimize. The coarsest bound P;(n) does not optimize
over sequences at all and relies on the notion of effective
kinematics. It optimizes two configurations: the one associ-
ated with node n and its predecessor configuration associated
with the parent node. Importantly, the parent configuration
is optimized over its effective kinematics, that is, assuming
all effective joints to be articulable, fully neglecting the
costs and feasibility to actually reach such a configuration
with a previous path. E.g., it assumes that in the parent
configuration a screwdriver has been ideally placed on its
table to now being grasped by an agent, neglecting the costs
that a previous action raises to place it like this. This bound
is particularly optimistic and focuses on quickly evaluating
feasibility of n, presuming optimal preparation of previous
actions.

VI. MULTI-AGENT COOPERATIVE MANIPULATION

Our description of methods above did not mention multi-
agent aspects specifically. Using the appropriate problem
representations, all methods directly transfer.

Concerning the path optimizations, we consider the system
of a human and a robot, each with two end-effectors, as a
single kinematic system with 43 dimensions. Le., all paths
and configurations are optimized in the full-dimensional
configuration space. From the perspective of KOMO it makes
no difference whether the system’s path constraints have
single- or multi-agent semantics.

Concerning the logic £ which enumerates possible kine-
matic switches (actions) we have to introduce a relational
domain where all objects and each agent (the four end-
effectors) are constants. We adopt the RAP formulation
of [19] to formulate concurrent cooperative manipulation
processes on the symbolic level.

Note that our methods naturally leads to multi-agent paths
with concurrent movement of all agents. E.g., if a decision

3We required two time steps instead of just one in order to define
transition costs consistently with Pz and Corollary 1.
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Fig. 1. Evaluation metrics: Relation between CPU time, path queries Qyp,
and configuration queries Q.. We will use Q./1000 to report on the later
results.

Fig. 2. The scene we consider in our evaluations. A humanoid and Baxter
robot with two manipulators each (43 articulated joints in total) are located
around three tables. A screwdriver is placed far back on the right (w.r.t.
Baxter) table, and several pieces that make a wooden IKEA box on the left
table.

states that at time ¢ = 1 the robot grasps an object, while at
time ¢ = 3 the human grasp another object, then both start
moving already from ¢ = 0 on as this is the optimal overall
movement of both agents. The same is true when they jointly
and concurrently move through a handover.

VII. EXPERIMENTS
A. Metrics

As performance metric we considered the number of path
queries @Qp, i.e., how often a path x has been evaluated,
including f(x),g(x),h(x) and their Jacobians, within line
search or Newton steps. As the length of paths varies depend-
ing on the heuristic (sequence vs. full path) and tree depth,
we also considered the number of configuration queries Q.,
i.e., how often the forward kinematics and all task variables
were computed from a configuration x;. Fig. 1 shows the
relations between these query metrics and CPU time. We
find that CPU time is strongest correlated with ., with
about 0.698ms CPU time per configuration query; therefore,
Q./1000 is a slight overestimate of CPU time in seconds.
Configuration queries are rather slow in our code compared
to others, mainly because we use not particularly efficient
distance computations using SWIFT++ for all convex hulls.
We will use Q./1000 as main metric to report on results.

B. Path optimization across kinematic switches

The scene we consider throughout our evaluations is given
in Fig. 2. We first briefly demonstrate the path optimization
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Fig. 3. LEFT: Example sequence of an optimization across kinematic
switches where the robot places the screwdriver optimally for the human
to be grasped and placed again. RIGHT: A search tree generated after
~20sec. Please zoom the pdf to see details. Coarsely: The root node is on
the left, red nodes are labeled infeasible (the infeasible predicate is annotated
in respective ancestor), Po-feasible nodes are green, symbolically terminal
nodes (sx = g) are blue; Pa-feasible and symbolically terminal are cyan
and passed to the last level P3. At this stage, two feasible manipulations
(cyan nodes) are found. Nodes scheduled for Py are double framed.

P3 across kinematic switches for a pre-specified manip-
ulation sequence: Baxter grasps the screwdriver from the
right table with its right hand, places it on the center table,
the human grasps it with its left hand, then places it on
the left (from Baxter) table. Fig. 3(LEFT) illustrates the
resulting sequence. The sequence optimization Po required
0.47sec with Q. = 1020, while full path optimization Pj3
required 2.1sec with Q. = 3280. We also tested a direct
handover from Baxter to human, which requires one step
less for this task. While computation time was comparable
the total cost reduced from 3.90 to 3.57. We are not aware
of a comparable method that can generate such consistently
optimal paths of multi-agent sequential manipulation across
kinematic switches.

C. Getting a screwdriver that is initially unreachable

We applied our MBTS algorithm on the same problem
instance, now without prior knowledge of a feasible ma-
nipulation sequence. Fig. 3(RIGHT) displays the tree that
is generated in the first ~20sec; the pdf can be zoomed
if desired. The tree illustrates the attributes associated with
nodes. Fig. 4 displays what solutions are found by MBTS,
overlaying 5 randomized trials. All trial evaluated between
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Fig. 4. Performance overlaying 5 randomized trials. MBTS reliably finds
optimal manipulation sequences within the first 10000 queries (<10sec).
Later search finds more solutions, longer sequences that are non-optimal.
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Fig. 5. Performance of 5 trials, where the screwdriver can directly be
reached (early solution found), but a longer sequence yields less cost.

20 and 30 geometric sequences (P2) and 5-12 fine paths
(P3). Randomization enters MBTS at two places: the soft-
max tree policy and random rollouts of MC are randomized,
and the initialization of all path optimization problems is
randomized.

D. Getting a screwdriver that is costly to reach

As a similar experiment we placed the screwdriver more
to the front of the right table, where it is reachable by the
human but at high costs. The optimal manipulation sequence
is for the robot to place it closer to the human. Fig. 5 shows
that MBTS reliably first finds the sub-optimal solution (in
<lIsec), and later (<20sec) the optimal solution.

E. Getting a distant screwdriver and placing a box

In the same domain we consider the target of grasping the
screwdriver, which is out of reach (the robot has to place
it first), and placing the screw-box in the center table. The
optimal sequence requires 5 manipulations. Fig. 6 shows
that MBTS requires more computation (~50k configuration
queries), but finds a (locally) optimal and concurrent path
for all agents to achieve the task. The accompanying video
displays these multi-agent manipulation sequences.

VIII. DISCUSSION

In comparison to existing sampling-based approaches to
TAMP our proposed method has limitations. If we could
solve each NLP P;(s1.;) (for any symbolic decisions sy.j
and approximation level ¢) exactly, the MBTS approach itself
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Fig. 6.
task.

Performance of 5 trials for the full far-screwdriver-and-place-box

would inherit an A-star like proof of optimality. However,
the NLPs we deal with here are non-convex, non-linear
programs, and the KOMO solver we use aims for fast down-
hill Newton steps into a local optimum. This local optimality
of our geometric optimizations breaks the completeness and
global optimality of our methods—as is typically the case
for optimization-based vs. sampling-based path planning ap-
proaches. However, we think that a lack of global optimality
guarantees does not render path optimization methods super-
fluous. Instead, they have shown to be effective especially in
high-dimensional kinematics and where proneness to local
optima can be alleviated by random restarts.

Our approach to TAMP is very much build up from a path
optimization perspective and therefore formulates TAMP as a
mathematical program, in contrast to the mentioned existing
TAMP methods. While it cannot guarantee globally optimal
solutions, that fact that it returns a locally optimal path,
including all geometric action parameters of the sequence,
is a feature that these existing methods lack.

The method aims for efficiency in high-dimensional kine-
matics. The demonstration in Sec. VII-D considers a rather
complex sequential manipulation task, with four manipu-
lators executing 11 actions in a 43-dimensional kinematic
system, which is solved with about 50k configuration queries,
including the search over about a hundred alternative sym-
bolic sequences.

While the title and abstract highlight the LGP formulation
of multi-agent TAMP and the MBTS approach as core
contributions of this paper, the methods we developed to
efficiently solve the conditional NLPs P;(s1.;) are essential
to this work. In the path optimization and optimal control
literature, correct optimization across kinematics switches,
i.e. correctly handling the temporally non-local effect of
geometric action parameters, has hardly been addressed in
general. The proposed concept of effective dofs (implying
variable configuration space dimensionality over time) and
the two respective consistency constraints (Sec. V-B) are
an elegant way to correctly represent such problems and
were crucial to develop a generic solver for the conditional
NLPs. The proposed notion of effective kinematics was also
essential to define the coarsest and most efficiently pruning
bound P;, as well as the heuristic used in our earlier work
[17]. In our view, these are contributions to the field of path

optimization in itself, independent of TAMP.
The source code for the experiments can be found on the
author’s webpage.
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