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The Gibbs ensemble simulation method is extended to multiphase equilibria by increasing the
number of boxes that can be used concurrently in the simulation. Atoms are moved within
each box and pairs of boxes are selected at random for the volume and particle exchange
moves. The equivalence between the Gibbs ensemble with an arbitrary number of boxes
and the corresponding canonical ensemble is established. Simulations of two-component,
three-phase equilibria and three-component, four-phase and three-phase equilibria are demon-
strated for simple model systems, and the model phase diagrams are determined.

1. Introduction

Since its introduction some years ago [1], the Gibbs
ensemble Monte Carlo, technique has proved to be one
of the most e� ective ways of directly simulating two
coexisting phases in equilibrium, and it is being applied
successfully to the study of liquid± vapour, osmotic and
liquid± liquid equilibria in a wide range of ¯ uids and
¯ uid mixtures [2].

In the Gibbs method two bulk phases are simulated
as two separate subsystems, avoiding the problems with
the direct simulation of the interface between the two
homogeneous phases. Equilibrium is attained by
allowing the subsystems to undergo three types of
move: random particle movements within each sub-
system; complementary expansion/contraction of the
subsystems; and a transfer of one particle from one
subsystem to the other. The ® rst type of move
is responsible for the internal equilibrium within
each subsystem, and the latter two moves ensure the
equality of pressure and chemical potential between
the phases.

In the present work the Gibbs ensemble method has
been extended to the study of more than two coexisting
phases by increasing the number of subsystems involved
in the simulation. In the following section the problems
associated with such an extension, i.e., the soundness of
such an extended ensemble and the way to sample it
using a Monte Carlo method will be dealt with in
more detail, and later some examples of systems
showing multiple phase separation will be presented.

An understanding of ¯ uid systems is associated
strongly with the determination of their phase
diagrams. The phase rule indicates that in the case
of multi-component systems these diagrams can be
quite complicated, due to the presence of zones domi-
nated by multiple phase coexistence. The Gibbs
ensemble Monte Carlo technique can be used in the
form presented in this paper to simulate these phase
diagrams directly.

2. Theory

The theoretical basis of the Gibbs ensemble Monte
Carlo method has been reviewed by Panagiotopoulos
[2] and Smit [3]. Smit showed formally that the free
energy density of the Gibbs ensemble is identical to
the free energy density of the canonical ensemble in
the thermodynamic limit, i.e., the ensembles can be
regarded as equivalent.

The partition function of the Gibbs ensemble can be
written as a combination of the partition functions of
each system. In the case of two subsystems:

QNV T = å
N

n1= 0 ò
V

0
dV1Qn1 V1T Qn2V2 T , (1)

where N, V and T are the total number of particles,
the volume and the temperature of the system, n1 is
the number of particles in box 1 and V1 denotes the
volume of the ® rst box. Q and Q represent the Gibbs
ensemble and canonical ensemble partition functions
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(the partition functions of each subsystem for a given n1

and V1 correspond to canonical ensembles). The
free energy density of the Gibbs ensemble, f ( q ) is
de® ned as

f ( q ) = lim
V ® ¥

N /V = q

- 1
b V

lnQNV T[ ], (2)

and is identical to the free energy density of the
corresponding canonical ensemble [3]. Furthermore,
it has been shown [3] that in the case of a single
phase (high temperature) both boxes in the Gibbs
ensemble will have the same density, whereas in the
case of a system exhibiting a ® rst-order phase transi-
tion each box will represent one of the two coexisting
phases.

In the case of s subsystems (with V = å s
i= 1 V i and

N = å s
i= 1Ni), the corresponding partition function

can be written using a recursive argument: ® rst we
write the Gibbs ensemble partition function of two sub-
systems (the last two) with a total number of particles
just N2 = ns + ns- 1 and a total volume V2 = Vs + Vs- 1.
These two subsystems are equivalent to one (N2, V2, T)
canonical ensemble.

Q2 = å
N2

ns- 1= 0 ò
V2

0
dVs- 1Qns- 1 V s- 1T Qns V s Ts . (3)

Now a third subsystem can be added (the total number
of particles becoming N3 = ns + ns- 1 + ns- 2) and a new
Gibbs ensemble partition function (again similar to
equation (1)) can be written using the previous partition
function as a whole:

Q3 = å
N3

ns- 2= 0 ò
V 3

0
dVs- 2Qns- 2V s- 2 T Q2

= å
N3

ns- 2= 0 å
N2

ns- 2= 0 ò
V3

0
dVs- 2

´ ò
V2

0
dVs- 1Qns- 2V s- 2 T Qns- 1 V s- 1T Qns V s T . (4)

The procedure can be repeated until all the subsystems
are added. The ® nal expression takes the form

Qs = å
N

n1= 0 å
N- n1

n2= 0

´´´ å
N- (n1+ ´́ ´+ ns- 2)

ns- 1= 0 ò
V

0
dV1

´ ò
V - V1

0
dV2 ´´´ ò

V - ( V1+ ´́ ´+ Vs- 2)

0
dVs- 1 Õ

s

i= 1
Qni V i T (5)

or, substituting the expressions for each canonical

ensemble

Qs =
1

L 3N V s- 1N! å
N

n1= 0 å
N- n1

n2= 0
´´´ å

N- (n1+ ´́ ´+ ns- 2)

Ns- 1= 0

N
n1( )

´ N - n1

n2( ) ´´´
N - (n1 + ´´´+ Ns- 2)

ns- 1( )
´ ò

V

0
dV1 ò

V - V1

0
dV2 ´´´ ò

V - (V1+ ´́ ´+ V s- 2)

0
dVs- 1

´ Õ
s

i= 1
V ni

i ò dx n1
i exp (- b Ui(ni)). (6)

In all steps the equivalence between a Gibbs ensemble
and a corresponding canonical ensemble is clear. This
equivalence is as true for the many-box Gibbs ensemble
as for the original two-box ensemble. The number of
degrees of freedom of the extended Gibbs ensemble is
larger than in the original method: the minimum free
energy surface is no longer bidimensional but a
2(s - 1)-dimensional hypersurface. In a system ex-
hibiting a ® rst-order phase transition, each box will con-
verge to one of the equilibrium densities. As we lose
phases by changing conditions some of the boxes will
exhibit identical densities. In the case of more than 2
phases at least 3 boxes will have di� erent densities. As
previously shown [3], the driving force for the equilibra-
tion in the Gibbs ensemble is the minimization of the
surface free energy, causing the system to split into one
homogeneous phase in each box.

The statistical weight of a given con® guration with n1,
n2, . . . ,ns particles in the 1st, 2nd, . . . , sth subsystem of
V1, V2, . . . , Vs volume is (cf. equation (6))

p(n1, n2, . . . ,ns; V1, V2, . . . , Vs; T ) ~ V n1
1 V n2

2 . . . V ns
s

n1!n2! . . . ns!

´ exp - b å
s

i= 1
Ui(ni)( ) . (7)

Since all the Monte Carlo moves performed during a
Gibbs ensemble Monte Carlo simulation are either inside
each simulation box (a particle displacement) or between
a pair of boxes (volume and particle exchanges), the
acceptance criteria for producing a Markov chain of
con® gurations with a probability distribution equivalent
to equation (7) are the same whether the system has two
or more simulation boxes. For volume and particle
exchange, two boxes are selected at random and only
their respective volume, total potential energy and
number of particles need to be considered. These rules
have been reported elsewhere [4].

We will demonstrate that the Gibbs method can be
extended in this way by considering a number of simple
examples.
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3. Three-phase boundaries in binary mixtures

3.1. Computational aspects
All the simulations presented in this paper were pro-

duced using mixtures of Lennard± Jones atoms studied
using constant volume Gibbs ensemble Monte Carlo
simulations. All simulations were started from a face-
centred cubic lattice con® guration with species placed
randomly on the lattice. Except where otherwise
stated, the initial volume, density and composition of
each box were identical. Binary mixtures exhibiting
liquid± liquid± vapour (LLV) and liquid± vapour (LV)
equilibria were simulated using three simulation boxes.
In cases where only two phases were present (LV or
liquid± liquid (LL) equilibria), additional two-box simu-
lations also were performed to check the results.

In order to ful® l the conditions of microscopic revers-
ibility at every step of the simulation the type of Monte
Carlo move to be performed is selected at random with a
predetermined probability. After the selection of the
type of move, the box or pair of boxes to be a� ected
by the move also is selected at random. Finally, in the
particle displacement or interchange moves, one particle
from one of the selected boxes also is picked randomly.
The microscopic reversibility of such an algorithm has
been demonstrated by Rull et al. [5]. Their acceptance
criteria (closely related to the original criteria proposed
by Panagiotopoulos et al. [4]) have been followed.

The pre-® xed ratio for each type of move was chosen
by considering the e� ciency with which the simulation
attains equilibrium. The number of possible di� erent
moves between boxes during particle and volume
exchanges is given by s(s - 1) /2. Since it is important
that equilibrium is established between all boxes, the
number of exchange moves has to increase accordingly.

The displacement moves were performed by adding a
random value from a uniform distribution to the co-
ordinates of the particle undergoing the displacement.
The maximum value of the displacement in each box
was updated in order that the acceptance ratio of the
moves stayed at 50%. The volume exchanges also were
chosen randomly from a uniform distribution, and the
maximum volume exchange was adjusted to produce an
acceptance ratio of 50% for any given pair of boxes.
During this type of move the potential energy in each
of the boxes a� ected by the change was calculated using
the scaling properties of the Lennard-Jones potential
(separation of the repulsive and attractive terms). The
particle exchange moves were performed in two comple-
mentary ways selected with ® xed probability: either one
particle is moved from one box to another (0.9 prob-
ability) or two particles of di� erent species (and di� erent
boxes) are swapped (0.1 probability).

Two aspects of the method became evident during the
multi-box simulations. First, whenever the number of

phases is smaller than the number of boxes, the extra
degree(s) of freedom allow the size and number of par-
ticles of each box to sample several points in the
minimum energy hypersurface. This means that one or
several of the boxes can c̀ontract’ in terms of N and V
until it vanishes or until ® nite-size e� ects become domi-
nant. This type of problem has been noted already for
two-box simulations in one-phase systems. Second, it
was found that it is much easier to equilibrate two
dense ¯ uids (liquids) when they are in equilibrium with
their vapour (the LLV situation). The composition
within each liquid reaches its equilibrium value since
both are in equilibrium with the vapour, and the rate
of acceptance for particle exchange moves between
liquid and vapour is much higher than between two
liquids. Particle interchange from one liquid to the
other occurs through the vapour phase.

In ® gure 1 two control plots for the simulation of
mixture I are shown (see table 2 later). The plots show
the ® rst 5000 cycles, where the density and composition
equilibration processes in each box are easily recogniz-
able. In a typical simulation some 450± 600 particles
were used to generate 40± 80 thousand simulation
cycles (in each cycle a number of displacement moves
equal to the total number of particles plus a number of
volume and particle exchange moves given by the pre-
determined ratios are attempted). Equilibration periods
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Figure 1. Reduced density q and mole fraction xA of com-
ponent A, in the three-phase region (LLV) of mixture I
(equimolar composition, cf. table 1) as a function of the
number of cycles generated in a three-box Gibbs ensemble
simulation.



ranged from 10 to 40 thousand steps, depending on the
number and relative density of the phases present.

In ® gure 2 two similar control plots for the simulation
of mixture V are shown. In this case the data presented
corresponds to simulation cycles performed after equili-
bration of the system (LLV equilibria) and shows the
occurrence of an identity change between the two boxes
containing the two immiscible liquids. This ® nite-size
e� ect starts to be relevant when the composition of the
system approaches values close to the end of the immis-
cibility window (LLV to LV phase transition).

3.2. Simulation results
Two types of binary mixture were considered (see

table 1). In mixture I both components have the same
size and volatility: indeed they are identical Lennard-
Jones particles. The liquid± liquid immiscibility occurs
because of the low value attributed to the cross-inter-
action Lennard-Jones parameter e AB. In mixture II the
components have quite di� erent volatility, and in this
case liquid± liquid separation occurs because the less
volatile component excludes the other from its presence.

A mixture similar to I was studied previously by
Panagiotopoulos et al. [4]. In their case, since both the
value of e AB and the reduced temperature were higher

(0.75 and 1.15, respectively), liquid± liquid immiscibility
did not occur, the mixture exhibiting an azeotrope.
Making this mixture slightly less ideal and/or lowering
the temperature leads to the liquid± liquid immiscibility.
This was observed by van Leeuwen et al. [6]for mixtures
with pure-component LJ parameters corresponding to
argon and krypton using a variable cross-interaction
parameter. However, the three-phase line could not be
determined exactly by extrapolation, due to the large
pressure ¯ uctuations on the LL two-phase side.

Table 2 presents the results for thermodynamic prop-
erties on the coexistence curves (LL, LV and LLV equi-
libria) of the two mixtures. These results were tested for
their internal consistency by considering (i) the pressure
values in the three simulation boxes, (ii) the agreement
of results in the two-phase region (LL or LV) consid-
ering two or three box simulations, and (iii) the calcula-
tion of the chemical potential in the three boxes for
selected points in the diagrams. The data corresponding
to the two pure components also were checked against
the data reported by Panagiotopoulos [1] and Adams
[7].

The p-x-y phase diagrams for each mixture are shown
in ® gures 3 and 4. The phase diagram shown in ® gure 3
is probably one of the most common whenever two
liquids of similar volatility are only partially miscible.
Mixtures of normal alkanes with their per¯ uoro counter-
parts (e.g., methane + tetra¯ uoromethane or cyclo-
hexane + per¯ uorocyclohexane) are typical examples
of such systems [8]. The phase diagram presented in
® gure 4 is typical of systems where the two pure com-
ponents have very di� erent volatility (e.g. n-pentane+
nitrobenzene).

4. Ternary mixtures

4.1. Computational aspects
In the ternary system exhibiting triple liquid immisci-

bility (mixture IV) four simulation boxes were used
when the system split into four phases in equilibrium
(three liquid and one vapour phase, LLLV). Otherwise
three boxes were used to simulate LLV equilibria. The
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Figure 2. Reduced density q and mole fraction xA of com-
ponent A, in the three-phase region (LLV) of mixture IV
(0.335 mole fraction in A and B, cf. table 2) as a function
of the number of cycles generated in a three-box Gibbs
ensemble simulation. The composition plot shows only
the two liquid phases (plotted using a solid curve and
dots). The system exhibits identity swapping between the
two simulation boxes containing the liquid phases.

Table 1. Interaction parameters and reduced temperature for
the mixtures studied. The Lennard-Jones diameter is the
same for all interactions, s = 1.

Mixture e AA e BB e CC e AB e AC e BC T

I 1 1 Ð 0.7 Ð Ð 1.0
II 0.7 1.4 Ð 0.89 Ð Ð 0.8
III 1 1 1 0.7 0.7 0.7 1.0
IV 1 1 1 0.6 0.6 0.6 1.0
V 1 1 1 0.6 1 1 1.0



computational procedures were similar to those dis-
cussed in section 3.

A swapping of the identity of the two boxes con-
taining two immiscible liquid phases was found in mix-
tures III and V, near the ends of the immiscibility
windows. In such cases the composition of the phases
at equilibrium was determined by accumulating the
simulation results for the compositions in a histogram
and selecting the maxima.

4.2. Simulation results
The interaction parameters for the ternary mixtures

studied are also reported in table 1. In both mixtures all
three components have identical size and self-interaction

parameters, i.e., phase separation is due only to weaker
cross-interactions.

The simulation data obtained for the thermodynamic
properties on the coexistence curve (LLV and LLLV
equilibria) of the three mixtures are presented in table
3. The internal consistency of the data was checked
using criteria (i) and (iii) of section 3.

The x± y ternary diagrams for mixtures III± V are
shown in ® gures 5± 7. The symmetry of the diagrams is
a consequence of the identity between all pure-compo-
nent parameters and the choice of cross-parameters
representing identical interactions between all compo-
nents (mixtures III and IV) or a third component exhi-
biting the same a� nity for the other two (symmetrical
amphiphilic behaviour in mixture V).
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Table 2. Results for phase coexistence properties of binary mixtures: p± x± y and density data. The numbers in parentheses indicate
the uncertainty in the last decimal digits, i.e., 0.026(5) means 0.026 6 0.005. These errors are one standard deviation in the block
averages and are calculated through the production phase.

xA total pvap. xA liq.1 xA liq.2 yA q liq.1 q liq.2 q vap.1

Mixture I
0.00 0.026(5) 0.000 0.000 0.000 0.705(19) 0.706(18) 0.031(6)
0.04 0.036(6) 0.020(8) 0.024(8) 0.242(60) 0.701(20) 0.701(20) 0.044(6)
0.10 0.043(60 0.059(20) 0.063(19) 0.416(87) 0.684(22) 0.689(23) 0.055(8)
0.20 0.051(6) 0.153(24) 0.142(23) 0.517(90) 0.662(21) 0.660(20) 0.069(8)
0.50 0.052(7) 0.868(29) 0.114(32) 0.460(94) 0.661(21) 0.667(21) 0.072(12)
0.60 0.050(7) 0.910(38) 0.142(58) 0.514(99) 0.677(22) 0.664(31) 0.068(11)
0.80 0.053(7) 0.859(40) 0.850(45) 0.481(98) 0.661(21) 0.663(22) 0.073(10)
0.85 0.052(7) 0.926(32) 0.893(40) 0.505(90) 0.684(21) 0.673(24) 0.071(8)
0.90 0.045(6) 0.947(19) 0.939(22) 0.471(94) 0.692(21) 0.686(24) 0.058(7)
0.90a 0.042(6) 0.945(6) 0.931(16) 0.587(87) 0.686(21) 0.682(17) 0.053(7)
0.94 0.039(6) 0.967(9) 0.963(9) 0.694(70) 0.698(21) 0.693(18) 0.048(6)
0.95 0.036(6) 0.972(10) 0.972(10) 0.714(77) 0.696(19) 0.702(21) 0.044(7)
0.97 0.031(4) 0.983(8) 0.982(8) 0.811(60) 0.699(19) 0.700(17) 0.037(6)
0.98 0.029(5) 0.988(7) 0.989(8) 0.857(64) 0.696(20) 0.700(17) 0.035(6)
0.99 0.027(6) 0.995(4) 0.995(4) 0.918(42) 0.702(24) 0.705(20) 0.032(6)
1.00 0.025(5) 1.000 1.000 1.000 0.709(19) 0.702(18) 0.030(6)
1.00a 0.025(6) 1.000 1.000 1.000 0.708(20) 0.704(18) 0.029(6)

0.50b 0.216(18) 0.882(14) 0.079(15) Ð 0.702(17) 0.714(22) Ð
0.50b 0.384(21) 0.086(16) 0.911(15) Ð 0.730(18) 0.726(19) Ð

Mixture II
1.00 0.042(6) 1.000 1.000 1.000 0.611(39) 0.612(24) 0.074(15)
0.98 0.040(5) 0.978(9) 0.978(15) 0.997(8) 0.623(37) 0.621(22) 0.069(13)
0.97c 0.039(6) 0.967(2) Ð 0.995(10) 0.629(23) Ð 0.066(16)
0.50 0.036(5) 0.965(23) 0.096(19) 0.995(10) 0.621(33) 0.878(10) 0.060(10)
0.07c 0.011(6) Ð 0.031(19) 0.988(71) Ð 0.884(11) 0.022(8)
0.04c 0.008(7) Ð 0.022(12) 0.980(81) Ð 0.885(10) 0.016(14)
0.02c 0.004(2) Ð 0.011(5) 0.934(98) Ð 0.882(9) 0.005(3)
0.00 5 ´ 10- 5(20) 0.000 0.000 0.000 0.884(10) 0.882(10) 6 ´ 10- 5(25)
0.50b 0.061(13) 0.945(24) 0.084(22) Ð 0.647(8) Ð Ð
0.50b 0.149(15) 0.938(25) 0.088(22) Ð 0.676(10) 0.884(14) Ð
0.50b 0.143(14) 0.944(24) 0.093(98) Ð 0.669(9) 0.882(16) Ð

a Simulation with a di� erent total number of particles.
b Two-box simulation in the liquid± liquid (LL) two-phase region.
c Two-box simulation in the liquid± vapour (LV) two-phase region.
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Figure 3. Phase diagram (p± x± y) for mixture I at T = 1.0.
Shaded and blank areas correspond to one-phase and
two-phase regions; ® lled and open circles refer to simula-
tion data in the liquid and vapour phases, respectively;
and the dashed line marks the region where LLV equili-
bria occur.

Figure 4. Phase diagram (p± x± y) for mixture II at T = 0.8;
symbols as for ® gure 3.

Table 3. Results for phase coexistence properties of ternary mixtures: p± x± y and density data.

xA,B total
a pvap xA,B, liq.1 xA,B, liq.2 xA,B, liq.3 yA,B q liq.1 q liq.2 q liq.3 q vap.

Mixture III
0.500 0.874(53) 0.125(45) Ð 0.51(15)0.056(8) 0.667(27) 0.668(25) Ð 0.080(17)0.500 0.126(57) 0.875(63) Ð 0.49(15)
0.485 0.804(57) 0.150(16) Ð 0.47(10)0.062(7) 0.650(27) 0.655(26) Ð 0.093(17)0.485 0.174(58) 0.830(60) Ð 0.45(10)
0.480 0.790(64) 0.154(56) Ð 0.46(11)0.063(7) 0.643(28) 0.652(27) Ð 0.097(16)0.480 0.181(77) 0.819(82) Ð 0.44(11)
0.000 0.000 0.000 Ð 0.0000.057(8) 0.664(23) 0.673(22) Ð 0.085(18)0.500 0.147(52) 0.884(64) Ð 0.51(15)
0.030 0.023(7) 0.025(8) Ð 0.09(4)0.058(8) 0.654(23) 0.644(23) Ð 0.078(15)0.485 0.839(37) 0.153(44) Ð 0.45(13)
0.050b 0.043(8) 0.043(8) Ð 0.12(5)0.061(9) 0.649(24) 0.596(23) Ð 0.091(19)0.475b 0.269(30) 0.688(60) Ð 0.44(12)
0.070b 0.060(10) 0.060(10) Ð 0.15(5)0.068(9) 0.625(23) 0.597(31) Ð 0.110(20)0.465b 0.321(50) 0.619(60) Ð 0.43(13)
0.460b 0.316(40) 0.614(50) Ð 0.42(12)0.069(9) 0.618(43) 0.598(26) Ð 0.110(20)0.460b 0.614(50) 0.316(40) Ð 0.42(11)
0.500 0.130(40) 0.891(41) Ð 0.51(12)0.054(7) 0.664(24) 0.673(22) Ð 0.076(25)0.000 0.000 0.000 Ð 0.000
0.490 0.142(46) 0.867(48) Ð 0.47(14)0.061(9) 0.659(25) 0.669(23) Ð 0.091(19)0.020 0.016(7) 0.014(7) Ð 0.06(3)
0.480 0.813(97) 0.189(86) Ð 0.45(14)0.059(8) 0.646(29) 0.634(29) Ð 0.084(18)0.040 0.031(11) 0.034(11) Ð 0.12(5)
0.460b 0.336(30) 0.587(50) Ð 0.42(15)0.062(8) 0.584(23) 0.595(24) Ð 0.090(21)0.080b 0.078(10) 0.078(10) Ð 0.164(5)

(Continued )



The components of mixture III have the same inter-
action parameters as those in mixture I (cf. table 1). The
three sides of the ternary diagram shown in ® gure 5
(binary mixtures A + B, A + C and B + C) correspond
to the three-phase line in mixture I (cf. ® gure 3). When a
small amount of the third component is added to these
binary mixtures its concentration is not large enough to
form a new liquid phase rich in that component. This
means that the added component will have to distribute
itself between the already existing liquid and vapour
phases. The interactions in those phases will become
weaker, pressure will increase and the immiscibility
window will become narrower. In the case of mixture
III the immiscibility windows close before the added

component reaches a concentration suitable for the for-
mation of a third liquid phase: the phase diagram shows
three immiscibility windows (LLV equilibria) adjacent
to the sides of the ternary diagram.

If the interactions between components are decreased,
the three immiscibility LI windows of ® gure 5 will
expand and will eventually overlap. This situation was
analysed in mixture IV, where all cross-interaction
parameters were reduced from 0.7 to 0.6. Weak inter-
actions between all three components produces a dia-
gram showings almost complete immiscibility between
them (® gure 6). The diagram also shows a four-phase
(triple immiscibility) line: if all components are present
in the mixture with a concentration larger than about
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Table 3. (Continued ).

xA,B total
a pvap xA,B, liq.1 xA,B, liq.2 xA,B, liq.3 yA,B q liq.1 q liq.2 q liq.3 q vap.

Mixture IV
0.500 0.037(21) 0.967(32) Ð 0.49(15)0.059(10) 0.686(30) 0.691(27) Ð 0.082(19)0.500 0.963(56) 0.033(20) Ð 0.51(16)
0.480 0.038(25) 0.951(64) Ð 0.43(15)0.069(11) 0.691(34) 0.685(34) Ð 0.096(20)0.480 0.947(61) 0.034(24) Ð 0.41(14)
0.466 0.042(31) 0.938(71) Ð 0.39(13)0.076(12) 0.687(36) 0.679(40) Ð 0.111(20)0.466 0.993(62) 0.038(26) Ð 0.38(12)
0.333 0.048(30) 0.910(71) 0.043(16) 0.35(10)0.098(18) 0.675(43) 0.679(50) 0.682(48) 0.204(28)0.333 0.907(65) 0.043(20) 0.039(15) 0.31(10)
0.000 0.000 0.000 Ð 0.0000.056(10) 0.689(29) 0.689(27) Ð 0.077(18)0.500 0.036(20) 0.968(51) Ð 0.49(16)
0.500 0.040(25) 0.967(56) Ð 0.49(15)0.055(10) 0.688(29) 0.691(27) Ð 0.086(19)0.000 0.000 0.000 Ð 0.000
0.480 0.047(29) 0.953(78) Ð 0.45(14)0.077(11) 0.682(33) 0.693(31) Ð 0.119(23)0.040 0.015(12) 0.012(10) Ð 0.13(3)
0.060 0.022(15) 0.019(13) Ð 0.20(3)0.078(11) 0.681(29) 0.683(30) Ð 0.116(17)0.470 0.939(53) 0.036(19) Ð 0.40(9)
0.460 0.041(30) 0.938(71) Ð 0.39(9)0.087(13) 0.687(35) 0.688(35) Ð 0.143(22)0.480 0.026(19) 0.025(26) Ð 0.22(3)
0.100 0.030(20) 0.028(11) Ð 0.26(3)0.092(13) 0.686(34) 0.688(35) Ð 0.157(21)0.450 0.927(81) 0.038(27) Ð 0.37(9)

Mixture V
0.500 0.037(16) 0.967(55) Ð 0.49(16)0.059(8) 0.686(13) 0.691(22) Ð 0.082(17)0.500 0.963(47) 0.033(17) Ð 0.51(14)
0.465 0.046(18) 0.893(34) Ð 0.49(13)0.050(7) 0.689(23) 0.687(22) Ð 0.065(12)0.465 0.882(40) 0.039(19) Ð 0.47(12)
0.430 0.056(24) 0.799(41) Ð 0.46(14)0.048(7) 0.684(22) 0.681(24) Ð 0.063(14)0.430 0.805(37) 0.061(25) Ð 0.46(13)
0.400 0.078(38) 0.679(52) Ð 0.44(14)0.048(7) 0.681(24) 0.670(26) Ð 0.064(14)0.400 0.719(72) 0.104(59) Ð 0.45(13)
0.365 0.120(45) 0.602(49) Ð 0.42(13)0.045(7) 0.673(25) 0.672(25) Ð 0.060(13)0.365 0.601(57) 0.119(48) Ð 0.42(13)
0.335b 0.273(50) 0.369(50) Ð 0.40(12)0.041(6) 0.663(21) 0.667(27) Ð 0.052(11)0.335b 0.384(50) 0.282(50) Ð 0.41(12)
0.300 0.291(49) 0.298(51) Ð 0.38(12)0.037(6) 0.661(32) 0.665(21) Ð 0.046(10)0.300 0.294(53) 0.292(49) Ð 0.39(13)

a The subscripts A and B refer to the ® rst and second component’ s mole fractions, respectively. These are shown in two successive
rows in the table.

b Due to identity interchange of the two boxes containing the liquid phases, the results presented were obtained by arranging the
simulation data in a concentration histogram and selecting the concentrations corresponding to the maxima of the plot.



5% three liquid phases, each rich in one of the compo-
nents, will be at equilibrium with an equimolar vapour
phase (the four points joined by the dashed line in
® gure 6). A mixture of type I (alkane + per¯ uoroalkane)
mixed with a strongly polar species may exhibit such
behaviour.

In the case of mixture V the e AB interaction was kept
at 0.6 but the cross-interaction parameters between
component C and the other two components were
increased to unity (amphiphilic behaviour of the third
component). Figure 7 shows a diagram exhibiting a

large immiscibility window between A and B that
decreases when C is added to the system. Considering
again an (alkane + per¯ uoroalkane) system, a third
component could be in this case a suitably partially
¯ uorinated alkane.

5. Conclusion

The Gibbs simulation method can be extended to
study multiphase equilibria by increasing the number
of boxes. The boxes are considered in pairs so that the
rules for the particle and volume exchanges and the
methods for dealing with mixtures and long range cor-
rections can be carried over directly from the two-phase
simulations.

Whenever the number of phases is smaller than the
number of boxes then at least two of the boxes will be at
the same density. We have to exercise considerable care
in this case since one box may reduce both N and V
simultaneously, leading to problems as the box length
becomes smaller than a sensible cut-o� in the potential
and the box eventually disappears. We recommend
checking the results by reducing the number of boxes
in this case. On the positive side, it is much easier to
equilibrate two dense ¯ uids when they are in equilibrium
with their vapour, since the rate of acceptance for par-
ticle exchange moves between liquid and vapour is much
higher than that between two liquids.

We have demonstrated that the method works well
by simulating model systems exhibiting three- and
four-phase equilibria. The equality of the pressure
and chemical potential in the coexisting phases and the
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Figure 5. Phase diagram (x± y) for mixture III at T = 1.0
and p = orthobaric pressure. Shaded and blank areas cor-
respond to two-phase and three-phase regions; and ® lled
and open circles refer to simulation data in the liquid and
vapours phases, respectively.

Figure 6. Phase diagram (x± y) for mixture IV at T = 1.0 and
p = orthobaric pressure; symbols as for ® gure 5; and the
dashed lines mark the region exhibiting triple immiscibil-
ity (LLLV equilibria).

Figure 7. Phase diagram (x± y) for mixture V at T = 1.0 and
p = orthobaric pressure; symbols as for ® gure 5: and data
points shown in the diagram except the one with 0.300
total mole fraction in A and B (cf. table 3) correspond to
regions exhibiting LLV equilibria.



symmetry of the phase diagrams indicates that the
method can be applied reliably to these systems. As an
additional check for two-component systems in a two-
phase region we note that the same results are obtained
using the many-box and the two-box algorithms.

We have been able to simulate three- and four-phase
equilibria successfully for atomic systems, and the ideas
can be extended readily to molecular ¯ uids and to the
simulation of chain molecules by applying con® gura-
tional bias sampling methods.
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