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A B S T R A C T

The design of a decentralized and distributed filtering solution for large-scale networks of interconnected
systems is addressed considering (i) generic nonlinear dynamics and (ii) generic coupled nonlinear outputs in
a generic, possibly time-varying, topology. The local filters, which follow the structure of the extended Kalman
filter, are implemented in each system, which estimates its own state exclusively. To be suitable for the heavily
restricted implementation to very large-scale systems, a novel algorithm is proposed, which: (i) does not rely on
instantaneous data transmission; (ii) allows local communication exclusively; and (iii) requires computational,
memory, and data transmission resources for each system that do not scale with the dimension of the network.
The scalability of the proposed algorithm allows for its application to the cooperative localization problem of
very large-scale systems. In particular, it is applied herein to the on-board position estimation problem of LEO
mega-constellations using GNSS featuring numerical simulations for the Starlink constellation.
linear control and estimation solutions. For the estimation problem in
particular, the well-known extended Kalman filter (EKF) and multiple
o
b
2
a
o
d
t
E

a
t
(
v
w
t
w
d
T
s
s
d
t
e
t
i

. Introduction

.1. Motivation

Over the past decades, decentralized estimation and control have
een highly researched topics since they provide a solution to the esti-
ation and control problems of large-scale networks of interconnected

ystems. In fact, they emerge as an alternative to the use of well-known
entralized solutions, which become unfeasible to implement as the
imension of the network increases. The popularity of decentralized
olutions is also increasing with the widening of its applications to a
road range of engineering fields. Examples of such applications are
nmanned aircraft formation flight (Bereg, Díaz-Báñez, Lopez, Rozario,
Valavanis, 2015; Thien & Kim, 2018), unmanned underwater forma-

ions (Viegas, Batista, Oliveira, & Silvestre, 2012; Yuan, Licht, & He,
017), satellite formation control (Ivanov, Monakhova, & Ovchinnikov,
019; Russell Carpenter, 2002), and irrigation networks (Li, 2014;
rodan, Lefevre, Genon-Catalot, et al., 2017). Although plenty of work
as been carried out in decentralized control and estimation of linear
ystems, the problem of designing such controllers, which consists in
olving an optimization problem subject to a constraint that arises from
he distributed nature of the configuration, is extremely difficult (Blon-
el & Tsitsiklis, 2000) and remains an open problem. Having said
hat, a large portion of the systems for which control and estimation
olutions have to be designed are, in practice, nonlinear. In these
ases, it is a common practice to make use of linearization techniques
bout successive operation points, for which the solution is given by
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f its variations have been used for decades, yielding good results in a
road range of applications (Chen, 2011; Crassidis, Markley, & Cheng,
007). Nevertheless, when it comes to the application of the EKF in
decentralized and distributed framework on a large-scale network

f interconnected systems, on top of the aforementioned intricacies of
ecentralized estimator design for linear systems, additional complica-
ions arise. These concern the increased communication demands of the
KF, which are unfeasible to implement in large-scale systems.

This paper addresses the problem of the design of decentralized
nd distributed filtering solutions to very large-scale networks of in-
erconnected systems considering: (i) generic nonlinear dynamics and
ii) generic coupled nonlinear outputs in a generic, possibly time-
arying, topology, following the approach of the EKF. In this frame-
ork, each system estimates exclusively its own state with access

o local output measurements and local communication. This frame-
ork differs significantly from the consensus EKF problem, for which
istributed solutions have also been proposed (Li, Jia, & Du, 2017).
he implementation of filtering solutions to large-scale interconnected
ystems is very challenging due to the limited communication between
ystems, and limited computational power and memory, which are
istributed across the systems. There are few satisfactory solutions
o this problem detailed in the literature. First, several centralized-
quivalent approaches have been proposed. In Dai, Mu, and Wu (2016)
he application of a junction-tree-based protocol for the distributed
mplementation of the centralized EKF is proposed. In Leung, Barfoot,
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and Liu (2009) the cooperative localization problem makes use of
extensive measurement storage that scales with the size of the network.
Notwithstanding the lack of loss of performance in relation to the
centralized EKF, the communication and memory burden, respectively,
of these approaches is massive, which renders its application to a very
large-scale network unfeasible. Second, it is possible to implement an
EKF making use of recent decentralized filtering solutions for linear
time-varying systems (Pedroso, Batista, Oliveira, & Silvestre, 2021).
The fact that the dynamics of the systems have to be successively
linearized about different operation points requires all-to-all communi-
cation, which renders this approach infeasible to large-scale nonlinear
networks. Third, another well-known approach is to approximate the
covariance propagation to meet the requirements for a feasible im-
plementation (Madhavan, Fregene, & Parker, 2002, 2004). However,
this scheme is prone to become over-confident by underestimating
the correlation between measurements, which is designated as double-
counting. This effect is exemplified in Panzieri, Pascucci, and Setola
(2006). In Martinelli (2007) this approach is also followed to devise
an hierarchical EKF dividing the network into groups of 𝑀 systems.
In each group, there is a leader node which processes all the mea-
surements of the group with a computational cost (𝑀4). Covariance
intersection and split covariance intersection methods have been pro-
posed to mitigate double-counting (Carrillo-Arce, Nerurkar, Gordillo, &
Roumeliotis, 2013; Julier & Uhlmann, 1997b; Li, Nashashibi, & Yang,
2013; Wanasinghe, Mann, & Gosine, 2014). In particular, in Carrillo-
Arce et al. (2013), at the expense of overly pessimistic estimates,
computational and communication complexities that do not scale with
the dimension of the network are achieved. Nevertheless, this result is
only attained if a system can predict the state of a neighboring system
resorting to its own state estimate and a relative measurement. This
is the case in most problems tackled in the cooperative localization
state-of-the-art, but it is not the case for networks whose systems have
general nonlinear dynamics and general nonlinear coupled outputs,
as it considered in this paper. In fact, it is not applicable to the on-
board position estimation problem of LEO mega-constellations, which
is considered as an application example of the method proposed in this
paper. Recently, in Luft, Schubert, Roumeliotis, and Burgard (2016,
2018), Luft et al. proposed a promising recursive decentralized method
that computes an approximate correlation distributively between each
pair of systems for a network with a generic measurement model
and supports asynchronous communication and measurements. This
solution achieves good performance and a communication burden that
does not scale with the dimension of the network. Although it does
not rely on measurement bookkeeping, the memory requirements scale
linearly with the dimension of the network. Furthermore, although an
approximation error analysis is conducted, the solution is not provably
consistent. The emergence of very large-scale networks, with generic
nonlinear dynamics, calls for very efficient filtering algorithms, whose
communication, memory, and computational requirements do not scale
with the size of the network. Although some results in the cooper-
ative localization community satisfy these constraints, they are not
valid for generic dynamics and generic output measurement models.
Nevertheless, similar insight can be leveraged to solve this problem.

In this paper, the decentralized estimation problem is addressed in a
fully decentralized configuration, i.e., each system can only make use of
its own measurements. Furthermore, severe requirements are imposed
for the successful implementation in the emerging very large-scale
networks of interconnected systems. The data transmissions cannot
be considered instantaneous, i.e., the filtering solutions must cope
with and account for delays in data transmissions. The number of
systems with which each system communicates must not scale with
the dimension of the network, 𝑁 , i.e., the communication complexity
ought be (1). The quantity of transmitted data in each discrete-time
instant and the memory requirements of each system must not scale
with the dimension of the network. The computational load of the
filtering solution must be distributed across all systems, and the compu-

tational complexity of each system must not scale with the dimension

2

of the network, i.e., the computational complexity ought to be (1).
An important distinction is made between the terms distributed and
decentralized. Although these are, oftentimes, used interchangeably by
many authors, in this work they characterize control algorithms with
different characteristics. Herein, a control solution is said to be decen-
tralized if the implementation of the control law in each system can
be deployed resorting to local communication exclusively. In contrast,
a control solution is said to be distributed if its control law can be
synthesized in real-time in a distributed manner across the systems of
the network resorting to local communication exclusively. Thus, the
inevitable paradigm change towards very large-scale networks calls for
distributed and decentralized control algorithms.

The problem is formulated for a linear time-varying system, relying
on the EKF framework. Similarly to Luft et al. (2016, 2018), the
decoupling of the covariance propagation is achieved by introducing
an approximation. In the proposed method, each system 𝑖 keeps an
estimate of the estimation error covariance between every pair of
systems with which it is output coupled. These are updated in 𝑖
considering that the estimation error covariance between systems that
are not coupled with a common system with which 𝑖 is coupled are
neglected. In what follows, the approximation is formally presented,
its sense in the context of estimation is explored, and its role in
decoupling the filter dynamics is thoroughly detailed. To assess the
performance of the proposed method and validate its scalability to
very large-scale networks of systems, it is implemented to a mega-
constellation of satellites in low Earth orbit (LEO). This example is a
very large-scale system with nonlinear dynamics that has emerged very
recently. Decentralized onboard filtering solutions are of paramount
importance for these constellations, on which their economical viability
is dependent. A MATLAB implementation of the proposed algorithm
and all the source code of the simulations can be found as an example
of the DECENTER Toolbox available at https://decenter2021.github.io/
examples/DDEKFStarlinkConstellation/.

1.2. Motivation for application in LEO mega-constellations

Inspired by the emergence in various engineering fields, over the
past decades, of decentralized solutions as an alternative to the use
of these well-known centralized solutions, the management of satellite
mega-constellations could also be carried out in this fashion in a
decentralized tracking telemetry and command (TT&C) architecture.
In a decentralized configuration, low level constellation operations,
such as orbit determination and constellation control, are carried out
cooperatively and local communication between satellites is assured by
inter-satellite links (ISL). The gains in efficiency and cost effectiveness
of such a paradigm shift are evident. First, only local communication
between satellites in close proximity is required, which is assured
by ISL. Second, by employing cooperative algorithms that run in a
distributed configuration across the whole network, all-to-all commu-
nication is no longer required, which dramatically reduces the quantity
of data that is transmitted. Third, as the constellation management is
carried out in a distributed manner, the computational load is shared
across multiple satellites. Fourth, the ISL are more secure and require
less power, given the proximity of the endpoints. For these reasons, the
cost effectiveness of LEO mega-constellations would greatly improve
with the adoption of a decentralized architecture. However, little re-
search has been undergone on distributed algorithms for systems of
very large-scale. As mentioned previously in this section, for the par-
ticular problem of decentralized control and estimation, even though
there are state-of-the-art algorithms that yield good performance, they
either: (i) require all-to-all communication; (ii) extensive measurement
bookkeeping; or (iii) are not computationally scalable. Decentralized
orbit determination and control has already been given significant
attention for small and closely packed formations of satellites (Busse
& How, 2002; Ferguson & How, 2003; Mandic, Breger, & How, 2004;

Park, Ferguson, Pohlman, & How, 2001; Wang, Qin, Bai, & Cui, 2016).
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However, these methods do not meet the aforementioned strict com-
putational, memory, and communication requirements that enable the
application to large-scale constellations of satellites. One of the few
works to address the decentralized constellation navigation problem
is Dai et al. (2016), at the expense of unbearable computational load,
since a centralized-equivalent approach is proposed.

The algorithm proposed in this paper is applied to the decen-
tralized navigation problem for LEO mega-constellations. The com-
munication, computational, and memory constraints followed by the
proposed method allow for the real-time implementation in the new
generation of LEO mega-constellations. The application implemented
in this paper makes use of a GNSS system to provide each satellite
with inertial absolute position measurements and also relative position
measurements between satellites in close proximity, obtained with
carrier-phase differential GNSS over long baselines (Blewitt, 1989;
Tancredi, Renga, & Grassi, 2014; Wolfe, Speyer, Hwang, Lee, & Lee,
2007; Wu & Bar-Sever, 2006). The fusion of inertial position mea-
surements with relative position measurements, which are significantly
more accurate, allows for a significant increase in absolute estimation
performance than if only inertial GNSS measurements were used. Al-
though ISL are required for taking the relative measurements and fusing
them with the inertial measurements, that is, oftentimes, already a
requirement for the operation of the mega-constellation. It is important
to remark that the decentralized relative navigation problem for small
satellite formations using carrier-phase differential GNSS, which has
been extensively studied in the aforementioned works (Busse & How,
2002; Ferguson & How, 2003; Park et al., 2001), is very distinct from
the application considered herein. While in these works the goal is
to estimate the relative position between satellites, for rendezvous or
ensing applications, in this paper the aim is to significantly improve
nertial position estimates by considering relative measurements. The
ncrease in position estimation accuracy achieved by the proposed
ethod allows for: (i) more densely packed constellations; (ii) increased

fficiency in the constellation-keeping control problem, thereby saving
uel; and (iii) increased efficiency in obstacle avoidance, requiring
maller obstacle clearance. Furthermore, it can also enable large-scale
emote sensing applications, whose position accuracy requirements are
ery strict, often calling for meter-level or sub-meter-level accuracy. Ex-
mples are altimetry, gravimetry, SAR interferometry, and atmospheric
ounding.

.3. Paper outline

This paper is organized as follows. In Section 2, the decentralized
stimation problem is formulated alongside the communication, com-
utational, and memory constraints the estimation solution must follow
o allow for its implementation in real-time and for very large-scale
ystems. In Section 3, the distributed and decentralized filtering EKF
iltering algorithm is derived. In Section 4, the decentralized EKF algo-
ithm proposed in this paper is applied to the cooperative navigation
f LEO mega-constellations using a GNSS. Section 5 presents the main
onclusions of this paper.

.4. Notation

Throughout this paper, the identity, null, and ones matrices, all of
roper dimensions, are denoted by 𝐈, 𝟎, and 𝟏, respectively. Alterna-
ively, 𝐈𝑛, 𝟎𝑛×𝑚, and 𝟏𝑛×𝑚 are also used to represent the 𝑛 × 𝑛 identity
atrix and the 𝑛×𝑚 null and ones matrices, respectively. The column-
ise concatenation of vectors 𝐱1,… , 𝐱𝑁 is denoted by col(𝐱1,… , 𝐱𝑁 )

and diag(𝐀1,… ,𝐀𝑁 ) denotes the square block diagonal matrix whose
diagonal blocks are given by matrices 𝐀1,… ,𝐀𝑁 . Given a symmetric
matrix 𝐏, 𝐏 ≻ 𝟎 and 𝐏 ⪰ 𝟎 are used to point out that 𝐏 is positive
definite and positive semidefinite, respectively. The expected value of
a random variable 𝑋 is denoted as E[𝑋]. The cross-product between
two vectors 𝐚,𝐛 ∈ R3 is denoted by 𝐚 × 𝐛. The Kronecker product of
two matrices 𝐀 and 𝐁 is denoted by 𝐀⊗𝐁. The cardinality of a set  is
enoted by ||. The Cartesian product of two sets  and  is denoted

y  × . a

3

2. Problem statement

The statement of the novel decentralized extended Kalman filter for
very large-scale networks of systems with coupled outputs and time-
varying topology is carried out in three steps. First, in Section 2.1,
the local models of each of the systems are presented, which are
posteriorly concatenated to define a global model for the network.
Second, in Section 2.2, the local extended Kalman filters are detailed
and the estimation problem is formulated for the global filter. Third, in
Section 2.3, communication, computational, and memory constraints
are defined. It is important to point out that this problem is stated
and addressed for a generic network with nonlinear output couplings
between systems, making no assumptions neither on the dynamics of
each system, nor on the output function, nor on the topology of the
network.

2.1. Model of a network of coupled systems

Consider a network of𝑁 interconnected systems, 𝑖, each associated
with one computing unit 𝑖, with 𝑖 = 1,… , 𝑁 . Each system has decou-
pled nonlinear dynamics and has access to nonlinear sensor outputs,
which are coupled with a set of other subsystems. The topology of this
network is, thus, defined by the output couplings between systems,
and it may be time-varying. Such output coupling topology may be
represented by a directed graph, or digraph,  ∶= ( , ), composed of
a set  of vertices and a set  of directed edges. An edge 𝑒 incident on
vertices 𝑖 and 𝑗, directed from 𝑗 towards 𝑖, is denoted by 𝑒 = (𝑗, 𝑖). For

vertex 𝑖, its in-degree, 𝜈−𝑖 , is the number of edges directed towards it,
nd its in-neighborhood, −

𝑖 , is the set of indices of the vertices from
hich such edges originate. Conversely, for a vertex 𝑖, its out-degree,
+
𝑖 , is the number of edges directed from it, and its out-neighborhood,
+
𝑖 , is the set of indices of the vertices towards which such edges are
irected. For a more detailed overview of the elements of graph theory
sed to model this network, see Wallis (2010) and West et al. (1996).
n this framework, each system is represented by a vertex, i.e., system
𝑖 is represented by node 𝑖, and if 𝑖 has access to an output that
epends on the state of system 𝑗 , then this coupling is represented
y an edge directed from vertex 𝑗 towards vertex 𝑖, i.e., edge 𝑒 = (𝑗, 𝑖).
t is important to stress that the direction of the edge matters. Note,
or instance, that the fact that 𝑖 has access to an output that depends
n the state of system 𝑗 does not, necessarily, imply the converse.
lso, given that the goal of each system 𝑖 is to estimate its state, it

s assumed henceforth, without loss of generality, that the output of
ystem 𝑖 depends on its state, i.e., 𝑖 ∈ −

𝑖 . No further assumptions
re made on the topology of the directed graph. In particular, it is not
ssumed to be either cyclic or acyclic.

The dynamics of system 𝑖 are modeled by the discrete-time non-
inear system
{

𝐱𝑖(𝑘 + 1) = 𝐟𝐢(𝑘, 𝐱𝑖(𝑘),𝐮𝑖(𝑘)) + 𝐰𝑖(𝑘)
𝐲𝑖(𝑘) = 𝐠𝐢(𝑘; 𝐱𝑗 (𝑘), 𝑗 ∈ −

𝑖 ) + 𝐯𝑖(𝑘),
(1)

here 𝐱𝑖(𝑘) ∈ R𝑛𝑖 is the state vector, 𝐮𝑖(𝑘) ∈ R𝑚𝑖 is the input
ector, which is assumed to be known, and 𝐲𝑖(𝑡) ∈ R𝑜𝑖 is the out-
ut vector, all of system 𝑖; functions 𝐟𝐢 ∶ R𝑛𝑖 × R𝑚𝑖 → R𝑛𝑖 and
𝐢 ∶

∏

𝑗∈−
𝑖
R𝑛𝑗 → R𝑜𝑖 are known multivariate functions that model the

ynamics of system 𝑖 and its output coupling with the other systems
n its in-neighborhood; vector 𝐰𝑖(𝑘) ∈ R𝑛𝑖 is the process noise, modeled
s a zero-mean, white Gaussian process with associated covariance
atrix 𝐐𝑖(𝑘, 𝐱𝑖(𝑘),𝐮𝑖(𝑘)) ⪰ 𝟎 ∈ R𝑛𝑖×𝑛𝑖 , vector 𝐯𝑖(𝑘) ∈ R𝑜𝑖 is the obser-

ation noise, modeled as a zero-mean, white Gaussian process. It is
onsidered that the observation noise vectors 𝐯𝑖(𝑘) and 𝐯𝑗 (𝑘) of system
𝑖 and 𝑗 , respectively, are correlated only if their outputs are coupled
ith a common system 𝑝. To illustrate the need to introduce such
correlation consider, as an example, relative measurements between

ubmarines using ultrasonic signals. The relative measurement between

submarine 𝑖 and a submarine 𝑝 and the relative measurement between
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a submarine 𝑗 and a submarine 𝑝 are obtained by processing ultrasonic
ignals that, depending on the position of the three submarines, may
ave propagation paths near each other. In that case, the measurement
oise induced by propagation delays related with the properties of the
ropagation medium (for example water temperature or salinity) are
orrelated. The observation noise process, thus, follows

[𝐯𝑖(𝑘)𝐯𝑇𝑖 (𝑘)] = 𝐑𝑖,𝑖(𝑘; 𝐱𝑗 (𝑘), 𝑗 ∈ −
𝑖 ) ≻ 𝟎 ∈ R𝑜𝑖×𝑜𝑖 (2)

and

E[𝐯𝑖(𝑘)𝐯𝑇𝑗 (𝑘)] =
{

𝐑𝑖,𝑗 (𝑘; 𝐱𝑙(𝑘), 𝑙 ∈ {𝑖, 𝑗} ∪+
𝑖 ∩+

𝑗 ), +
𝑖 ∩+

𝑗 ≠ ∅
𝟎𝐨𝐢×𝐨𝐣 , otherwise,

(3)

where 𝐑𝑖,𝑗 are covariance matrices that depend on time and on a set of
states with which the outputs of systems 𝑖 and 𝑗 are both coupled.

The global dynamics of the network can, then, modeled as discrete-
time nonlinear system of the form
{

𝐱(𝑘 + 1) = 𝐟 (𝑘, 𝐱(𝑘),𝐮(𝑘)) + 𝐰(𝑘)
𝐲(𝑘) = 𝐠(𝑘; 𝐱(𝑘)) + 𝐯(𝑘),

(4)

where 𝐱(𝑘) ∶= col(𝐱1(𝑘),… , 𝐱𝑁 (𝑘)) ∈ R𝑛 is the global state vec-
tor, 𝐮(𝑘) ∶= col(𝐮1(𝑘),… ,𝐮𝑁 (𝑘)) ∈ R𝑚 is the global input vector,
and 𝐲(𝑘) ∶= col(𝐲1(𝑘),… , 𝐲𝑁 (𝑘)) ∈ R𝑜 is the global output vector;
𝐰(𝑘) ∶= col(𝐰1(𝑘),… ,𝐰𝑁 (𝑘)) is the process noise, modeled as a zero-
mean, white Gaussian process with associated covariance matrix given
by 𝐐(𝑘, 𝐱(𝑘),𝐮(𝑘)) ∶= diag

(

𝐐1(𝑘, 𝐱1(𝑘),𝐮1(𝑘)),… ,𝐐𝑁 (𝑘, 𝐱𝑁 (𝑘),𝐮𝑁 (𝑘))
)

;
𝐯(𝑘) ∶= col(𝐯1(𝑘),… , 𝐯𝑁 (𝑘)) is the global observation noise, modeled as
a zero-mean, white Gaussian process with associated covariance matrix
𝐑(𝑘, 𝐱(𝑘)) defined by (2) and (3); and 𝐟 ∶ R𝑛×R𝑚 → R𝑛 and 𝐠 ∶ R𝑛 → R𝑜
model the dynamics and output of the global system, respectively, and
are defined as 𝐟 (𝑘, 𝐱(𝑘),𝐮(𝑘)) ∶= col

(

𝐟𝟏(𝑘, 𝐱1(𝑘),𝐮1(𝑘)),… ,
𝐟𝐍(𝑘, 𝐱𝑁 (𝑘),𝐮𝑁 (𝑘))

)

and 𝐠(𝑘, 𝐱(𝑘)) ∶= col
(

𝐠𝟏(𝑘, 𝐱1(𝑘)),… , 𝐠𝐍(𝑘, 𝐱𝑁 (𝑘))
)

.
Before proceeding with the statement of the estimation problem, it
is worth pointing out that virtually all large-scale networks have
sparse couplings. In particular, 𝜈−𝑖 , the number of coupling outputs
of a system, is bounded and it is independent of 𝑁 , the number of
systems in the network. The novel solution presented in this paper takes
advantage of the sparsity of these couplings to design a fully distributed
extended Kalman filter under communication and computational power
limitations.

2.2. Formulation of the decentralized estimation problem

In this paper, state estimation is assumed to be achieved by a dy-
namical filter based on prediction-update steps employed in a Kalman
filter. In a centralized configuration, each system has access to the
global output, at the expense of all-to-all communication via a central
system. In a decentralized configuration, that is not the case: each
system 𝑖 only has access to a subset of the outputs. In this paper,
a fully decentralized configuration is considered, in the sense that, at
each discrete-time instant 𝑘, the only output known to 𝑖 is 𝐲𝑖(𝑘). This
property is analyzed with more detail in Section 2.3. The prediction
and update steps are, thus, given by

⎧

⎪

⎨

⎪

⎩

𝐱̂𝑖(𝑘 + 1|𝑘) = 𝐟𝐢(𝐱̂𝑖(𝑘|𝑘),𝐮𝑖(𝑘))
𝐱̂𝑖(𝑘 + 1|𝑘 + 1) = 𝐱̂𝑖(𝑘 + 1|𝑘)

+𝐊𝑖(𝑘 + 1)
(

𝐲𝑖(𝑘 + 1) − 𝐠𝐢(𝑘 + 1; 𝐱̂𝑗 (𝑘 + 1|𝑘), 𝑗 ∈ −
𝑖 )
)

,

(5)

where 𝐱̂𝑖(𝑘 + 1|𝑘) denotes the predicted state estimate of system 𝑖 at
instant 𝑘 + 1, 𝐱̂𝑖(𝑘 + 1|𝑘 + 1) the updated state estimate of system 𝑖 at
instant 𝑘 + 1, and 𝐊𝑖(𝑘 + 1), 𝑖 = 1,… , 𝑁 , the decentralized filter gains.

The goal is to design optimum filter gains 𝐊𝑖(𝑘) according to a per-
formance criteria. Note that, due to the coupling between systems in the
update step of each local filter (5), each gain 𝐊𝑖(𝑘), 𝑖 = 1,… , 𝑁 , cannot
be designed independently. For that reason, the local filter dynamics
of each system are concatenated to write the global filter dynamics,

which are used to formulate a global estimation problem. The challenge d

4

is, then, to enforce the communication, computational, and memory
requirements of a decentralized configuration in the solution of the
corresponding optimization problem. The global prediction and update
steps can be written as

⎧

⎪

⎨

⎪

⎩

𝐱̂(𝑘 + 1|𝑘) = 𝐟 (𝐱̂(𝑘|𝑘),𝐮(𝑘))
𝐱̂(𝑘 + 1|𝑘 + 1) = 𝐱̂(𝑘 + 1|𝑘)

+𝐊(𝑘 + 1) (𝐲(𝑘 + 1) − 𝐠(𝑘 + 1; 𝐱̂(𝑘 + 1|𝑘))) ,
(6)

where 𝐱̂(𝑘 + 1|𝑘) ∶= col(𝐱̂1(𝑘 + 1|𝑘),… , 𝐱̂𝑁 (𝑘 + 1|𝑘)) denotes the global
predicted state estimate at instant 𝑘 + 1, 𝐱̂(𝑘 + 1|𝑘 + 1) ∶= col(𝐱̂1(𝑘 +
1|𝑘+1),… , 𝐱̂𝑁 (𝑘+1|𝑘+1)) the global updated state estimate at instant
𝑘 + 1, and 𝐊(𝑘 + 1) ∈ R𝑛×𝑜 the global filter gain. Note that the global
filter dynamics (6) are equivalent to the concatenation of the local filter
dynamics (5) if and only if

𝐊(𝑘 + 1) = diag
(

𝐊1(𝑘 + 1),… ,𝐊𝑁 (𝑘 + 1)
)

. (7)

More generally, (7) can be written as a sparsity constraint 𝐊(𝑘 + 1) ∈
Sparse(𝐄), where 𝐄 = diag(𝟏𝑛1×𝑜1 ,… , 𝟏𝑛𝑁×𝑜𝑁 ) is the sparsity pattern and

Sparse(𝐄) =
{

[𝐊]𝑖𝑗 ∈ R𝑛×𝑜 ∶

[𝐄]𝑖𝑗 = 0 ⟹ [𝐊]𝑖𝑗 = 0; 𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑜
}

.

If there were all-to-all communication, then 𝐄 = 𝟏, which corresponds
to a centralized configuration.

It is now possible to formulate the problem of designing a decen-
tralized state estimation solution based on a Luenberger Kalman filter
for the network of coupled systems with nonlinear dynamics. Note that
designing a decentralized filter for a network of coupled systems, whose
local dynamics are described by the nonlinear system (1), is equivalent
to designing a global filter (6) for the global network (4), whose
gain must follow a sparsity pattern. One aims to optimally compute
a sequence of filter gains that follow the sparsity pattern required for a
fully decentralized configuration. Note that the aforementioned sparsity
constrain (7) allows to formulate the decentralized problem globally ex-
plicitly considering the communication restrictions associated with the
decentralized setting. For an infinite-horizon, solve the optimization
problem

minimize
𝐊(𝑖)∈R𝑛×𝑜

𝑖∈N

lim𝑇→+∞
1
𝑇

𝑇
∑

𝑘=1
tr(𝐏(𝑘|𝑘))

ubject to 𝐊(𝑖) ∈ Sparse(diag(𝟏𝑛1×𝑜1 ,… , 𝟏𝑛𝑁×𝑜𝑁 ))

(8)

here 𝐏(𝑘|𝑘) ⪰ 𝟎 ∈ R𝑛×𝑛 is the global covariance of the state estimation
rror at instant 𝑘 after the update step. The difficulty of solving this
roblem is twofold. On one hand, even for systems with linear dynam-
cs, the optimization problem (8) is nonconvex and its optimal solution
s still an open problem. To overcome this difficulty, the optimization
roblem may be relaxed so that it becomes convex, allowing for the
se of well-known optimization techniques. Albeit optimal for the
odified problem, the relaxed solution is only an approximation to

he solution of the original problem. For this reason, careful relaxation
s necessary to ensure that the separation between both solutions is
inimal. This approach is designated convex relaxation and will be
sed to derive the method put forward in this paper. On the other
and, given that the system is nonlinear, the conditional probability
ensity functions of the state are no longer Gaussian, even if the process
nd observation noise are Gaussian. For that reason, the probability
istributions in question are no longer fully characterized by their mean
nd covariance, which are the only moments of the distributions in
uestion that are propagated in the classical Kalman filter formulation.
n this paper, to design a decentralized estimation solution, the system
s linearized and the proposed solution is a fully decentralized variation
f the extended Kalman filter, which approximates the probability
istributions as Gaussian distributions.
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2.3. Communication, computational, and memory constraints

It is of the utmost importance to remark that the solution devised
for (8) must be feasible to implement in real-time and in a decen-
tralized configuration. In particular, the procedure to compute each
gain 𝐊𝑖(𝑘) must follow several constraints required for a decentralized
implementation, regarding communication, computational, and mem-
ory requirements. In this section, these constraints are presented with
detail, arriving at a set of requirements for the decentralized estimation
solution.

First, there are various communication requirements associated
ith each step of the decentralized filter. To compute the update step of

5) and to compute each local filter gain 𝐊𝑖(𝑘), communication between
systems is required. On one hand, a very important aspect to take into
account is the synchronization of the data transmissions. There are
variables, such as the updated state estimates 𝐱̂𝑖(𝑘 − 1|𝑘 − 1) and the
predicted state estimates 𝐱̂𝑖(𝑘|𝑘−1), which are stored in system 𝑖, that
can be shared with another system 𝑗 at any time since time instant 𝑘−1
until time instant 𝑘, because they are known to 𝑖 at time instant 𝑘−1
and are only required by 𝑗 at time instant 𝑘. For these transmissions,
denoted as soft real-time transmissions, no complex synchronization
protocols are required. However, for a system 𝑗 to use the output
of system 𝑖, it would have to be transmitted instantaneously at time
instant 𝑘, because the update step in 𝑗 is carried out at time instant 𝑘
and the output is only available in system 𝑖 at time instant 𝑘. These
are denoted as hard real-time transmissions, for which very complex
synchronization algorithms are required, and which become unfeasible
to implement in practice in large-scale networks. For this reason, in
this paper, hard real-time transmissions are not allowed. Instead, a fully
decentralized configuration is adopted, i.e., the update step of system
𝑖 can only make use of the output 𝐲𝑖(𝑘).

Second, the number of available communication links between sys-
tems is limited. Although there are decentralized solutions in the
literature that require all-to-all communication (see Section 1), these
are not scalable to very large-scale networks. Thus, to seek a scalable
solution, the number of communications links established with each
subsystem must not increase with an increase of the number of subsys-
tems in the network, i.e., the communication complexity of each system
ought to grow with (1) with the dimension of the network. It is very
important to point out that the aforementioned communication link
limitations is addressed at the protocol level, i.e., the restrictions are
applied to the exchange of data between systems, not on the physical
communication links. In particular, system 𝑖 is not allowed to access
data from 𝑙 via a path of systems through which the information could
be retransmitted. Such a configuration, would, for large-scale networks,
increase communication delays, decrease the robustness of the solution,
result in an uneven distribution of communication coordination burden,
and increase the complexity of the communication protocol.

Third, the amount of data transmitted per communication of a sys-
tem must not scale with 𝑁 , i.e., the transmission data size complexity
ought to grow with (1) with the dimension of the network.

Fourth, the memory of each computational unit 𝑖 is limited. Al-
though there are decentralized solutions in the literature that make
use of extensive bookkeeping of outputs, it becomes unfeasible to
implement as the dimension of the network increases. For that reason,
the amount of data to be stored in each computational unit 𝑖 must
not depend on the dimension of the network. That is, the data storage
complexity of each system ought to grow with (1) with 𝑁 .

Fifth, the time and computational resources available to computa-
tional unit 𝑖 to implement the local filter are limited. The computa-
tional load of the global estimation algorithm of the network must be
distributed across all computational units in such a way that each car-
ries out computations concerning their own state estimate exclusively,
which circumvents the curse of dimensionality. For that reason, the
computational complexity of the floating point operations carried out
by each computational unit must grow with (1) with the dimension

f the network. t

5

2.3.1. Summed-up constraints
As a means of proposing a solution suitable to large-scale systems,

several constraints are required on the complexity of the communi-
cation between systems and on the computations performed in each
system. To sum-up, the decentralized estimation solution should follow:

1. No hard real-time transmissions are allowed;
2. The communication complexity of each system ought to be (1);
3. The transmission data size complexity of each system ought to

be (1);
4. The data storage complexity of each system ought to be (1);
5. The computational complexity of each system ought to be (1).

3. Decentralized extended Kalman filter

The goal is to design a decentralized estimation solution to solve
the optimization problem (8) subject to the communication, memory,
and computational constraints 1–5 put forward in Section 2.3.1, which
are imposed by the decentralized configuration for very large-scale
systems. The derivation of the one-step decentralized extended Kalman
filter follows three steps: (i) system linearization and covariance prop-
agation, inspired by the extended Kalman filter; (ii) convex relaxation
of the optimization problem of the estimation solution; and (iii) de-
coupling of the real-time gain synthesis procedure for application in a
large-scale network. This solution is presented in a first instance for a
time-invariant network topology and, in Section 3.5, it is extended for
a time-varying topology.

3.1. Linearization

First, to address the nonlinearity of the network dynamics, the
system is linearized and the proposed solution is a fully decentralized
variation of the well-known extended Kalman filter. Defining 𝐏(𝑘 +
1|𝑘) ⪰ 𝟎 as the covariance of the estimation error at instant 𝑘 + 1 after
the prediction step of the global filter (6), one can write

𝐏(𝑘 + 1|𝑘) = 𝐀(𝑘)𝐏(𝑘|𝑘)𝐀𝑇 (𝑘) +𝐐 (𝑘, 𝐱̂(𝑘|𝑘),𝐮(𝑘)) , (9)

and
𝐏(𝑘|𝑘) = 𝐊(𝑘)𝐑 (𝑘, 𝐱̂(𝑘|𝑘 − 1))𝐊𝑇 (𝑘)

+ (𝐈 −𝐊(𝑘)𝐂(𝑘))𝐏(𝑘|𝑘 − 1)(𝐈 −𝐊(𝑘)𝐂(𝑘))𝑇 ,
(10)

inspired by the extended Kalman filter. In these expressions, matrices
𝐀(𝑘) and 𝐂(𝑘) correspond to the linearization of the nonlinear global
system dynamics and output equation, respectively, about the updated
state estimate and predicted state estimate, respectively, i.e.,

𝐀(𝑘) = 𝜕𝐟 (𝑘, 𝐱,𝐮)
𝜕𝐱

|

|

|

|

𝐱=𝐱̂(𝑘|𝑘)
𝐮=𝐮(𝑘)

and 𝐂(𝑘) = 𝜕𝐠(𝑘, 𝐱)
𝜕𝐱

|

|

|

|𝐱=𝐱̂(𝑘|𝑘−1)
.

Before proceeding with the solution of the relaxed optimization
roblem, it is important to introduce the block decomposition of
he matrices relevant for the gain computation and posterior decou-
ling. Let 𝐀(𝑖,𝑗)(𝑘) ∈ R𝑛𝑖×𝑛𝑗 , 𝐂(𝑖,𝑗)(𝑘) ∈ R𝑜𝑖×𝑛𝑗 , 𝐐(𝑖,𝑗)(𝑘) ∈ R𝑛𝑖×𝑛𝑗 ,
(𝑖,𝑗)(𝑘) ∈ R𝑜𝑖×𝑜𝑗 , 𝐏(𝑖,𝑗)(𝑘|𝑘) ∈ R𝑛𝑖×𝑛𝑗 , and 𝐏(𝑖,𝑗)(𝑘 + 1|𝑘) ∈ R𝑛𝑖×𝑛𝑗 denote

the blocks of indices (𝑖, 𝑗) of the block decomposition of matrices
𝐀(𝑘), 𝐂(𝑘), 𝐐 (𝑘, 𝐱̂(𝑘|𝑘),𝐮(𝑘)), 𝐑 (𝑘, 𝐱̂(𝑘|𝑘 − 1)), 𝐏(𝑘|𝑘), and 𝐏(𝑘 + 1|𝑘),
espectively. Note that expressions for 𝐀(𝑖,𝑗)(𝑘), 𝐂(𝑖,𝑗)(𝑘), 𝐐(𝑖,𝑗)(𝑘), and
(𝑖,𝑗)(𝑘) can be easily obtained from the definition of the local dynamics
resented in Section 2.1.

.2. Convex relaxation

As aforementioned, the optimization problem (8) is nonconvex.
hus, to use standard optimization techniques, convex relaxation is
erformed. An approach similar to the one used for the unconstrained
alman filter is used. The global gain in each instant is computed so

hat the trace of the covariance of the estimation error for that same
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instant is minimized. The optimization problem (8) is, thus, modified
to
minimize
𝐊(𝑘)∈R𝑛×𝑜

tr(𝐏(𝑘|𝑘))

subject to 𝐊(𝑘) ∈ Sparse(diag(𝟏𝑛1×𝑜1 ,… , 𝟏𝑛𝑁×𝑜𝑁 )),
(11)

for 𝑘 ∈ N, given the predicted estimation error covariance, 𝐏(𝑘|𝑘 − 1),
at each time step. The relaxed optimization problem (11) is convex,
allowing for the use of techniques similar to those used to solve the
unconstrained problem, which yield a closed-form solution, as detailed
in the following result.

Lemma 1 (One-step Gain). Define 𝐒(𝑘) as the global innovation covariance
at step 𝑘, given by

𝐒(𝑘) ∶= 𝐂(𝑘)𝐏(𝑘|𝑘 − 1)𝐂𝑇 (𝑘) + 𝐑(𝑘) , (12)

and 𝐒(𝑖,𝑗)(𝑘) ∈ R𝑜𝑖×𝑜𝑗 as the block of indices (𝑖, 𝑗) of its block decomposition.
Then, the solution to the relaxed one-step optimization problem (11) is given
by

𝐊𝑖(𝑘) =
∑

𝑝∈−
𝑖

(

𝐏(𝑖,𝑝)(𝑘|𝑘 − 1)𝐂𝑇(𝑖,𝑝)(𝑘)
)

𝐒−1(𝑖,𝑖)(𝑘) , (13)

𝑖 = 1,… , 𝑁 , where

𝐒(𝑖,𝑖)(𝑘) = 𝐑(𝑖,𝑖)(𝑘) +
∑

𝑝∈−
𝑖

∑

𝑞∈−
𝑖

𝐂(𝑖,𝑝)(𝑘)𝐏(𝑝,𝑞)(𝑘|𝑘 − 1)𝐂𝑇(𝑖,𝑞)(𝑘) (14)

and

𝐏(𝑝,𝑞)(𝑘|𝑘−1) = 𝐐(𝑝,𝑞)(𝑘−1)+𝐀(𝑝,𝑝)(𝑘−1)𝐏(𝑝,𝑞)(𝑘−1|𝑘−1)𝐀𝑇(𝑞,𝑞)(𝑘−1). (15)

Proof. See Appendix. □

3.3. Main result

Note that, although (13) provides an expression to compute the
gain of each local filter, it cannot be computed without full knowledge
of the estimation error covariance of the whole network, because of
the computation of 𝐏(𝑘|𝑘). For this reason, this result is not suitable
for application in a decentralized configuration. In this section, under
reasonable approximations, the filter gain computation is decoupled
and an algorithm is put forward to allow for its distributed compu-
tation across the computational units of each system such that the
communication, memory, and computational constraints presented in
Section 2.3.1 are met.

Approximation 1. Consider the estimation error covariance after the
update step of the form 𝐏(𝑝,𝑞)(𝑘 + 1|𝑘 + 1), with 𝑝 ∈ −

𝑖 and 𝑞 ∈ −
𝑖

for some 𝑖, and the estimation error covariance after the prediction step of
the form 𝐏(𝑟,𝑠)(𝑘 + 1|𝑘), with 𝑟 ∈ −

𝑝 and 𝑠 ∈ −
𝑞 . In the decentralized

algorithm put forward in this paper, 𝐏(𝑟,𝑠)(𝑘+1|𝑘) is considered to be null in
the computation of 𝐏(𝑝,𝑞)(𝑘+ 1|𝑘+ 1) in computational unit 𝑖 if (𝑟, 𝑠) ∉ 𝜓𝑖,
where

𝜓𝑖 =
⋃

𝑗∈−
𝑖

𝜙𝑗 (16)

with

𝜙𝑖 ∶= −
𝑖 ×−

𝑖 = {(𝑝, 𝑞) ∈ N2 ∶ 𝑝 ∈ −
𝑖 ∧ 𝑞 ∈ −

𝑖 } . (17)

The main result of this paper is supported by Approximation 1.
Note that this approximation makes sense in the context of estimation.
Consider Fig. 1, which represents the topology of Approximation 1
in a graph. It is expected that the influence of 𝐏(𝑟,𝑠)(𝑘 + 1|𝑘) is more
dominant in the computation of 𝐊𝑖(𝑘) if both the states of 𝑟 and 𝑠 are
coupled with the output of a system 𝑙 that is coupled with the output
of 𝑖. Having this in mind, to decouple the gain synthesis of each filter,
each computational unit 𝑖 keeps and updates each estimation error

covariance matrix of the form 𝐏(𝑝,𝑞)(𝑘|𝑘), (𝑝, 𝑞) ∈ 𝜙𝑖. Henceforth, matrix t
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Fig. 1. Graphic illustration of Approximation 1.

𝐏(𝑝,𝑞)(𝑘|𝑘), stored and updated in system 𝑖, is denoted as 𝐏𝑖,(𝑝,𝑞)(𝑘|𝑘).
Performing the decomposition in block matrices of (10), one obtains

𝐏𝑖,(𝑝,𝑞)(𝑘|𝑘) = 𝐊𝑝(𝑘)𝐑(𝑝,𝑞)(𝑘)𝐊𝑇
𝑞 (𝑘)

+
∑

𝑟∈−
𝑝

∑

𝑠∈−
𝑞

(𝛿𝑝𝑟𝐈 −𝐊𝑝(𝑘)𝐂(𝑝,𝑟)(𝑘))𝐏−
𝑖 ,(𝑟,𝑠)

(𝑘|𝑘 − 1)(𝛿𝑞𝑠𝐈 −𝐊𝑞(𝑘)𝐂(𝑞,𝑠)(𝑘))𝑇 ,

(18)

hich, making use of Approximation 1, becomes

𝑖,(𝑝,𝑞)(𝑘|𝑘) = 𝐊𝑝(𝑘)𝐑(𝑝,𝑞)(𝑘)𝐊𝑇
𝑞 (𝑘)

+
∑

𝑟∈−
𝑝

∑

𝑠∈−
𝑞

(𝑟,𝑠)∈𝜓𝑖

(𝛿𝑝𝑟𝐈 −𝐊𝑝(𝑘)𝐂(𝑝,𝑟)(𝑘))𝐏−
𝑖 ,(𝑟,𝑠)

(𝑘|𝑘 − 1)(𝛿𝑞𝑠𝐈 −𝐊𝑞(𝑘)𝐂(𝑞,𝑠)(𝑘))𝑇,

(19)

here the subscript −
𝑖 in 𝐏−

𝑖 ,(𝑟,𝑠)
(𝑘|𝑘 − 1) indicates, by abuse of

otation, that 𝐏−
𝑖 ,(𝑟,𝑠)

(𝑘|𝑘 − 1) is computed in 𝑙 with 𝑙 ∈ −
𝑖 , and 𝛿𝑝𝑟

enotes the Kronecker delta.
Note that with Approximation 1, for system 𝑖, the covariance

ropagation (19) can be computed in a distributed manner. It is im-
ortant to remark that 𝐏−

𝑖 ,(𝑟,𝑠)
(𝑘|𝑘 − 1), inside the summation in (19),

s not necessarily updated in 𝑖, since only estimation error covariance
atrices of the form 𝐏𝑖,(𝑝,𝑞)(𝑘|𝑘), with (𝑝, 𝑞) ∈ 𝜙𝑖, are updated. Therefore,
𝑖 has to receive 𝐏(𝑟,𝑠)(𝑘|𝑘 − 1) through communication from a system
𝑙, with 𝑙 ∈ −

𝑖 .

emma 2. The approximation induced by Approximation 1 is exact if the
opology of the network follows

𝑖 ∈ {1,… , 𝑁} ∀𝑝, 𝑞 ∈ −
𝑖 −

𝑝 ×−
𝑞 ⊆

⋃

𝑗∈−
𝑖

−
𝑗 ×−

𝑗 .

Proof. Consider computational unit 𝑖. Note that ∪𝑗∈−
𝑖
−
𝑗 × −

𝑗 =
𝑗∈−

𝑖
𝜙𝑗 = 𝜓𝑖, i.e., the set of systems pairs whose covariance is known

y the in-neighborhood of 𝑖. According to (18) the exact covariance
ropagation in 𝑖 requires that, for every 𝑝, 𝑞 ∈ −

𝑖 , the covariance
etween every 𝑟 ∈ −

𝑝 and 𝑠 ∈ −
𝑞 is accessible to 𝑖. That is, the

ovariance matrices between the pairs in −
𝑝 × −

𝑞 . Thus, if these are
ontained in 𝜓𝑖 for every system 𝑖, then the covariance propagation
an be computed exactly. □

According to Lemma 2, the approximation induced by Approxima-
ion 1, which is used in the main result of these paper, is exact for
ome network topologies. In these cases, it is possible to distribute
he computations of the globally synthesized filter across the compu-

ational units without disregarding any estimation error covariance
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Algorithm 1 One-step decentralized extended Kalman filter algorithm at time instant 𝑘 in computational unit 𝑖 for time-invariant coupling
topology.

Input: 𝐱̂𝑖(𝑘|𝑘); 𝐮𝑖(𝑘); 𝐊𝑖(𝑘); 𝐏𝑖,(𝑝,𝑞)(𝑘|𝑘 − 1),∀(𝑝, 𝑞) ∈ 𝜙𝑖; 𝐑(𝑖,𝑝)(𝑘),∀𝑝 ∈ −
𝑖 ; 𝐂(𝑖,𝑝)(𝑘),∀𝑝 ∈ −

𝑖
Output: 𝐱̂𝑖(𝑘 + 1|𝑘 + 1); 𝐊𝑖(𝑘 + 1); 𝐏𝑖,(𝑝,𝑞)(𝑘 + 1|𝑘),∀(𝑝, 𝑞) ∈ 𝜙𝑖; 𝐑(𝑖,𝑝)(𝑘 + 1),∀𝑝 ∈ −

𝑖 ; 𝐂(𝑖,𝑝)(𝑘 + 1),∀𝑝 ∈ −
𝑖

Step 1: 𝐱̂𝑖(𝑘 + 1|𝑘) ← 𝐟𝐢(𝑘, 𝐱̂𝑖(𝑘|𝑘),𝐮𝑖(𝑘))
𝐀(𝑖,𝑖)(𝑘) ← 𝜕𝐟𝐢(𝑘, 𝐱𝑖(𝑘),𝐮𝑖(𝑘))∕𝜕𝐱𝑖(𝑘)

|

|

|𝐱𝑖(𝑘)=𝐱̂𝑖(𝑘|𝑘)
𝐐(𝑖,𝑖)(𝑘) ← 𝐐𝑖(𝑘, 𝐱̂𝑖(𝑘|𝑘),𝐮𝑖(𝑘))

Step 2: Transmit: 𝐱̂𝑖(𝑘 + 1|𝑘); 𝐀(𝑖,𝑖)(𝑘); 𝐐(𝑖,𝑖)(𝑘); 𝐊𝑖(𝑘); 𝐑(𝑖,𝑗)(𝑘),∀𝑗 ∈ −
𝑖 ;

𝐂(𝑖,𝑝)(𝑘),∀𝑝 ∈ −
𝑖 ; and 𝐏𝑖,(𝑝,𝑞)(𝑘|𝑘 − 1) , ∀(𝑝, 𝑞) ∈ 𝜙𝑖; to 𝑟 ∈ +

𝑖 ⧵ {𝑖}
Step 3: Receive: 𝐱̂𝑝(𝑘 + 1|𝑘),𝐀(𝑝,𝑝)(𝑘),𝐐(𝑝,𝑝)(𝑘), and 𝐊𝑝(𝑘) from all 𝑝 ∈ −

𝑖 ⧵ {𝑖}
𝐑(𝑝,𝑞)(𝑘), ∀(𝑝, 𝑞) ∈ 𝜙𝑖 ⧵ {(𝑖, 𝑖)}, from either 𝑝 or 𝑞
𝐂(𝑝,𝑟)(𝑘), ∀𝑟 ∈ −

𝑝 , from 𝑝 ∈ −
𝑖 ⧵ {𝑖}

𝐏𝑝,(𝑟,𝑠)(𝑘|𝑘 − 1) , for some (𝑟, 𝑠) ∈ 𝜙𝑝 from 𝑝 ∈ −
𝑖 ⧵ {𝑖}

Step 4: 𝐏𝑖,(𝑝,𝑞)(𝑘|𝑘) ← 𝐊𝑝(𝑘)𝐑(𝑝,𝑞)(𝑘)𝐊𝑇
𝑞 (𝑘)+

∑

𝑟∈−
𝑝

∑

𝑠∈−
𝑞

(𝑟,𝑠)∈𝜓𝑖

(𝛿𝑝𝑟𝐈 −𝐊𝑝(𝑘)𝐂(𝑝,𝑟)(𝑘))𝐏−
𝑖 ,(𝑟,𝑠)

(𝑘|𝑘 − 1)(𝛿𝑞𝑠𝐈 −𝐊𝑞(𝑘)𝐂(𝑞,𝑠)(𝑘))𝑇 ,∀(𝑝, 𝑞) ∈ 𝜙𝑖

Step 5: 𝐂(𝑖,𝑗)(𝑘 + 1) ← 𝜕𝐠𝐢(𝑘 + 1; 𝐱𝑗 (𝑘 + 1), 𝑗 ∈ −
𝑖 )∕𝜕𝐱𝑗 (𝑘 + 1)||

|𝐱𝑗 (𝑘+1)=𝐱̂𝑗 (𝑘+1|𝑘),𝑗∈−
𝑖
, ∀𝑗 ∈ −

𝑖

𝐑(𝑖,𝑗)(𝑘 + 1) ← 𝐑𝑖,𝑗 (𝑘, 𝐱̂𝑖(𝑘 + 1|𝑘), 𝐱̂𝑗 (𝑘 + 1|𝑘)) , ∀𝑗 ∈ −
𝑖

Step 6: 𝐏𝑖,(𝑝,𝑞)(𝑘 + 1|𝑘) ← 𝐀(𝑝,𝑝)(𝑘)𝐏𝑖,(𝑝,𝑞)(𝑘|𝑘)𝐀𝑇(𝑞,𝑞)(𝑘) +𝐐(𝑝,𝑞)(𝑘) , ∀(𝑝, 𝑞) ∈ 𝜙𝑖
𝐒(𝑖,𝑖)(𝑘 + 1) ←

∑

𝑝∈−
𝑖

∑

𝑞∈−
𝑖
𝐂(𝑖,𝑝)(𝑘 + 1)𝐏𝑖,(𝑝,𝑞)(𝑘 + 1|𝑘)𝐂𝑇(𝑖,𝑞)(𝑘 + 1) + 𝐑(𝑖,𝑖)(𝑘 + 1)

𝐊𝑖(𝑘 + 1) ←
∑

𝑝∈−
𝑖

(

𝐏(𝑖,𝑝)(𝑘 + 1|𝑘)𝐂𝑇(𝑖,𝑝)(𝑘 + 1)
)

𝐒−1(𝑖,𝑖)(𝑘 + 1)
Step 7: Take measurement: 𝐲𝑖(𝑘 + 1)
Step 8: 𝐱̂𝑖(𝑘 + 1|𝑘 + 1) ← 𝐱̂𝑖(𝑘 + 1|𝑘) +𝐊𝑖(𝑘 + 1)

(

𝐲𝑖(𝑘 + 1) − 𝐠𝐢(𝑘 + 1; 𝐱̂𝑗 (𝑘 + 1|𝑘), 𝑗 ∈ −
𝑖 )
)
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components. Examples of these topologies are string, tree, and ring
configurations. After introducing Approximation 1, which allows for
the decoupling of the gain synthesis procedure, it is possible to state the
proposed decentralized extended Kalman filter algorithm, as presented
in the following result.

Theorem 1 (One-step Decentralized Extended Kalman Filter). The solution
of optimization problem (11) for the linearized filter under Approximation 1
and subject to the communication, computational, and memory constraints
detailed in Section 2.3 is given, for a time-invariant coupling topology, by
the local filter iterations presented in Algorithm 1 (See Remarks 1–5 for
ome details regarding its implementation).

roof. The local gain computation is performed according to Lemma 1.
nder Approximation 1, the covariance propagation is computed ac-
ording to (19). The variables required by the gain computation and
ovariance propagation that are unknown to system 𝑖 can obtained
ia local communication. Finally, for a detailed analysis of the commu-
ication, computational, and memory requirements of this algorithm,
ee Section 3.4. □

orollary 1.1. For network topologies under the conditions of
emma 2, the estimation error covariance propagation of the distributed
ecentralized EKF in Algorithm 1 is consistent.

emark 1. For the initialization of Algorithm 1 in 𝑖, i.e., for 𝑘 = 0,
ne has to (i) initialize 𝐱̂𝑖(𝑘|𝑘) with an initial estimate for 𝐱𝑖; (ii)
nitialize 𝐏𝑖,(𝑝,𝑞)(0|0),∀(𝑝, 𝑞) ∈ 𝜙𝑖; (iii) perform all steps except for Step 4;
nd (iv) in Step 3, receive only the variables required for Step 6.

emark 2. Note that, in Algorithm 1, the data transmission and
eception procedure is described generically. In fact, only a fraction of
he data in the memory of a computational unit 𝑖 has to be transmitted
o a neighboring computational unit 𝑟, with 𝑟 ∈ +

𝑖 . As an example,
ot all 𝐏𝑖,(𝑝,𝑞)(𝑘|𝑘 − 1) , ∀(𝑝, 𝑞) ∈ 𝜙𝑖 are required for the computations
erformed in 𝑟. Therefore, the data transmission protocol should be
dapted to each application, depending on the network topology, to

eep data transmissions to a minimum. t

7

emark 3. For the computation in Step 4 performed in computational
nit 𝑖, there are estimation error covariance matrices 𝐏−

𝑖 ,(𝑟,𝑠)
(𝑘|𝑘 − 1)

hich have to be retrieved either from memory if (𝑟, 𝑠) ∈ 𝜙𝑖 or from
another computational unit 𝑗 , with 𝑗 ∈ −

𝑖 , in Step 3. Oftentimes,
𝐏−

𝑖 ,(𝑟,𝑠)
(𝑘|𝑘 − 1) is available from more than one source, so a selection

ule should be put in place. There are several alternatives for this
ule, which depend significantly on the application in question. In
hat follows a few examples are given. First, one can reduce the

ommunication cost by prioritizing content in the memory of 𝑖 and,
if it is not available, retrieve it from 𝑗 with which communication is
cheaper. Second, one can associate, in each computational unit 𝑖, a
scalar loss 𝐿𝑖,(𝑝,𝑞) ∈ R to the computation of 𝐏𝑖,(𝑝,𝑞)(𝑘|𝑘−1) , ∀(𝑝, 𝑞) ∈ 𝜙𝑖
that is an empirical metric of its accuracy. An example of an empirical
metric is the number of times that Approximation 1 was used in the
computation of 𝐏𝑖,(𝑝,𝑞)(𝑘 − 1|𝑘 − 1), i.e., the number of terms of the
ummation in (18) that were disregarded, which is given by

𝑖,(𝑝,𝑞) =
|

|

|

|

(

−
𝑝 ×−

𝑞

)

⧵ 𝜓𝑖
|

|

|

|

. (20)

n one hand, for a time-invariant topology, the empirical losses of
his example are constant in time and, thus, a computational unit
ay retrieve only 𝐏−

𝑖 ,(𝑟,𝑠)
(𝑘|𝑘 − 1) from the unit 𝑙 with 𝑙 ∈ −

𝑖
hich is known to have the lowest 𝐿𝑗,(𝑟,𝑠) ∀𝑗 ∈ −

𝑖 , thereby reducing
ommunication pressure. On the other hand, if the topology is time-
arying, this metric has to be updated at each time instant in Step 4 of
lgorithm 1. In general, in Step 2 all the available 𝐏−

𝑖 ,(𝑟,𝑠)
(𝑘|𝑘− 1) are

etrieved with their respective losses, and either their weighted average
s considered or the average of the ones with the minimum loss.

emark 4. Note that the computations performed in Step 4 of
lgorithm 1 do not guarantee the positive definiteness of the resulting
atrices. In applications with low process noise covariance or few

ommunications links, it may lead to numerical problems. To prevent
t, the computations in these steps should be written in matrix form
s follows. Let −

𝑝 = {𝑟𝑝1,… , 𝑟𝑝
|−

𝑝 |
}, and consider 𝐖̃𝑝(𝑘) of dimension

𝑝 ×
∑

𝑟∈−
𝑝
𝑛𝑟 and 𝐏̃(𝑝,𝑞)

−
𝑖
(𝑘|𝑘 − 1) of dimension ∑

𝑟∈−
𝑝
𝑛𝑟 ×

∑

𝑠∈−
𝑞
𝑛𝑠,

hich are defined below. Consider the decomposition of these ma-
[ ̃ ]

𝑛𝑝×𝑛𝑟𝑝𝑗
rices in blocks of indices (𝑖, 𝑗) denoted by 𝐖𝑝(𝑘) (1,𝑗) ∈ R and
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[

𝐏̃(𝑝,𝑞)
−
𝑖
(𝑘|𝑘 − 1)

]

(𝑖,𝑗)
∈ R

𝑛𝑟𝑝𝑖
×𝑛𝑟𝑞𝑗 . If one defines

[

𝐖̃𝑝(𝑘)
]

(1,𝑗) ∶= 𝛿𝑝𝑟𝑝𝑗 𝐈 −𝐊𝑝(𝑘)𝐂(𝑝,𝑟𝑝𝑗 )
(𝑘)

and

[

𝐏̃(𝑝,𝑞)
−
𝑖
(𝑘|𝑘 − 1)

]

(𝑖,𝑗)
∶=

⎧

⎪

⎨

⎪

⎩

𝐏−
𝑖 ,(𝑟

𝑝
𝑖 ,𝑟

𝑞
𝑗 )
(𝑘|𝑘 − 1), (𝑟𝑝𝑖 , 𝑟

𝑞
𝑗 ) ∈ 𝜓𝑖

𝟎, (𝑟𝑝𝑖 , 𝑟
𝑞
𝑗 ) ∉ 𝜓𝑖,

then (19) may be rewritten as

𝐏𝑖,(𝑝,𝑞)(𝑘|𝑘) = 𝐊𝑝(𝑘)𝐑(𝑝,𝑞)(𝑘)𝐊𝑇
𝑞 (𝑘)𝐖̃𝑝(𝑘)𝐏̃

(𝑝,𝑞)
−
𝑖
(𝑘|𝑘 − 1)𝐖̃𝑇

𝑞 (𝑘). (21)

The covariance update step in matrix form in (21) is more robust to
numerical error. Additionally, in networks with few communication
links, numerical problems can be prevented by ensuring the posi-
tive definiteness of 𝐏̃(𝑝,𝑞)

−
𝑖
(𝑘|𝑘 − 1) with 𝑝 = 𝑞 before performing the

computation in (21). This should be done by: (i) performing an eigen-
decomposition of 𝐏̃(𝑝,𝑞)

−
𝑖
(𝑘|𝑘−1); (ii) forcing the negative eigenvalues to

a positive value, for instance the lowest positive eigenvalue; and (iii)
recomputing 𝐏̃(𝑝,𝑞)

−
𝑖
(𝑘|𝑘− 1) from the inverse of the decomposition. This

procedure maintains the directions of the estimation error encoded in
the covariance matrix. In Step 6 of Algorithm 1 the computation may
be rewritten similarly to (21) to improve the robustness to numerical
errors.

Remark 5. It is clear that, since there are no dynamical couplings
between systems in the network considered in this problem, not only
the predicted estimates 𝐱̂𝑖(𝑘|𝑘), but also the prediction estimation error
covariance matrices 𝐏𝑖,(𝑝,𝑞)(𝑘 + 1|𝑘),∀(𝑝, 𝑞) ∈ 𝜙𝑖, can be computed in a
decoupled fashion. This characteristic can be seen in Algorithm 1. This
way, without requiring any additional communication and maintaining
the computational complexity of the algorithm, the prediction step of
the filter can be undergone making use of the Unscented Transforma-
tion, which is the backbone of the Unscented Kalman Filter proposed by
Julier and Uhlmann (Julier & Uhlmann, 1997a, 2004). The use of this
transformation, instead of the linearized dynamics, in the computation
of 𝐱̂𝑖(𝑘|𝑘) and 𝐏𝑖,(𝑝,𝑞)(𝑘 + 1|𝑘),∀(𝑝, 𝑞) ∈ 𝜙𝑖 allows for the propagation of
second-order terms of the probability distributions.

3.4. Communication, computational, and memory requirements

In this section, the communication, computational, and memory
requirements of Algorithm 1 are analyzed and it is verified that the
constraints 1–5 imposed in Section 2.3.1 are followed. To allow for a
clearer analysis and lighter notation, in this section, the complexity
is written for an homogeneous network, i.e., a network of identical
systems. In particular, systems with the same order 𝑛1, same output
dimension 𝑜1, and same number of output coupled systems 𝜈−1 are
considered.

First, notice that the sequence of the computations in Algorithm 1 is
such that a single instance of information exchange with other systems
is required. Note that none of the variables exchanged in this step
are required immediately after the transmission. In particular, each
system 𝑖 makes only use of their own output 𝐲𝑖(𝑘 + 1) for the update
step. Therefore, only soft real-time transmissions are required in this
procedure.

Second, the communication directed graph 𝑐 , i.e., the directed
graph representation of the available directed communication links, is
restricted to the output coupling directed graph, i.e., 𝑐 = . In this
configuration, system 𝑖 can only receive information from system 𝑗
if the output of 𝑖 is coupled with the state of 𝑗 , i.e., 𝑗 ∈ −

𝑖 . Thus,
system 𝑖 requires the exchange of data through communication with
𝜈−𝑖 − 1 systems in each iteration of the filter. Thus, the communication
complexity of system 𝑖 is (𝜈−𝑖 − 1). Given that 𝜈−𝑖 , the number of

systems whose state is coupled with the output of 𝑖, does not increase

8

with the size of the network, then the communication complexity of
each system grows with (1) with the dimension of the network.

Third, note that, as far as the quantity of transferred data between
systems is concerned, the most significant contribution for system
𝑖 is the reception of the predicted covariance matrices 𝐏𝑝,(𝑟,𝑠)(𝑘|𝑘 −
1) , ∀(𝑟, 𝑠) ∈ 𝜙𝑝 ⧵ 𝜙𝑖 from 𝑝 ∈ −

𝑖 ⧵ {𝑖}. The number of floating point
number to be received per iteration of the filter grows with ((𝜈−1 )

3𝑛21).
Given that neither 𝜈−𝑖 nor 𝑛𝑖 increase with an increase in the number of
systems of the network, the transmission data size complexity of each
system grows with (1) with the dimension of the network.

Fourth, according to Algorithm 1, each system 𝑖 has to store in
memory: (i) the nonlinear functions 𝐟𝐢 ∶ R𝑛𝑖 × R𝑚𝑖 → R𝑛𝑖 and 𝐠𝐢 ∶
∏

𝑗∈−
𝑖
R𝑛𝑗 → R𝑜𝑖 , that model the dynamics of the system and its output

coupling with the other systems in its in-neighborhood; (ii) the process
and observation noise covariance matrices 𝐐𝑖(𝑘, 𝐱𝑖(𝑘),𝐮𝑖(𝑘)) ⪰ 𝟎 ∈ R𝑛𝑖×𝑛𝑖
and 𝐑𝑖,𝑗 (𝑘, 𝐱𝑖(𝑘), 𝐱𝑗 (𝑘)) ≻ 𝟎 ∈ R𝑜𝑖×𝑜𝑖 , respectively; and (iii) 𝐏𝑖,(𝑝,𝑞)(𝑘|𝑘),
with (𝑝, 𝑞) ∈ 𝜙𝑖. Assuming that the nonlinear functions are stored
efficiently, out of these, the most demanding is the latter, which
requires storing a number of floating point numbers that grows with
((𝜈−1 )

2𝑛21). Of course there are auxiliary variables which are required to
be handled at each iteration, such as the covariance matrices received
by communication, which require temporary memory storage. Thus,
the data storage complexity of each system grows with (1) with the
dimension of the network, since the memory required does not scale
with the number of systems in the network.

Fifth, as far as the computational complexity is concerned, the most
intensive computations of Algorithm 1, assuming the evaluations of
the nonlinear dynamics and output functions are not computationally
demanding, are the propagation of the covariance matrices 𝐏𝑖,(𝑝,𝑞)(𝑘|𝑘),
with (𝑝, 𝑞) ∈ 𝜙𝑖, in Step 4. For each system and for each (𝑝, 𝑞) ∈ 𝜙𝑖
the dominant computation is the double summation, which amounts
to ((𝜈−1 )

2𝑛21max(𝑛1, 𝑜1)) floating point operations. Therefore, the total
number of floating point operations, in Step 4, for each system, grows
with ((𝜈−1 )

4𝑛21max(𝑛1, 𝑜1)). Given that neither 𝜈−1 nor max(𝑛1, 𝑜1) in-
crease with an increase in the number of systems of the network, it
follows that the computational complexity of Algorithm 1 grows with
(1) with 𝑁 . It is possible to conclude that the algorithm put forward in
this paper follows the constraints presented in Section 2.3 to be suitable
to be applied to very large-scale systems. It is important to note that,
when designing an estimation solution for a large-scale solution, these
aspects shall not be disregarded. For instance, in Pedroso et al. (2021)
a state-of-the-art state estimation solution is developed for networks
of systems with LTV dynamics, which can easily be adapted to an
extended Kalman filter. However, using this method the linearization
procedure requires all-to-all communication and the gain computation
must be replicated in each system, which violates conditions 2 and 5
detailed in Section 2.3.1. For this reason, the method proposed in this
paper is a significant step towards the application of decentralized state
estimation solutions to large-scale nonlinear systems.

3.5. Extension to time-varying output coupling topologies

In this section, the algorithm proposed to implement a decentralized
state estimation solution for a large-scale network of nonlinear systems
is extended to allow for a time-varying output coupling topology.
Oftentimes, the output couplings between systems vary with time due
to: (i) the failure of systems of the network; (ii) the introduction of
new systems in the network; or (iii) switching network configurations.
To that purpose, consider, now, a time-varying directed graph (𝑘),
with time-varying in-degree 𝜈−𝑖 (𝑘), in-neighborhood, −

𝑖 (𝑘), and define
𝜙𝑖(𝑘) and 𝜓𝑖(𝑘) analogously to (17) and (16), respectively, for system
𝑖. In this paper, the general case, in which the evolution of the output
coupling topology with time is not known a priori is considered.

The extension of Algorithm 1 to a time-varying output coupling
topology is given by Algorithm 2. First, notice that a similar outline
is followed. Second, the local output coupling topology, defined by
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Algorithm 2 One-step decentralized extended Kalman filter algorithm at time instant 𝑘 in computational unit 𝑖 for time-varying coupling topology.

Input: 𝐱̂𝑖(𝑘|𝑘); 𝐮𝑖(𝑘); −
𝑖 (𝑘); 𝐊𝑖(𝑘); 𝐏𝑖,(𝑝,𝑞)(𝑘|𝑘 − 1),∀(𝑝, 𝑞) ∈ 𝜙𝑖(𝑘); 𝐑(𝑖,𝑝)(𝑘),∀𝑝 ∈ −

𝑖 (𝑘); 𝐂(𝑖,𝑝)(𝑘),∀𝑝 ∈ −
𝑖 (𝑘)

Output: 𝐱̂𝑖(𝑘 + 1|𝑘 + 1); 𝐊𝑖(𝑘 + 1); −
𝑖 (𝑘 + 1); 𝐏𝑖,(𝑝,𝑞)(𝑘 + 1|𝑘),∀(𝑝, 𝑞) ∈ 𝜙𝑖(𝑘 + 1); 𝐑(𝑖,𝑝)(𝑘 + 1),∀𝑝 ∈ −

𝑖 (𝑘 + 1);
𝐂(𝑖,𝑝)(𝑘 + 1),∀𝑝 ∈ −

𝑖 (𝑘 + 1)
Step 1: 𝐱̂𝑖(𝑘 + 1|𝑘) ← 𝐟𝐢(𝑘, 𝐱̂𝑖(𝑘|𝑘),𝐮𝑖(𝑘))

𝐀(𝑖,𝑖)(𝑘) ← 𝜕𝐟𝐢(𝑘, 𝐱𝑖(𝑘),𝐮𝑖(𝑘))∕𝜕𝐱𝑖(𝑘)
|

|

|𝐱𝑖(𝑘)=𝐱̂𝑖(𝑘|𝑘)
𝐐(𝑖,𝑖)(𝑘) ← 𝐐𝑖(𝑘, 𝐱̂𝑖(𝑘|𝑘),𝐮𝑖(𝑘))

Step 2: Define: Predicted local output coupling topology, defined by ̂−
𝑖 (𝑘 + 1) and ̂+

𝑖 (𝑘 + 1)
Step 3: Transmit: 𝐱̂𝑖(𝑘 + 1|𝑘);𝐀(𝑖,𝑖)(𝑘);𝐐(𝑖,𝑖)(𝑘);𝐊𝑖(𝑘);𝐑(𝑖,𝑗)(𝑘),∀𝑗 ∈ −

𝑖 (𝑘);
𝐂(𝑖,𝑝)(𝑘),∀𝑝 ∈ −

𝑖 (𝑘); and 𝐏𝑖,(𝑝,𝑞)(𝑘|𝑘 − 1) , ∀(𝑝, 𝑞) ∈ 𝜙𝑖(𝑘); to 𝑟 ∈ ̂+
𝑖 (𝑘 + 1) ⧵ {𝑖} .

Step 4: Receive: 𝐱̂𝑝(𝑘 + 1|𝑘),−
𝑝 (𝑘),𝐀(𝑝,𝑝)(𝑘),𝐐(𝑝,𝑝)(𝑘), and 𝐊𝑝(𝑘) from all 𝑝 ∈ ̂−

𝑖 (𝑘 + 1) ⧵ {𝑖}
𝐑(𝑝,𝑞)(𝑘), ∀(𝑝, 𝑞) ∈ 𝜙̂𝑖(𝑘 + 1) ⧵ {(𝑖, 𝑖)}, from either 𝑝 or 𝑞
𝐂(𝑝,𝑟)(𝑘), ∀𝑟 ∈ −

𝑝 (𝑘) from 𝑝 ∈ ̂−
𝑖 (𝑘 + 1) ⧵ {𝑖}

𝐏𝑝,(𝑟,𝑠)(𝑘|𝑘 − 1) , for some (𝑟, 𝑠) ∈ 𝜙𝑝(𝑘) from 𝑝 ∈ ̂−
𝑖 (𝑘 + 1) ⧵ {𝑖}

Step 5: Define: Local output coupling topology −
𝑖 (𝑘 + 1) as the set of systems in ̂−

𝑖 (𝑘 + 1) from which the required
data was received.

Step 6: 𝐏𝑖,(𝑝,𝑞)(𝑘|𝑘) ← 𝐊𝑝(𝑘)𝐑(𝑝,𝑞)(𝑘)𝐊𝑇
𝑞 (𝑘)+

∑

𝑟∈−
𝑝 (𝑘)

∑

𝑠∈−
𝑞 (𝑘)

(𝑟,𝑠)∈𝜓𝑖(𝑘)
(𝛿𝑝𝑟𝐈 −𝐊𝑝(𝑘)𝐂(𝑝,𝑟)(𝑘))𝐏𝑖,(𝑟,𝑠)(𝑘|𝑘 − 1)(𝛿𝑞𝑠𝐈 −𝐊𝑞(𝑘)𝐂(𝑞,𝑠)(𝑘))𝑇 ,∀(𝑝, 𝑞) ∈ 𝜙𝑖(𝑘 + 1)

Step 7: 𝐂(𝑖,𝑗)(𝑘 + 1)←𝜕𝐠𝐢(𝑘; 𝐱𝑗 (𝑘 + 1), 𝑗 ∈ −
𝑖 (𝑘 + 1))∕𝜕𝐱𝑗 (𝑘 + 1)||

|𝐱𝑗 (𝑘+1)=𝐱̂𝑗 (𝑘+1|𝑘),𝑗∈−
𝑖 (𝑘+1)

,∀𝑗 ∈ −
𝑖 (𝑘 + 1)

𝐑(𝑖,𝑗)(𝑘 + 1) ← 𝐑𝑖,𝑗 (𝑘, 𝐱̂𝑖(𝑘 + 1|𝑘), 𝐱̂𝑗 (𝑘 + 1|𝑘)) , ∀𝑗 ∈ −
𝑖 (𝑘 + 1)

Step 8: 𝐏𝑖,(𝑝,𝑞)(𝑘 + 1|𝑘) ← 𝐀(𝑝,𝑝)(𝑘)𝐏𝑖,(𝑝,𝑞)(𝑘|𝑘)𝐀𝑇(𝑞,𝑞)(𝑘) +𝐐(𝑝,𝑞)(𝑘) , ∀(𝑝, 𝑞) ∈ 𝜙𝑖(𝑘 + 1)
𝐒(𝑖,𝑖)(𝑘+1) ←

∑

𝑝∈−
𝑖 (𝑘+1)

∑

𝑞∈−
𝑖 (𝑘+1)

𝐂(𝑖,𝑝)(𝑘+1)𝐏𝑖,(𝑝,𝑞)(𝑘+1|𝑘)𝐂𝑇(𝑖,𝑞)(𝑘+1) + 𝐑(𝑖,𝑖)(𝑘+1)

𝐊𝑖(𝑘 + 1) ←
∑

𝑝∈−
𝑖 (𝑘+1)

(

𝐏(𝑖,𝑝)(𝑘 + 1|𝑘)𝐂𝑇(𝑖,𝑝)(𝑘 + 1)
)

𝐒−1(𝑖,𝑖)(𝑘 + 1)
Step 9: Take measurement: 𝐲𝑖(𝑘 + 1)
Step 10: 𝐱̂𝑖(𝑘+1|𝑘+1) ← 𝐱̂𝑖(𝑘+1|𝑘) +𝐊𝑖(𝑘+1)

(

𝐲𝑖(𝑘+1) − 𝐠𝐢(𝑘 + 1; 𝐱̂𝑗 (𝑘 + 1|𝑘), 𝑗 ∈ −
𝑖 (𝑘 + 1))

)
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the in-neighborhood of each system 𝑖, is defined in real-time. After
omputing its predicted state estimate, each system 𝑖 computes a
redicted coupling topology, defined by ̂−

𝑖 (𝑘+1) and ̂+
𝑖 (𝑘+1), possibly

depending on the predicted state estimate. It, then, expects to receive
data from each system 𝑝, with 𝑝 ∈ ̂−

𝑖 (𝑘 + 1) ⧵ {𝑖}, which is required
to consider the effect of the output coupling of 𝑝. Afterwards, the
systems that transmit the required information define the actual local
output coupling topology −

𝑖 (𝑘+1). Note that the prediction of the local
oupling topology, as well as the conditions for a system to respond
o a request, vary greatly with the application in question. Third, it is
mportant to remark that the sequence of steps on Algorithm 2 allows
o compute the updated estimation error covariance matrix at time-
nstant 𝑘 only between systems 𝑝 and 𝑞 whose state is both coupled
ith the output in time-instant 𝑘 + 1, i.e., (𝑝, 𝑞) ∈ 𝜙𝑖(𝑘 + 1). This
llows to lessen the communication burden, since the computations are
fficiently distributed across all computational units.

. Application to the onboard navigation problem of LEO mega-
onstellations using GNSS

In this section, the decentralized EKF algorithm developed in
ection 3 is applied to the cooperative navigation of LEO mega-
onstellations. Note that, unlike the state-of-the-art decentralized es-
imation algorithms, this algorithm follows the communication, com-
utational, and memory constraints presented in Section 2, which
re necessary for an effective real-time decentralized implementa-
ion. Each satellite has access to inertial absolute position measure-
ents provided by a GNSS system and also relative position mea-

urements between satellites in close proximity, obtained with carrier-
hase differential GNSS. All source code of the implementation of
he proposed algorithm to this problem is available as an example of
he DECENTER Toolbox at https://decenter2021.github.io/examples/

DEKFStarlinkConstellation/.

9

4.1. Mega-constellation model

Consider a constellation with a total of 𝑇 satellites. The satellites are
venly distributed over 𝑃 orbital planes at an inclination 𝑖, and with a
elative phasing between adjacent planes of 𝛽 = 2𝜋𝐹∕𝑇 , where 𝐹 is
he phasing parameter. Such a configuration is designated as a Walker
onstellation and it is denoted by 𝑖 ∶ 𝑇 ∕𝑃∕𝐹 . This constellation can be
odeled as a network of interconnected systems, 𝑗 , each associated
ith a computational unit 𝑗 , with 𝑗 = 1,… , 𝑇 . Let 𝐱𝑇𝑖 ∶= [𝐩𝑇𝑖 𝐩̇𝑇𝑖 ]

denote the state of 𝑖, where 𝐩𝑖 ∈ R3 and 𝐩̇𝑖 ∈ R3 denote the position
and velocity vectors, respectively, of 𝑖. The dynamics of satellite of the
constellation are modeled independently, since there is no dynamical
coupling between them. All vectors are expressed in the J2000 Earth
centered inertial (ECI) frame. The model of the translational dynamics
used for the numerical simulations in Section 4.3 takes into account
several perturbations. However, the model used for the propagation
of the decentralized Kalman filter considers only 𝐽2 and atmospheric
drag perturbations. It is assumed that each satellite 𝑖 is equipped with
Hall effect thrusters that generate a force 𝐮𝑖 ∈ R3. The model of the
dynamics of a single satellite 𝑖 is, thus, given by
{

𝐩̈𝑖 = −𝜇𝐩𝑖∕‖𝐩𝑖‖32 + 𝐚𝐽2𝑖 + 𝐚𝐷𝑖 + 𝐮𝑖∕𝑚𝑖
𝑚̇𝑖 = −‖𝐮𝑖‖1∕(𝐼

𝑠𝑝
𝑖 𝑔0),

(22)

here 𝑚𝑖 denotes the mass of the satellite, 𝜇 denotes the gravitational
arameter of the Earth, 𝐚𝐷𝑖 ∈ R3 and 𝐚𝐽2𝑖 ∈ R3 denote the perturbation
ccelerations of 𝐽2 and the atmospheric drag, respectively, 𝐼𝑠𝑝𝑖 denotes
he specific impulse of the Hall thrusters of 𝑖, and 𝑔0 denotes the
tandard gravity acceleration. The 𝐽2 perturbation acceleration can be
omputed as the symmetric of the gradient of the potential (Vallado,
997, Chapter 7.6)

2(𝐩) = −
𝜇
𝐽2

(𝑅⨁

)2 (

−1 + 3
(

[𝐩]3
)2

)

,

‖𝐩‖ ‖𝐩‖ 2 2 ‖𝐩‖

https://decenter2021.github.io/examples/DDEKFStarlinkConstellation/
https://decenter2021.github.io/examples/DDEKFStarlinkConstellation/
https://decenter2021.github.io/examples/DDEKFStarlinkConstellation/
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i.e., 𝐚𝐽2𝑖 = −∇𝑈2(𝐩𝑖). The acceleration due to atmospheric drag of a
generic satellite is given by Vallado (1997, Chapter 7.6)

𝐚𝐷 = −1
2
𝐶𝐷𝐴
𝑚

𝜌‖𝐯𝑟𝑒𝑙‖2
𝐯𝑟𝑒𝑙

‖𝐯𝑟𝑒𝑙‖
,

where 𝐶𝐷 is the drag coefficient, 𝐴 is the cross-sectional area, 𝜌 is
the air density, and 𝐯𝑟𝑒𝑙 denotes the velocity vector relative to the
tmosphere, i.e.,

𝑟𝑒𝑙 = 𝐩̇ − 𝜔⨁𝐞3 × 𝐩,

assuming a windless atmosphere, where 𝜔⨁ denotes the angular speed
of the Earth and 𝐞𝑇3 ∶= [0 0 1]. The atmospheric density of the Earth is
assumed to be modeled by a simple exponential evolution

𝜌 = 𝜌0 exp
(

−(‖𝐩‖ − 𝐑⨁ − ℎ0)∕𝐻
)

,

where the reference and scale altitude are denoted, respectively, by ℎ0
nd 𝐻 , which can be looked up in a table (see, for instance, Vallado
1997, Table 7.4)) depending on the nominal altitude of the constel-
ation. To express the dynamics of each satellite 𝑖 in discrete-time,
onsider a sampling time 𝑇𝑠 and assume that the actuation 𝐮𝑖 remains
onstant over each time interval. Then, one can write
{

𝐱𝑖(𝑘 + 1) = 𝐟𝐢(𝑘, 𝐱𝑖(𝑘),𝐮𝑖(𝑘), 𝑚𝑖(𝑘)) + 𝐰𝑖(𝑘 + 1)
𝑚𝑖(𝑘 + 1) = 𝑚𝑖(𝑘) − 𝑇𝑠‖𝐮𝑖(𝑘)‖1∕(𝐼

𝑠𝑝
𝑖 𝑔0),

(23)

where 𝐟𝐢 performs the integration of the aforementioned continuous-
time dynamics models and 𝐰𝑖(𝑘 + 1) is the process noise that accounts
for accelerations due to other minor perturbations and modeling er-
rors. The process noise is modeled by a zero-mean, white Gaussian
process with associated covariance matrix 𝐐𝑖(𝑘, 𝐱𝑖(𝑘),𝐮𝑖(𝑘)) and 𝐰𝑝(𝑘),
and 𝐰𝑞(𝑘) are assumed to be independent for 𝑝 ≠ 𝑞. Note that 𝐟𝐢 in (23)

ay depend on the time instant to account for possibly time-varying
odel parameters.

Each satellite is equipped with a GNSS receiver which is used to
ompute inertial position measurements in an Earth centered Earth
ixed (ECEF) frame. After a coordinate transformation, the inertial
easurement can be expressed in the ECI J2000 frame, which is a
art of the output of each system 𝑖. Then, considering that these
easurements are available at a sampling period 𝑇𝑠, it is given by
𝑖𝑛
𝑖 (𝑘) = 𝐱𝑖(𝑘) + 𝐯𝑖𝑛𝑖 (𝑘) , (24)

where 𝐯𝑖𝑛𝑖 (𝑘) is the sensor noise, which is modeled by a zero-mean,
white Gaussian process, with associated covariance matrix 𝐑𝑖𝑛𝑖 (𝑘, 𝐱𝑖(𝑘)),
and 𝐯𝑖𝑛𝑝 (𝑘) and 𝐯𝑖𝑛𝑞 (𝑘) are assumed to be independent for 𝑝 ≠ 𝑞.
urthermore, it is considered that each satellite can communicate with
eighboring satellites via an ISL. Such communication topology can be
epresented by a time-varying graph (𝑘), which features a node 𝑗 for
ach satellite system 𝑗 , and a bidirectional edge for each ISL. It is con-
idered that two satellite systems 𝑖 and 𝑗 communicate via a satellite
ink if they are in ISL range, i.e., ‖𝐩𝑖 − 𝐩𝑗‖ < 𝑅𝐼𝑆𝐿, where 𝑅𝐼𝑆𝐿 ∈ R
s the line-of-sight range for ISL transmissions. Making use of the ISL
etween two satellites and their GNSS receivers, it is possible to obtain
common relative position measurement between them with carrier-

hase differential GNSS. Thus, for this application in particular, the
utput coupling graph could be treated as undirected. Single carrier and
ouble carrier differences have been shown to allow for high precision
elative measurements for short baselines (Allende-Alba, Montenbruck,
ackel, & Tossaint, 2018; Li, 2018; Montenbruck, Ebinuma, Lightsey,
Leung, 2002). The procedure for the determination of the relative
easurements evolves resolving an integer ambiguity, as described, for

nstance, in Kroes, Montenbruck, Bertiger, and Visser (2005). It is also
mportant to note that, for relative distances of the order of hundreds
f kilometers, some nonlinear correction terms have to be considered,
s described in Blewitt (1989), Tancredi et al. (2014), Wolfe et al.
2007) and Wu and Bar-Sever (2006). In this paper, provided that the
ain contribution is the decentralized EKF method, and for the sake

f simplicity, the relative measurements are assumed to be given by a
10
inear model with additive Gaussian noise. Nevertheless, note that, even
or long baselines and real-time integer-ambiguities determination, the
aussian assumption seems reasonable (Tancredi et al., 2014). Thus,

he relative measurement output of satellite system 𝑖 relative to 𝑗 ,
with 𝑗 ∈ −

𝑖 , is given by

𝐲𝑟𝑒𝑙𝑖,𝑗 (𝑘) = 𝐩𝑖(𝑘) − 𝐩𝑗 (𝑘) + 𝐯𝑟𝑒𝑙𝑖,𝑗 (𝑘), (25)

where 𝐯𝑟𝑒𝑙𝑖,𝑗 (𝑘) is the relative measurement noise, which is modeled by
a zero-mean, white Gaussian process characterized by: (i) E[𝐯𝑟𝑒𝑙𝑖,𝑗 (𝑘)𝐯

𝑟𝑒𝑙
𝑖,𝑗
𝑇

𝑘)] = 𝐑𝑟𝑒𝑙𝑖,𝑗 (𝑘, 𝐱𝑖(𝑘), 𝐱𝑗 (𝑘)); (ii) E[𝐯𝑟𝑒𝑙𝑖,𝑗 (𝑘)𝐯
𝑟𝑒𝑙
𝑗,𝑖
𝑇 (𝑘)] = −𝐑𝑟𝑒𝑙𝑖,𝑗 (𝑘, 𝐱𝑖(𝑘), 𝐱𝑗 (𝑘)),

ince 𝐲𝑟𝑒𝑙𝑖,𝑗 (𝑘) = −𝐲𝑟𝑒𝑙𝑗,𝑖 (𝑘); and (iii) E[𝐯𝑟𝑒𝑙𝑖,𝑗 (𝑘)𝐯
𝑟𝑒𝑙
𝑝,𝑞
𝑇 (𝑘)] = 0, ∀𝑖, 𝑗, 𝑝, 𝑞 ∶ (𝑖 ≠

∨ 𝑗 ≠ 𝑞) ∧ (𝑖 ≠ 𝑞 ∨ 𝑗 ≠ 𝑝). The local output dynamics of a satellite
ystem 𝑖, denoted by 𝐲𝑖(𝑘), can be written as the concatenation of the
nertial and relative outputs given, respectively, by (24) and (25). Let
−
𝑖 ⧵ {𝑖} = {𝑗𝑖1,… , 𝑗𝑖

|−
𝑖 |−1

} and let 𝐥𝑗 ∈ R|−
𝑖 | denote a column vector

hose entries are all set to zero except for the 𝑗th one, which is set

o 1. Then 𝐲𝑖(𝑘) ∶= col

(

𝐲𝑟𝑒𝑙
𝑖,𝑗𝑖1

(𝑘),… , 𝐲𝑟𝑒𝑙
𝑖,𝑗𝑖

|−
𝑖 |−1

(𝑘), 𝐲𝑖𝑛𝑖 (𝑘)
)

and

𝑖(𝑘) =
∑

𝑝∈−
𝑖

𝐂(𝑖,𝑝)(𝑘)𝐱𝑝(𝑘) + 𝐯𝑖(𝑘), (26)

ith

(𝑖,𝑝) =

⎧

⎪

⎨

⎪

⎩

[

𝟏
|−

𝑖 |×1
𝟎
|−

𝑖 |×1

]

⊗ 𝐈3, 𝑝 = 𝑖
[

−𝐥𝑙 𝟎
|−

𝑖 |×1

]

⊗ 𝐈3, 𝑝 = 𝑗𝑖𝑙

nd the global measurement noise 𝐯(𝑘) ∶= col(𝐯1(𝑘),… , 𝐯𝑇 (𝑘)) is a
ero-mean white Gaussian process with associated covariance matrix
(𝑘, 𝐱1(𝑘),… , 𝐱𝑇 (𝑘)), defined, using the block decomposition presented

n Section 3.1, by

[𝐯𝑖(𝑘)𝐯𝑇𝑝 (𝑘)] = 𝐑(𝑖,𝑝)(𝑘) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

diag

(

𝐑𝑟𝑒𝑙
𝑖,𝑗𝑖1
,… ,𝐑𝑟𝑒𝑙

𝑖,𝑗𝑖
|−
𝑖 |−1
,𝐑𝑖𝑛𝑖

)

, 𝑝 = 𝑖

−
(

𝐥𝑟𝐥𝑇𝑠
)

⊗ 𝐑𝑟𝑒𝑙𝑖,𝑝 , 𝑝 = 𝑗𝑖𝑟 ∧ 𝑖 = 𝑗𝑝𝑠
𝟎
|−

𝑖 |×|
−
𝑝 |
, 𝑝 ∉ −

𝑖 ,

here the time and satellite state dependence on the covariance matri-
es was suppressed to ease the notation.

.2. Filter implementation

Notice that the dynamics of the network, described by the local
ynamics of each satellite, which are given by (23), together with
he coupled output, described by the local measurement architecture,
hich is described by (26), is of the same form as the generic network
f interconnected systems detailed in Section 2.1. This application is
uitable for the application of the decentralized EKF method proposed
n this paper. Before proceeding, it is important to point out some
etails regarding the filter implementation to this problem. First, the
ass of the satellites is not estimated. The model for the evolution of

he mass is considered to be exact, thus the state vector of the local
KF of satellite system 𝑖 is 𝐱𝑖(𝑘) as defined in Section 4.1. Second,
ote that the coupling graph (𝑘) is time-varying, thus one has to follow
lgorithm 2. Note that the evolution of the output coupling topology is
asily locally predictable in this problem, given the rigid configuration
f the constellation. Thus, at each time instant, the predicted local
utput coupling topology, defined by ̂−

𝑖 (𝑘 + 1) = ̂+
𝑖 (𝑘 + 1) can be

asily predicted with over-confidence to ensure that information can be
xchanged with every satellite in ISL range. Third, it is considered that
ach satellite establishes output coupling links with other satellites in
SL range up to a maximum of |−

|max − 1 = |+
|max − 1 neighbors.

f more satellites are within ISL range than the maximum allowed
eighborhood cardinality, links are removed until this constraint is
atisfied. If necessary, the links that are removed are those that are
stablished with the satellites that have the greatest number of links



L. Pedroso and P. Batista Control Engineering Practice 135 (2023) 105509

h

established with other satellites. In this application in particular, given
the periodicity of the topology, the rules for establishing ISL could
also be set offline according to a given heuristic. Fourth, a covariance
selection rule based on the time-varying empirical loss analogous to
(20) is employed, as detailed in Remark 3. Fifth, to avoid numerical
problems, the procedures detailed in Remark 4 are employed. Sixth,
note that, as pointed out in Remark 5, the prediction making use of (23)
is decoupled, thus the unscented transformation is used as described
in Remark 5, to allow for the propagation of second-order terms of
the probability distributions in the prediction step. The parameters
𝛼 = 10−3, 𝜅 = 0, and 𝛽 = 2 are the parameters of the implemented Un-
scented Transformation, defined according to Wan and Van Der Merwe
(2000).

4.3. Simulation results

In this section, simulation results are presented for an illustrative
mega-constellation of a single shell inspired by the first shell of the
Starlink constellation to be deployed. The constellation is a Walker
53.0 deg ∶ 1584∕72∕17. The phasing parameter of this Starlink shell is
not publicly available, so it was chosen according to Liang, Chaudhry,
and Yanikomeroglu (2021) such that the minimum distance between
satellites is maximized. All satellites are assumed to be identical. The
parameters that define the illustrative constellation are presented in
Table 1. The realistic nonlinear numeric simulation was computed
making use of the high fidelity TU Delft’s Astrodynamic Toolbox1

(TUDAT) (Kumar et al., 2012). The orbit propagation of the satellites
of the constellation makes use of NASA’s SPICE ephemerides, and
accounts for several perturbations:

1. Earth’s gravity field EGM96 spherical harmonic expansion
(Lemoine, Factor, & Kenyon, 1998) up to degree and order 12;

2. Atmospheric drag NRLMSISE-00 model (Picone, Hedin, Drob,
& Aikin, 2002), assuming constant drag coefficient and section
area;

3. Cannon ball solar radiation pressure, assuming constant reflec-
tivity coefficient and radiation area;

4. Third-body perturbations of the Sun, Moon, Venus, Jupiter, and
Mars.

The numerical propagation is assured by a fourth-order Runge–Kutta
integration method with fixed step-size of 𝑇𝑠 = 1 s. Simulations start at
0 DBT seconds since J2000. As the goal of these simulations is to assess
estimation performance, no maneuvers were performed. Note that,
for this single shell, the concatenation of the states of every satellite
amounts to 6×1584 = 9504 states, which is the dimension of the global
system of an equivalent centralized framework. Thus, the implementa-
tion of a centralized estimation algorithm would require performing
computations, in real-time, with very large dimension matrices. For
instance, the estimation error covariance matrix, which is non-sparse
in general, would amount to 722.6 × 106 bytes in double precision.
Moreover, in a centralized framework, there would have to be all-to-
all communication of large amounts of data over long distances via the
mission control center, which is achieved by several ground stations
scattered across the Earth. On top of that, in areas where it may not be
possible to ensure a direct link with a ground station, the information
must flow through a path of satellites to an available ground station,
thereby putting a lot of pressure on the communication system of
the satellites. As a result, the intensive real-time global computations
and sheer communication requirements render a centralized framework
inviable. Moreover, the large-scale of this system renders the simula-
tion of other state-of-the-art methods computational impossible in a
reasonable time frame. This is due to their computational, memory, or
communication requirements, that grow with the size of the network,
as pointed out in Section 1.

1 Documentation available at https://docs.tudat.space/ and source code at
ttps://github.com/tudat-team/tudat-bundle/.
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Table 1
Parameters of the constellation.

Configuration

Inclination (𝑖) 53.0 deg
Number of satellites (𝑇 ) 1584
Number of orbital planes (𝑃 ) 72
Phasing parameter (𝐹 ) 17
Semi-major axis (𝑎) 6921.0 km
Eccentricity (𝑒) 0

Satellites

Initial mass 260 Kg
Drag coefficient (𝐶𝐷) 2.2
Section area (𝐴) 24.0 m2

Solar radiation pressure coefficient (𝐶𝑅) 1.2
Solar radiation pressure area (SRPA) 10.0 m2

The simplified discrete-time model of a satellite (23) was validated,
in a first instance, by assessing its accuracy considering the TUDAT
propagation evolution as the ground truth. It was possible to conclude
that, for this illustrative constellation in particular, which is at an
height of 550 km, the exponential density model performs poorly and
its short-term effect of the acceleration due to atmospheric drag is
smaller than the effect of other perturbations which were not taken
into account. For these reasons, henceforth, in the propagation making
use of (23), the drag acceleration was neglected. Fig. 2(a) depicts the
evolution of the propagation of the absolute value of the error of the
simplified model (23). Fig. 2(b) depicts the evolution of the absolute
propagation error of the simplified model (23) in a single time-step
𝑇𝑠 = 1 s, i.e., each time-step, the states are propagated starting at
the true state. In both these plots, the error is depicted along the
radial, along-track, and cross-track components as a function of the
mean argument of latitude for roughly 10 orbits. First, it is noticeable
that, as expected, the dead-reckoning propagation diverges from the
ground truth evolution, most notably in the along-track component.
Second, the single time-step propagation accuracy is of the order of
10−4 m. Nevertheless, as expected, the propagation error does not
seem to be well-modeled by a Gaussian distribution, as proposed in
Section 4.1, given that correlations between time-steps are evident.
Notwithstanding the poor process noise model, the EKF formulation has
been shown multiple times to achieve good estimation results in these
conditions (Garulli, Giannitrapani, Leomanni, & Scortecci, 2011). After
careful error analysis and empirical experimentation, an adequate error
covariance matrix of the process noise is given, in International System
of Units (SI) units, by

𝐐𝑗 (𝑘, 𝐱𝑗 (𝑘)) =
[

diag(1.967, 1.967, 1.456) diag(0.2515, 0.2515, 0.2424)
diag(0.2515, 0.2515, 0.2424) 10−2diag(3.382, 3.382, 4.09)

]

,

for 𝑗 = 1,… , 𝑇 . Note that the standard deviation of the position error
is four orders of magnitude above the magnitude of the error reported
in Fig. 2(b).

It is assumed that the inertial GNSS measurement error is uncor-
related between components and that each component has a standard
deviation of 10 m, i.e.,

𝐑𝑖𝑛𝑗 (𝑘, 𝐱𝑗 (𝑘)) = 102𝐈3,

in SI units, for 𝑗 = 1,… , 𝑇 . Even though experimental results are
not available in the literature for baselines over 220 km, which were
established for the GRACE mission (Kroes et al., 2005), since the main
contribution is the decentralized EKF method, and for the sake of
simplicity, it is considered that, due to common error canceling in
the determination of the relative measurements and state-of-the-art
ambiguity resolution methods, relative measurement error is two orders
of magnitude lower than inertial measurement error. Thus,

𝐑𝑟𝑒𝑙𝑗,𝑝(𝑘, 𝐱𝑗 (𝑘), 𝐱𝑗𝑝(𝑘)) = (0.1)2 𝐈3,

̂−
in SI units, for 𝑗 = 1,… , 𝑇 and 𝑝 ∈ 𝑗 .

https://docs.tudat.space/
https://github.com/tudat-team/tudat-bundle/
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Fig. 2. Absolute value of the components of the propagation position error in radial,
along-track, and cross-track directions as a function of the mean argument of latitude.

The evolution of the minimum, maximum, and average number
of satellites within ISL range of each satellite of the constellation as
a function of the ISL range, at 0 Dynamical Barycentric Time (TDB)
seconds since J2000, is depicted in Fig. 3. Notwithstanding that ISL
ranges of the order of 1000 km and above have been reported (Kaur,
Gupta, & Chaudhary, 2015; Radhakrishnan et al., 2016; Sharma &
Kumar, 2013), as a means of saving power, reducing ISL pressure, and
showing the flexibility of the proposed estimation method, a ISL range
of 𝑅𝐼𝑆𝐿 = 750 km is considered with |−

|max − 1 = |+
|max − 1 = 3,

which corresponds to a maximum of three output couplings per satellite
at a given time instant. Note that it allows for every satellite of the
constellation to share a ISL with, at least, another satellite at any time.

In Fig. 4 a snapshot of the projection of the position of each satellite
of the constellation over the Earth, as well as the ISL, at 0 TDB seconds
since J2000 is shown. An animation of the evolution of the ground track
of the constellation and of the ISL can be viewed in the aforementioned
example of the DECENTER Toolbox. It is interesting to note that, due to
the higher density of satellites in the extreme latitudes, much more ISL
are established. This fact allows for more accurate position estimates
in these regions, which is desirable to maintain the topology and avoid
collisions.

Fig. 5 depicts, for satellite 1, the evolution of the position estima-
tion error if only the GNSS inertial position measurements are used,
i.e. |−

|max − 1 = 0, which degenerates in a decoupled EKF. Fig. 6
depicts, for satellite 1, the evolution of the position estimation error
employing the algorithm proposed in this paper, which makes use of
both inertial and relative measurements with |−

|max − 1 = 3. In both
these plots, the evolution of the maximum 3𝜎 bound among the three
ECI frame components is also shown. The simulations were performed

for a full orbital period. First, unlike the decoupled EKF with inertial

12
Fig. 3. Number of satellites within ISL range at 0 TDB seconds since J2000.

Table 2
RMSE of the global position error of the constellation over the whole simulation for
various values of the maximum number output couplings per satellite.
|−

|max − 1 RMSE (m) Improvement

0 (Inertial) 6.65 –
2 2.14 −68%
3 1.29 −81%
4 1.16 −83%
∞ (All within ISL range) 1.13 −83%

measurements only, with the inclusion of relative measurements with
the proposed algorithm, the estimation performance varies throughout
the orbit. This behavior is due to the time-varying measurement topol-
ogy. When more satellites are within ISL range, more measurements
are received and the better the estimation performance is. This aspect
is clear in Fig. 7, which depicts the evolution of the trace of the
estimation error covariance matrix 𝐏𝑖,(𝑖,𝑖) and the number of satellites
in ISL range, for satellite 1. Second, Fig. 8 depicts the evolution of
the root mean squared error (RMSE) of the estimated position for
satellite 1 computed along a centered moving window of length 301 s.
It is possible to confirm that the inclusion of relative measurements
with the proposed algorithm leads to a significant improvement in
performance, that varies between two-fold near the equator and ten-
fold near the poles. It is interesting to remark that near the equator
fewer satellites are available to obtain relative position measurements,
thus the switching nature of the coupling topology induces noticeable
spikes in Figs. 6 and 7. Third, Table 2 presents the RMSE of the
global position error of the constellation over the whole simulation
of roughly a full orbit for various values of the maximum number of
output couplings per satellite, i.e. |−

|max−1. It is possible to conclude
that the fusion of relative measurements making use of the proposed
distributed scheme with |−

|max − 1 = 3 allows for an improvement of
81% on the position estimation accuracy. Note that the performance
achieved is not significantly different from the performance that would
be obtained if all output couplings within ILS range were used. Further-
more, limiting the number of neighboring satellites allows for a more
homogeneous computational load in each satellite, since the number
of output couplings does not vary as much between the poles and the
equator.

5. Conclusion

The emergence of very large-scale networks, many of which have

nonlinear dynamics, calls for very efficient filtering algorithms, whose
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Fig. 4. Snapshot of ground track and ISL of the simulated constellation at 0 TDB seconds since J2000.
Fig. 5. Evolution of the position estimation error without the use of relative
measurements, for satellite 1.

communication, memory, and computational requirements do not scale
with the size of the network. In this paper, a decentralized and dis-
tributed filtering solution to large-scale networks of interconnected
systems is proposed considering: (i) generic nonlinear dynamics and
(ii) generic coupled nonlinear outputs in a generic, possibly time-
varying, topology. The proposed solution consists of the local imple-
mentation of a filter in each system, which follows the structure of the
extended Kalman filter, that estimates its own state exclusively, and
has access to local communication. Heavy restrictions are taken into
account to contribute to the scalability of the algorithm, which is of the
upmost importance to allow for a feasible implementation to very large-
scale networks of interconnected systems. The proposed estimation
solution is shown: (i) not to require instantaneous transmissions of data
between systems that are allowed to communicate; (ii) to make use of
a number of local communication links per system that does not scale

with the dimension of the network; and (iii) to require computational,

13
Fig. 6. Evolution of the position estimation error with the use of relative
measurements, making use of the proposed algorithm, for satellite 1.

memory, and data transmission capacity that does not scale with the
dimension of the network. To the best of the authors’ knowledge,
no solutions that meet these constraints have been proposed in the
literature. As a means of assessing the performance of the proposed
algorithm, it is applied to the on-board absolute position estimation
problem of LEO mega-constellations using GNSS. The economical vi-
ability of these constellations is dependent on the implementation of
decentralized onboard filtering and control solutions. These constella-
tions are very large-scale systems with nonlinear dynamics, make use
of coupled measurements, have time-varying coupling topologies, and
each satellite has very limited resources, which makes this application
very challenging. The proposed method yields promising performance
for a shell of the Starlink constellation. Although it is not provably
consistent in general, the approach that is put forward is shown to lead
to consistent estimates in this application. A MATLAB implementation
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Fig. 7. Evolution of the trace of the estimation error covariance matrix 𝐏𝑖,(𝑖,𝑖) and
umber of satellites in ISL range, for satellite 1.

Fig. 8. Evolution of the RMSE of the estimated position for satellite 1 computed along
centered moving window of length 301 s.

f the proposed algorithm and all the source code of the simulations
an be found in the DECENTER Toolbox, available online.
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Appendix. Closed form solution of the one-step optimization prob-
lem

Substituting (10) in the objective function of the relaxed optimiza-
tion problem (11) yields a quadratic function in relation to 𝐊(𝑘). Taking
its derivative w.r.t. 𝐊(𝑘) yields
𝜕tr(𝐏(𝑘|𝑘))
𝜕𝐊(𝑘)

= −2𝐏(𝑘|𝑘 − 1)𝐂𝑇 (𝑘) + 2𝐊(𝑘)𝐒(𝑘) . (A.1)

et
[

𝜕tr(𝐏(𝑘|𝑘))∕𝜕𝐊
]

(𝑖,𝑗) ∈ R𝑛𝑖×𝑜𝑗 and 𝐊(𝑖,𝑗)(𝑘) ∈ R𝑛𝑖×𝑜𝑗 denote the block
f indices (𝑖, 𝑗) of the block decomposition of (A.1) and 𝐊(𝑘), respec-
ively. Taking into account the sparsity condition of the optimization
roblem (11), the stationary condition verified by the optimal solution
s
{

[

𝜕tr(𝐏(𝑘|𝑘))∕𝜕𝐊(𝑘)
]

(𝑖,𝑗) = 𝟎, 𝑖 = 𝑗

𝐊(𝑖,𝑗)(𝑘) = 𝟎, 𝑖 ≠ 𝑗
. (A.2)

he first equation of (A.2) can be written as
𝑁
∑

𝑙=1
𝐊(𝑖,𝑙)(𝑘)𝐒(𝑙,𝑖)(𝑘) −

𝑁
∑

𝑙=1
𝐏(𝑖,𝑙)(𝑘|𝑘 − 1)𝐂𝑇(𝑖,𝑙)(𝑘) = 𝟎. (A.3)

aking use of the second equation in (A.2) and the fact that

∉ −
𝑖 ⟹

(𝑖,𝑙)(𝑘) =
𝜕𝐠𝐢(𝑘; 𝐱𝑗 (𝑘), 𝑗 ∈ −

𝑖 )
𝜕𝐱𝑙(𝑘)

|

|

|

|

𝐱𝑗 (𝑘)=𝐱̂𝑗 (𝑘|𝑘−1)
𝑗∈−

𝑖

= 0, (A.4)

hen (A.3) can be written as (13). Furthermore, (14) follows from
A.4) and the definition of innovation covariance (12). Finally, (15) is
btained performing block decomposition of (9).
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