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Summary

This paper addresses the problem of designing a decentralized control solution for
a network of agents modeled by linear time-varying (LTV) dynamics, in a discrete-
time framework. A general scheme is proposed, in which the problem is formulated
as a classical linear quadratic regulator problem, for the global system, subject to
a given sparsity constraint on the gain, which reflects the decentralized nature of
the network. A method able to compute a sequence of well-performing stabilizing
regulator gains is presented and validated resorting to simulations of two randomly
generated LTV systems, one stable and the other unstable. Moreover, a tracking solu-
tion is developed, building on the solution to the regulator problem. Both methods
rely on a closed-form solution, thus they can be computed very rapidly. Similarly
to the centralized solution, both the presented methods require that a window of the
future system dynamics is known. Both methods are validated resorting to simula-
tions of: i) a nonlinear network of four interconnected tanks; and ii) a large-scale
nonlinear network of interconnected tanks. When implemented to a nonlinear net-
work, approximated by an LTV system, the proposed methods are able to compute
well-performing gains that track the desired output. Finally, both algorithms are
scalable, being adequate for implementation in large-scale networks.

KEYWORDS:
Linear time-varying systems, decentralized linear quadratic regulator, decentralized linear quadratic
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1 INTRODUCTION

Over the past decades, decentralized control and estimation has been a highly researched topic1,2, since it provides a solution
to the control and estimation problems of large-scale systems of interconnected agents. In fact, it emerges as an alternative to
the use of well known centralized solutions, which become unfeasible to implement as the dimension of the network increases.
The popularity of decentralized solutions is also increasing with the widening of its applications to a broad range of engineering
fields. Examples of such applications are unmanned aircraft formation flight3,4,5,6,7, unmanned underwater formations8,9,10,11,12,
satellite constellations13,14,15,16, automated highway control17,18,19,20, and irrigation networks21,22,23,24, which can be modeled
as networks of interconnected systems25,26.

Although plenty of work has been carried out in decentralized control of linear time-invariant systems (LTI), the problem
of designing such controllers, which consists in solving an optimization problem subject to a constraint that arises from the
decentralized nature of the configuration, is extremely di�cult27 and remains an open problem. In fact, the optimal solution for
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a linear system may be nonlinear28. Furthermore, it has been shown that the solution of a decentralized design control problem
is the result of a convex optimization problem if and only if quadratic invariance of the controller set is ensured29,30. For these
reasons, the overwhelming majority of the approaches found in the literature attempt to find the optimal linear solution, which
is also a di�cult nonconvex optimization problem that remains unsolved. On top of that, given the di�culty in finding the
optimal linear solution, the most common approach found in the literature is to approximate the nonconvex optimization problem
by a convex one, which allows to obtain an approximate solution to the original problem. However, such results seldom have
stability or boundedness guarantees for the closed-loop system. Another approach is to solve the controller synthesis problem
for particular cases, imposing constraints on the decentralized configuration and on the dynamics of the system.

One of the proposed approaches for the design of a decentralized controller for an arbitrary network of interconnected LTI
systems is to design an H2-optimal control policy, which amounts to solving a bilinear matrix inequality31,32,33. Although there
are well known algorithms to solve these problems, their computational load render this solution unfeasible for large-scale
systems. Another approach to design a control law for an arbitrary decentralized configuration of an LTI system is to apply
convex relaxation to the controller synthesis problem and solving it using well known procedures. In fact, Viegas et al.

34 use
this technique to devise two algorithms for the decentralized controller synthesis problems of LTI systems, one of which has
a closed-form solution and, thus, is computationally e�cient, being suitable for large-scale systems. Moreover, there are also
authors that solve the control synthesis problem for directed networks and under constraints on the interconnected systems
dynamics such as: i) dynamically uncoupled systems35; and ii) single and double integrator system dynamics36.

The research on decentralized control of linear time-varying (LTV) systems, which is naturally more challenging, has been
undergone to a much lesser extent. Even though a large fraction of real-life systems can be modeled as LTI, there are plenty of
engineering problems that require an LTV model37,38. Furthermore, a nonlinear system can also be approximated by an LTV
system carrying out successive linearizations about the operation points39. This paper aims to address the lack of research into
this area. One of the few contributions in this topic is by Farhood et al.

40. In their paper, the finite-horizon regulator problem of
an LTV system is reduced to a set of linear matrix inequalities (LMIs). Albeit computationally demanding, numerical algorithms
for LMIs are well known.

The main goal of this paper is to address the problem of designing a decentralized control solution for a network of agents
modelled by LTV dynamics, in a discrete-time framework. The decentralized regulator problem is tackled, in a first instance,
and then building on its solution a decentralized tracking controller is designed. A general scheme for the design of decentralized
regulators is followed in this paper, in which the problem is formulated as a classical optimal linear control problem, for the global
system, with a given sparsity constraint on the regulator gain. Such sparsity constraints impose certain entries of the global gain
matrix to be null, following a structure that reflects the decentralized nature of the network, necessary for the implementation
of the decentralized regulator. It is also assumed that limited communication between agents is possible. This paper introduces
one method for the computation of decentralized regulator gains for an arbitrary LTV system with an arbitrary time-invariant
network configuration, portrayed by a sparsity constraint, which generalizes the one-step method introduced in34 for LTI systems.
Nevertheless, the LTI and LTV decentralized controller design problems have very di�erent natures. On one hand, for the LTI
formulation, a steady-state gain that minimizes a cost function over an infinite window is sough. On the other hand, for the LTV
formulation, a sequence of gains is sought over a finite-window, which has to be, afterwards, properly extended to solve the
infinite horizon problem. As a result, both the cost function and the variables of the optimization problem that arises are very
distinct, thus it is not evident how to proceed to generalize this result to LTV systems. For these reasons, the derivation presented
in this paper is original and it is found to provide additional insight into the LTI formulation of the problem. The classical
infinite-horizon optimization problem subject to a sparsity constraint is nonconvex. Hence, the methods that are proposed herein
rely on conveniently defined convex relaxations of the original optimization problem to achieve a computationally e�cient
approximation to its solution. The first method, denoted as the one-step method in the sequel, follows a similar approach as the
classical LQR, minimizing at each time step the quadratic cost-to-go. This method is computationally very e�cient, exhibiting a
closed-form solution, and it does not require any particular initialization. The proposed tracking method is derived relying on the
solution to the regulator problem. Finally, both methods are validated resorting to extensive numerical simulations. In addition
to two randomly generated systems, one stable and the other unstable, two nonlinear networks of tanks are also considered, one
of which has a considerable dimension. A MATLAB implementation of the decentralized algorithms put forward in this paper
can be found in the DECENTER toolbox available at https://decenter2021.github.io (accessed on 10 July 2021).

This paper is organized as follows. In Section 2, the control problem is formulated and the assumptions that are considered
are introduced. In Sections 3 and 4 the one-step and decentralized tracking methods are derived, respectively. Section 5 details
the implementation of the one-step method to a stable and an unstable LTV system, illustrating some details of its application.

https://decenter2021.github.io
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In Section 6, both methods are applied to a network of four interconnected tanks, which is generalized to N tanks and simulated
for N = 40, in Section 7. In Section 8, the performance, communication needs, and computational cost of the decentralized
solutions are analyzed thoroughly and compared with the centralized solution. Finally, Section 9 presents the main conclusions
of this paper.

1.1 Notation
Throughout this paper, sgn(x) denotes the sign of a real number x. The identity and null matrices, both of appropriate dimensions,
are denoted by I and 0, respectively. Alternatively, I

n
and 0

nùm are also used to represent the nù n identity matrix and the nùm

null matrix, respectively. The entry (i, j) of a matrix A is denoted by [A]
ij

. The i-th component of a vector v À Rn is denoted by
[v]

i
and diag(v) denotes the n ù n square diagonal matrix whose diagonal is v. The vectorization of a matrix A, denoted herein

by vec(A), returns a vector composed of the concatenated columns of A. Given a symmetric matrix P, P » 0 and P ” 0 are used
to point out that P is positive definite and positive semidefinite, respectively.

2 PROBLEM STATEMENT

To model the global dynamics of a network of agents, consider a generic LTV system of the form
T

x(k + 1) = A(k)x(k) + B(k)u(k)
z(k) = H(k)x(k)

, (1)

where x(k) À Rn is the state vector, u(k) À Rm is the input vector, and z(k) À Ro is the tracking output of the system. A(k),
B(k), and H(k) are known time-varying matrices of appropriate dimensions, A(k) is assumed invertible for k À N0, and the
pair (A(k),B(k)) is assumed to be uniformly controllable. This paper addresses the problem of designing a decentralized linear
quadratic controller for (1). For that reason, the dynamic system (1), used to develop the methods put forward in this paper,
neither includes a model for the sensors nor takes into account process noise. Instead, the problem is formulated for (1) with
initial state x(0) = x

0
and assuming that full state feedback is available, as in the standard linear quadratic regulator (LQR)

formulation.
The first goal of this paper is to find a decentralized solution to the LQR problem, i.e., finding a sequence of input commands

that drive the state of the network to zero in an optimal way, by decentralized linear state feedback. For that reason, the method
put forward in this paper is devised for the regulator formulation, considering the system dynamics

x(k + 1) = A(k)x(k) + B(k)u(k) . (2)

However, one is, oftentimes, interested in the tracking problem instead, i.e., finding a sequence of input commands that drive the
tracking output of the system to follow a reference signal. Nevertheless, such problem can be solved by building on the solution
to the regulator problem. This is discussed in Section 4.

In this paper, state regulation is proposed considering a controller based on the classical infinite-horizon LQR applied to the
global dynamics of the network. Define

Jÿ(k) :=
ÿ…
⌧=k

�
x
T (⌧)Q(⌧)x(⌧) + u

T (⌧)R(⌧)u(⌧)
�

as the infinite-horizon performance index at time instant k, where Q(k) ” 0 and R(k) » 0 are known time-varying matrices of
appropriate dimensions. Given this quadratic performance index, it is well-know that, even though the optimal action is a linear
full state feedback for the centralized formulation41, that it not necessarily the case for a decentralized design28. Nevertheless,
given the extreme di�culty of this problem, the optimal linear command action of the form

u(k) = *K(k)x(k) (3)

is herein sought instead, where K(k) ÀRmùn is the regulator gain, to be determined. Designing a decentralized regulator for a
network of agents, whose global dynamics are described by the LTV system (2), is equivalent to constraining the structure of
the gain of the global regulator (3). This fact, which follows directly from the decentralized nature of the network, is illustrated
for networks of interconnected tanks in Sections 6 and 7. Such constraints fall in a broader category designated by sparsity
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constraints. Let matrix E À Rmùn denote a sparsity pattern. The set of matrices which obey the sparsity constraint determined
by E is defined as

Sparse(E) :=
�
K À Rmùn : [E]

ij
= 0 -Ÿ [K]

ij
= 0; i = 1, ...,m, j = 1, ..., n

�
.

With the definition of a sparsity pattern, it is now possible to formulate the problem of designing a decentralized linear
quadratic regulator for the LTV system (2). One aims to compute an optimal sequence of controller gains that follow the sparsity
pattern required by the structure of the network of agents, which is assumed to be time-invariant. For an infinite-horizon and a
known and time-invariant sparsity pattern E, solve the optimization problem

minimize
K(i)ÀRmùn

iÀN0

Jÿ(0)

subject to K(i) À Sparse(E), i À N0 .

(4)

Because of the sparsity constraint, the optimization problem (4) is non-convex and its optimal solution is still an open problem.
To overcome this di�culty, the optimization problem may be relaxed so that it becomes convex, allowing for the use of well
known optimization techniques. Albeit optimal for the modified problem, the relaxed solution is only an approximation to the
solution of the original problem. For this reason, careful relaxation is necessary to ensure that the separation between both
solutions is minimal. This approach is designated convex relaxation and it is used to derive the methods put forward in this paper.

3 ONE-STEP METHOD FOR COMPUTATION OF DECENTRALIZED LQR GAINS

The one-step method for computation of the decentralized LQR gains considering a finite-horizon window is derived in this
section. It is the LTV counterpart of the one-step method for the regulation of LTI systems, proposed in34. The proposed method
consists of an approximation to the solution of the infinite-horizon problem (4) considering, in a first instance, a finite-horizon
problem. The extension of this problem to an infinite-horizon is detailed in Section 3.2.

Define the finite-horizon performance index, over a given finite window {k, ..., k + T }, where T À N, as

J (k) := x
T (k + T )Q(k + T )x(k + T ) +

k+T*1…
⌧=k

�
x
T (⌧)Q(⌧)x(⌧) + u

T (⌧)R(⌧)u(⌧)
�
, (5)

where u(⌧) satisfies (3). The goal is to compute the sequence of controller gains that minimizes J (k). The finite-horizon
decentralized LQR problem is thus given by

minimize
K(⌧)ÀRmùn

⌧=k,...,k+T*1

J (k)

subject to K(⌧) À Sparse(E), ⌧ = k, ..., k + T * 1 ,
(6)

for a fixed initial state x(k). Substituting (5) in the cost function of the relaxed optimization problem (6) yields a nonlinear
expression. Even though the sparsity constraint is convex, the optimization problem (6) is non-convex. Nevertheless, it is possible
to find a sub-optimal solution for this optimization problem, using techniques similar to those used to solve the unconstrained
problem, as shown in the following result.

Theorem 1. Let l
j

denote a column vector whose entries are all set to zero except for the j-th one, which is set to 1, andL
j
:= diag(l

j
). Define a vector m

j
À Rm to encode the non-zero entries in the j-th column of K(⌧) as

T
m

j
(i) = 0, [E]

ij
= 0

m
j
(i) = 1, [E]

ij
ë 0

, i = 1, ...,m ,

and let M
j
:= diag(m

j
). Then, the gain of the one-step sub-optimal solution to (6) is given by

K(⌧) =
n…

j=1

�
I *M

j
+M

j
S(⌧)M

j

�*1 M
j
B
T (⌧)P(⌧ + 1)A(⌧)L

j
, (7)

⌧ = k,… , k + T * 1, where
S(⌧) := B

T (⌧)P(⌧ + 1)B(⌧) + R(⌧)
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and P(⌧), ⌧ = k,… , k + T , is a symmetric positive semidefinite matrix given by
T

P(k + T ) = Q(k + T )
P(⌧)=Q(⌧) +K

T (⌧)R(⌧)K(⌧) + (A(⌧)*B(⌧)K(⌧))T P(⌧ + 1) (A(⌧)*B(⌧)K(⌧))
. (8)

Moreover, the one-step sub-optimal solution yields a sub-optimal performance index that follows

J
?(k) = x

T (k)P(k)x(k) . (9)

Proof. See A.

Remark 1. As expected, (7) is similar to the solution of the unconstrained LQR, given by

K(⌧) = S(⌧)*1BT (⌧)P(⌧ + 1)A(⌧) . (10)

The fundamental di�erence between them is that, imposing the sparsity constraint, the entries of the j-th column of K(⌧) depend
on M

j
S(⌧)M

j
, instead of S(⌧). This reduced form of S(⌧) corresponds to one of its principal submatrices, in which the i-th

row and i-th column are replaced by zeros if [E]
ij

= 0 for i = 1, ...,m. It is important to note that, due to the form of (7),
this similarity does not mean that the global decentralized gain is obtained by setting to zero the entries of the unconstrained
regulator gain corresponding to the null entries of the sparsity pattern. The solution is, in fact, much more intricate.

Remark 2. The computation of the closed-form solution (7) requiresO(n4) floating point operations, using Gaussian elimination.
Instead of using it, the exact numeric algorithm proposed in42 can be, alternatively, applied to (A8) to compute each gain with a
computational complexity of O(�3), where � denotes the number of nonzero entries of E. Usually, in decentralized control
applications, � ˘ cn, where c À N is a constant, as it is the case for the networks of tanks simulated in Sections 6 and 7. It,
thus, follows that a computational complexity of O(n3) is achieved, which is identical to the computational complexity of the
centralized solution. An e�cient MATLAB implementation of this method can be found in the DECENTER toolbox, available
at https://decenter2021.github.io (accessed on 10 July 2021).

Remark 3. Although sub-optimal for the optimization problem (6), the one-step solution, presented in Theorem 1, is actually
the closed-form solution to the following convex optimization problem

minimize
K(⌧)ÀRmùn

⌧=k,...,k+T*1

tr(P(k))

subject to K(⌧) À Sparse(E), ⌧ = k, ..., k + T * 1 ,
(11)

as it is proved in B. Note that, even though (6) and (11) are not, in general, equivalent, (9) suggests that optimization problem
(11) is a plausible convex relaxation of the original regulator problem.

Remark 4. It is also interesting to point out that, unlike the dual estimation problem, the sequence of gains that arises in
Theorem 1 can only be computed backward in time. For this reason, this method is said to be noncausal, in the sense that, for
each time instant, the gain computation requires a window of the future dynamic matrices of the system to be known a priori.
This is identical to the centralized LQR solution for LTV systems. The application of this algorithm is, thus, possible either if
one has a model of the evolution of the system with time or if it is used in combination with an online prediction algorithm.
These approaches are explored: i) in Section 5 for a synthetic system; and ii) in Sections 6 and 7 for two nonlinear networks
of interconnected tanks. Nonetheless, considering the closed-form solution, presented in Theorem 1, this method allows for the
computation of a well-performing sequence of gains for each time window with reduced computational cost.

Remark 5. The proposed derivation of the one-step method for the computation of decentralized LQR gains, presented in A,
follows the Lagrange-multiplier approach. Nevertheless, it is possible to obtain the same result following an approach based on
dynamic programming, which o�ers additional insight into the anatomy of the one-step method. This alternative derivation is
presented in C.

https://decenter2021.github.io
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FIGURE 1 Evolution of tr(P(⌧)) for the one-step method applied to the stable and unstable systems.

3.1 Example of gain computation
In this section, the one-step method is applied to two LTV systems, with n = 4 and m = 2. For the first system, which was
chosen to be stable, the matrices, whose constant parts were randomly generated, rounded to 3 decimal places, are given by

A(k) =

b
f
f
f
fd

*0.348 *0.422 *0.495 *0.416
0.326 *0.057 0.275 *0.100
0.038 *0.393 0.317 *0.240
0.496 0.462 0.369 0.300

c
g
g
g
ge

+

b
f
f
f
fd

0 0cos (k_10) 0
0 0 0 0
0 0 0 sin2 (k_10)

cos (k_20) 0 0 0

c
g
g
g
ge

, (12a)

B(k) =

b
f
f
f
fd

0.140 *0.638
0.291 *0.764
0.447 *0.515
0.361 *0.984

c
g
g
g
ge

+

b
f
f
f
fd

cos (k_5) 0
sin (k_10) 0
cos (k_13) 0

0 cos2 (k_20)

c
g
g
g
ge

, (12b)

Q(k) = (5 + sin (k_20)) I
n
, (12c)

R(k) = (5 + cos (k_20)) I
m
, (12d)

and

E =
4
1 1 0 0
0 1 0 1

5
. (12e)

The second was chosen to be an open-loop unstable system. Its matrices B(k),Q(k),R(k), and E are equal to those of the
open-loop stable system, given, respectively, by (12b)–(12e), and A(k) by

A(k) =

b
f
f
f
fd

*0.695 *0.844 *0.991 *0.831
0.652 *0.115 0.550 *0.200
0.0767 *0.787 0.635 *0.480
0.992 0.924 0.737 0.600

c
g
g
g
ge

+

b
f
f
f
fd

0 0cos (k_10) 0
0 0 0 0
0 0 0 sin2 (k_10)

cos (k_20) 0 0 0

c
g
g
g
ge

.

Fig. 1 shows the evolution of tr(P(⌧)) for the minimization of J (0), using the one-step method, for the stable and unstable
systems for two di�erent window lengths T . It is noticeable that none of them grows unbounded with time.
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3.2 Application to the infinite-horizon problem
Given that the gain computation is run backward in time, it is evident that it is unfeasible to make T ô ÿ to approximate the
solution of the infinite-horizon problem (4), due to the increasing computational load as T becomes large and the fact that it is
not possible, in general, to know the dynamics of the network very far into the future. Noticing that

Jÿ(k) = x
T (k)Q(k)x(k) + u

T (k)R(k)u(k) + Jÿ(k + 1) ,

one may attempt to minimize Jÿ(k) at each time step, instead of Jÿ(0), which, of course, results in a sub-optimal solution.
However, the problem corresponding to the minimization of Jÿ(k) is also non-convex, therefore, the one-step method, developed
in this section, is used as an approximation to the original solution.

Given the characteristics of this method, it seems logical to make use of a scheme similar to model predictive control (MPC).
One considers a finite window, {k,… , k + T }, that is large enough so that the gains computed within that window converge
to those that are obtained if an arbitrarily large window is used. To illustrate this idea, recall Fig. 1, where it is possible to
compare the evolution of tr(P(⌧)), for the minimization of J (0), for window lengths T = 200 and T = 400, for both the stable
and unstable systems. It is clear that, apart from the disparity at the end of the window, both solutions are very similar. The
minimum window length for convergence varies depending on the system dynamics. For the stable and unstable systems that
were considered here, the windows T = 30 and T = 40, respectively, are su�cient, as seen in Fig. 2, in which the evolution
of the di�erence between tr(P(⌧)) for the chosen window and T = 400 is depicted for both systems. With this in mind, at each
time instant k, the gains that minimize J (k) are computed for the appropriate window, using the one-step method, and only the
first is actually used to compute the control action for that time instant, discarding the remaining gains. At the next time instant,
k + 1, a new finite window is considered and a new sequence of gains is computed to minimize J (k + 1), and so forth.

0 10 20 30
-40

-30

-20

-10

0

10

0 10 20 30 40
-100

-80

-60

-40

-20

0

20

FIGURE 2 Evolution of the di�erence between tr(P(kk)) for T = 400, T
s
= 30 for the stable system (left), and T

s
= 40 for

the unstable system (right).

To reduce the computational load, as well as to approach the lower performance index, J (k), that would be obtained if
one were to make use of all the gains of the window, d gains may be used, instead of just one, defining a new window and
computing the gains associated with it every d time steps. It is, nevertheless, necessary that the sequence of gains that are
used in each window does not fall in the region where there is a sudden decrease of tr(P(⌧)). Although, at first sight, this may
seem an advantageous characteristic, the use of the gains near the end of the window, responsible for such a sudden decrease,
deteriorates the performance after the transition to the next time window, resulting in a sudden spike of tr(P(⌧)). The advantages
and drawbacks of the use of more than one gain of each finite window, as well as more details on the practical implementation
of this algorithm, are discussed in Sections 5–7. The flowchart of the proposed approach, using more than one gain of each time
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window, is depicted in Fig. 3. In fact, this approach is a very good approximation to the original infinite-horizon problem (4),
requiring, nonetheless, a manageable computational load for real-time implementation.

Initialization: Select the finite window length, T .
Select number of gains to use in each finite window, d.

Assign k = 0.

Define a new finite window {k,… , k + T }.

Compute the one-step sequence of
gains, K(⌧), ⌧ = k,… , k + T * 1,

for the current finite window.

Store K(⌧) for ⌧ = k,… , k + d * 1.

Assign k = k + d.

FIGURE 3 Flowchart of the proposed gain computation scheme for the infinite-horizon problem.

4 EXTENSION TO THE TRACKING PROBLEM

Although the main concern of this paper is the regulator problem, one is, more often than not, interested in tracking a reference
signal, r(k), with the output of the system, z(k), as given by (1), instead of driving the state of the system to zero using a regulator.
This section details an approach to the design of a tracker, suitable both for centralized and decentralized configurations. For a
decentralized configuration, the tracker is designed building on the results of the decentralized LQR, put forward in Section 3,
that consists of a decentralized regulator of the tracking error dynamics.

4.1 Tracker design
The proposed tracker consists of a combination of feedforward and feedback terms. For each time instant, consider an equilibrium
point consistent with the reference signal as if the system were LTI. The feedforward terms are designed to maintain such
equilibrium, for each time instant as if the system were LTI, as well as to ensure the transition to the succeeding equilibrium point,
since the system is, in fact, LTV. Writing the dynamics of the system alongside the feedforward terms yields an LTV system for
the dynamics of the tracking error. The decentralized LQR, presented in Section 3, is then applied to the error dynamics, from
which a feedback term stems. The origin and purpose of each of the di�erent terms is made clearer in the following derivation.

It is well known that for perfect tracking to be possible one needs, in general, as many inputs as the dimension of the vector
to track43, Theorem 3.14, i.e., m = o. For this reason, the tracker designed in this paper assumes that the reference and input vectors
have the same dimension, i.e., r(k) À Rm. Furthermore, it is assumed that, for k À N0, H(k) has full rank, i.e., rank(H(k)) = m

which is necessary if one aims to follow an arbitrary reference of dimension m.
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First, an equilibrium point for time instant k, if the system were LTI, that follows the reference signal r(k) is sought. To that
purpose, define Ñx(k) À Rn and Ñu(k) À Rm such that

T
Ñx(k) = A(k) Ñx(k) + B(k) Ñu(k)
H(k) Ñx(k) = r(k)

(13)

is satisfied for k À N0. The augmented matrix of the linear system of equations (13) is given by
4
A(⌧) * I B(⌧) 0

H(⌧) 0 r(⌧)

5
. (14)

It is possible to note that, provided that H(⌧) has full rank, then the rank of the augmented matrix is equal to the rank of
the coe�cient matrix, i.e., the submatrix on the left of (14). It follows directly from Rouché–Capelli theorem44, Theorem 2.38 that
(13) has, at least, one solution ( Ñx(⌧), Ñu(⌧)). However, the tracker design that is proposed herein encompasses a more integrated
approach, as it will be seen shortly, and the solution of (14) is not explicitly shown at this point. The proposed approach aims to
drive the system to follow the sequence of pairs ( Ñx(k), Ñu(k)), penalizing only the error in the tracking space. Define the tracking
error in the space of the system state as e(k) := x(k) * Ñx(k). Using (1) and (13) allows to write the dynamics of the tracking
error as

e(k + 1) = A(k)e(k) + B(k)(u(k) * Ñu(k)) * ( Ñx(k + 1) * Ñx(k)) . (15)
The regulator cannot be applied to (15) because of the presence of the last term. For that reason, one may attempt to write the
di�erence Ñx(k + 1) * Ñx(k) as the combination of an additional feedforward control action, u

a
(k), and a disturbance, d(k), i.e.,

Ñx(k + 1) * Ñx(k) = B(k)u
a
(k) + d(k) , (16)

which allows to rewrite the tracking error dynamics (15) as

e(k + 1) = A(k)e(k) + B(k)(u(k) * Ñu(k) * u
a
(k)) * d(k) . (17)

Note that the tracking error, e(k+1), defined in this formulation, is given by the di�erence between the actual state of the system
and Ñx(k+1), not just the di�erence between the output of the system and the reference signal. For that reason, the main concern
is the minimization of the component of the error in the tracking space, i.e., the column space of H(k+1). Therefore, instead of
choosing u

a
(k) such that the norm of the disturbance is minimal, it is selected such that the component of the disturbance in the

tracking space is minimized. The design of the reference and feedforward terms then takes the form of a quadratic optimization
problem with linear equality constraints, for a finite window, given by

minimize
Ñx(⌧), Ñu(⌧),⌧=k,...,k+T
u
a
(⌧),⌧=k,...,k+T*1

k+T*1…
⌧=k

H(⌧ + 1)d(⌧)2

subject to

T
Ñx(⌧) = A(⌧) Ñx(⌧) + B(⌧) Ñu(⌧)
H(⌧) Ñx(⌧) = r(⌧)

, ⌧ = k,… , k + T .

(18)

Using (16) to expand the cost function of the optimization problem (18) yields a quadratic expression. Thus, it is possible to find
the optimal solution for this optimization problem using well known optimization techniques, as shown in the following result.

Theorem 2. There is either one or infinitely many solutions, all globally optimal, to the optimization problem (18), which are
given by the solutions to the system of linear equations

G Ñ� = Ñr , (19)

where Ñ� À R((3m+2n)T+2m+2n) corresponds to

Ñ� =
⌅
Ñx
T(k) ÑuT(k) u

a

T(k) �T(k) �T(k) … �T(k+T *1) �T(k+T *1) ÑxT(k+T ) ÑuT(k+T ) �T(k+T ) �T(k+T )
⇧T
,

where �(⌧) À Rn and �(⌧) À Rm are Lagrange multipliers. The vector Ñr À R((3m+2n)T+2m+2n) is written as

Ñr =
⌅
01ù(2m+2n) r

T (k) … 01ù(2m+2n) r
T (k+T *1) 01ù(m+2n) rT (k+T )

⇧T
,
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and G À R((3m+2n)T+2m+2n)ù((3m+2n)T+2m+2n) is a symmetric block tridiagonal matrix given by

G =

b
f
f
f
f
fd

Ñ↵
k

Ñ�
k

0

Ñ�T

k
Ñ↵
k+1 7
7 7 7

7 Ñ↵
k+T*1 Ñ�

k+T*1
0 Ñ�T

k+T*1 Ñ↵
k+T

c
g
g
g
g
ge

, (20)

with

Ñ↵
k
=

b
f
f
f
f
fd

H
T (k + 1)H(k + 1) 0

nùm H
T (k+1)H(k+1)B(k) A

T (k) * I H
T (k)

0
mùn 0

mùm 0
mùm B

T (k) 0
mùm

B
T (k)HT (k+1)H(k+1) 0

mùm B
T (k)HT (k+1)H(k+1)B(k) 0

mùn 0
mùm

A(k) * I B(k) 0
nùm 0

nùn 0
nùm

H(k) 0
mùm 0

mùm 0
mùn 0

mùm

c
g
g
g
g
ge

,

Ñ↵
⌧
=

b
f
f
f
f
fd

H
T (⌧+1)H(⌧+1) +H

T (⌧)H(⌧) 0
nùm H

T (⌧+1)H(⌧+1)B(⌧) A
T (⌧) * I H

T (⌧)
0
mùn 0

mùm 0
mùm B

T (⌧) 0
mùm

B
T (⌧)HT (⌧+1)H(⌧+1) 0

mùm B
T (⌧)HT (⌧+1)H(⌧+1)B(⌧) 0

mùn 0
mùm

A(⌧) * I B(⌧) 0
nùm 0

nùn 0
nùm

H(⌧) 0
mùm 0

mùm 0
mùn 0

mùm

c
g
g
g
g
ge

,

for ⌧ = k + 1,… , k + T * 1,

Ñ↵
k+T =

b
f
f
f
fd

H
T (k+T )H(k+T ) 0

nùm A
T (k+T ) * I H

T (k+T )
0
mùn 0

mùm B
T (k+T ) 0

mùm
A(k+T ) * I B(k+T ) 0

nùn 0
nùm

H(k+T ) 0
mùm 0

mùn 0
mùm

c
g
g
g
ge

,

and

Ñ�
⌧
=

b
f
f
f
f
fd

*HT (⌧ + 1)H(⌧ + 1) 0
nùm 0

mùm 0
nùn 0

nùm
0
mùn 0

mùm 0
mùm 0

mùn 0
mùm

*BT (⌧)HT (⌧ + 1)H(⌧ + 1) 0
mùm 0

mùm 0
mùn 0

mùm
0
nùn 0

nùm 0
nùm 0

nùn 0
nùm

0
mùn 0

mùm 0
mùm 0

mùn 0
mùm

c
g
g
g
g
ge

,

for ⌧ = k,… , k + T * 1.

Proof. See D.

Remark 6. Note that (13) is a system of linear equations with n + m constraints and n + m unknowns. If H(⌧)B(⌧)
is invertible, multiplying the first equation of (13) by H(⌧) and making use of the second equation yields Ñu(⌧) =
(H(⌧)B(⌧))*1 (r(⌧) *H(⌧)A(⌧) Ñx(⌧)). Substituting this for Ñu(⌧) in the first equation of (13) and solving for Ñx(⌧) it is possible to
conclude that, for the particular case for which rank(H(⌧)B(⌧)) = m and rank(I*A(⌧) + B(⌧)(H(⌧)B(⌧))*1H(⌧)A(⌧)) = n, the
solution of (13) is unique and given by

T
Ñx(⌧) =

⌅
I * A(⌧) + B(⌧)(H(⌧)B(⌧))*1H(⌧)A(⌧)

⇧*1
B(⌧)(H(⌧)B(⌧))*1r(⌧)

Ñu(⌧) = (H(⌧)B(⌧))*1 (r(⌧) *H(⌧)A(⌧) Ñx(⌧))
. (21)

For this reason, the linear equality constraint fully defines ( Ñx(⌧), Ñu(⌧)) for the time instant ⌧. Moreover, if rank(H(⌧+1)B(⌧)) = m,
it is possible to achieve H(⌧ + 1)d(k) = 0. The feedforward term u

a
(k) is, thus, computed as follows

H(k + 1) ( Ñx(k + 1) * Ñx(k)) = H(k + 1)B(k)u
a
(k) +H(k + 1)d(k)

◊Ÿ u
a
(k) = (H(k + 1)B(k))*1 (r(k + 1) *H(k + 1) Ñx(k))

. (22)

Therefore, for every time instant ⌧ for which one or both of these particular cases are verified, the system of linear equations
(19) may be reduced, allowing for a decrease in computational load.

Remark 7. The matrix G in the system of linear equations (19) is a symmetric block tridiagonal matrix. There are plenty
of algorithms to solve systems of linear equations featuring such sort of matrices based on cyclic reduction45, which allows
parallelization46.
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An LQR, either decentralized using the method put forward in Section 3, or centralized, may be applied to the tracking
error dynamics, given by (17), with the weighting matrices selected as Q(k) = H

T (k)Q
T
(k)H(k), to penalize only the error in

the tracking space, where Q
T
(k) À Rmùm is a positive semidefinite matrix selected to weight the actual output tracking error,

H(k)x(k) * r(k), and R(k) À Rmùm is a positive definite matrix selected to weight the feedback term of the control input. The
control action for the output tracking problem is, then, given by

u(k) = *K(k)(x(k) * Ñx(k)) + Ñu(k) + u
a
(k) , (23)

where K(k) is the LQR feedback gain.

Remark 8. It is interesting to remark the e�ect of each of the three terms that make up the control action (23). First, Ñu(k) is a
feedforward term that allows to maintain the output of the system constant and equal to the reference signal of the current time
step, r(k), if the system were LTI, with dynamics defined by A(k) and B(k). Second, u

a
(k) is another feedforward term that

compensates the change in the reference signal, which is time-varying, in the following time step. Third, *K(k)(x(k)* Ñx(k)) is a
feedback term that drives to zero the component in the tracking space of the di�erence between the state of the system and Ñx(k).
It is also interesting to point out that, if there is a feasible trajectory that follows the reference signal, then there exists u

a
(k) for

which the disturbance d(k) in (17) is null. Therefore, the feedback term vanishes as time goes to infinity and the actuation tends
to be given by both feedforward terms. On top of that, if the reference is a step function, then the term u

a
(k) vanishes as well.

4.2 Addition of integral action
If the model of the system is exact and the reference signal is a feasible trajectory, then the proposed output tracking design
achieves null steady-state error. However, in the overwhelming majority of real scenarios that is not the case. Having that in mind,
to improve steady-state performance and add robustness to the controller, an integral action feedback term may be included.

Consider new state variables that correspond to the integral of the tracking error, given by

x
I
(k) =

k…
⌧=0

(z(⌧) * r(⌧)) =
k…

⌧=0
H(⌧)e(⌧) .

Then, making use of the error dynamics (17), one can define the augmented system
4
e(k + 1)
x
I
(k + 1)

5
= A(k)

4
e(k)
x
I
(k)

5
+B(k)

�
u(k) * Ñu(k) * u

a
(k)

�
*
4

I
n

H(k + 1)

5
d(k) , (24)

where
A(k) =

4
A(k) 0

H(k + 1)A(k) I

5
and B(k) =

4
B(k)

H(k + 1)B(k)

5
.

One can, now, add the integral action feedback term applying the LQR to the augmented system (24) with weighting matrices
Q(k) and R(k) given by

Q(k) =
4
H

T (k)Q
T
(k)H(k) 0

0 Q
I
(k)

5
and R(k) = R(k) ,

where Q
I
(k) À Rmùm is the positive semidefinite matrix that weights the integral of the tracking error. Note, again, that this

procedure is suitable both for a centralized configuration and for a decentralized configuration using the LQR design synthesis
method put forward in Section 3. The resulting gain matrix has the form K(k) =

⌅
K(k) K

I
(k)

⇧
À Rmù(n+m), where K(k) and

K
I
(k) À Rmùm are the error and integral action feedback gains, respectively. The control input of the proposed approach is, thus,

given by
u(k) = *K(k)(x(k) * Ñx(k)) *K

I
(k)x

I
(k) + Ñu(k) + u

a
(k) . (25)

If there is a sudden significant change in the reference signal that cannot be attained by the system, the tracking error is
significant until the controller has enough time to drive the output of the system to the reference. During that period, the integral
states keep accumulating the tracking error, which leads to what is know as integral windup, resulting in a significant overshoot
until the integral states decrease, in absolute value, to normal operation values. In this design, the integral action term is only
included to provide for better performance after the transient state, rejecting disturbances. Thus, a very simple and e�ective
anti-windup technique for this formulation is to saturate the integral state variables and disable the integrators while they are
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saturated. That is, the integral state is subject to an entrywise saturation

⌅
x
I
(k)

⇧
i
=
T⌅

x
I
(k)

⇧
i
,

ÛÛÛ
⌅
x
I
(k)

⇧
i

ÛÛÛ f
⌅
x
sat
I

⇧
i⌅

x
sat
I

⇧
i
sgn

�⌅
x
I
(k)

⇧
i

�
,

ÛÛÛ
⌅
x
I
(k)

⇧
i

ÛÛÛ >
⌅
x
sat
I

⇧
i

, i = 1, ...,m ,

where x
sat
I

À Rm is a constant vector that holds the saturation limits of each of the corresponding entries of x
I
(k). To disable

the integrator whose state is saturated, one can subtract the di�erence between the integral state before and after the saturation
from the corresponding integral state. The drawback of this anti-windup technique is that the magnitude of the perturbations
that the controller is able to reject is limited by the chosen saturation limits. For this reason, the entries of xsat

I
are selected to be

the minimum possible that still allow for the rejection of the perturbations with the expected highest magnitude the system is
subject to. Fig. 4 depicts the block diagram of the proposed tracking system.

+ +
≥

+

*K
I
(k) +

H(k)

+

*K(k)

+Reference generator

Plant
+ x

I
(k) + u(k) x(k)

+

*

*

+

+

+

+

Ñu(k) + u
a
(k)

+

Ñx(k) *

r(k)

*

FIGURE 4 Block diagram of the proposed tracking system, with anti-windup integral action.

5 SIMULATION RESULTS FOR THE SYNTHETIC STABLE AND UNSTABLE SYSTEMS

In this section, the decentralized linear quadratic regulator proposed in Section 3.1 is simulated and its performance is compared
with the centralized solution. For the stable and unstable systems, a finite window was considered, as discussed in Section 3.2,
with T = 30 and T = 40, respectively. Given that, in this case, the dynamics of the systems are known in the future without
uncertainty, more than one of the computed gains of each window may be used without a significant loss of performance. For
that reason, both systems are also simulated making use of d = 20 and d = 25 gains of each window, respectively, for the stable
and unstable systems. This choice allows for a di�erence, in relation to the use of an arbitrarily large window, that is at least 4
orders of magnitude below the magnitude of tr(P(⌧)). Performing the same analysis as in Section 3.2 to the centralized method,
one concludes that the use of a window T = 20 of which d = 13 and d = 12 gains computed for each window are used, for the
stable and unstable systems, respectively, allows for a di�erence, in relation to the use of an arbitrarily large window, that is at
least 4 orders of magnitude below the magnitude of tr(P(⌧)).

Monte Carlo simulations were carried out to assess the performance of the proposed solution. For each run, the initial state,
x
0
, was randomly selected from a zero-mean normal distribution with covariance I

n
. Tables 1 and 2 show the mean performance

index, J (0), for 20000 Monte Carlo runs, for the stable and unstable system, respectively. First, as expected, the performance
of the one-step method is inferior to the centralized solution. Second, one can conclude that both the centralized and one-
step methods, applied to an infinite-horizon, using d of the gains computed for each window, yield similar performance to the
simulations using just one. Given that for each time instant, the dynamics of the system are known without any uncertainty in
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the future and that the parameter d was chosen thoughtfully, the use of more than one gain does not introduce any significant
loss of performance, thereby allowing for a considerable decrease in computational load. It is interesting to remark that for the
stable system, unlike the unstable system, the use of more than one gain actually improves slightly the performance index. In
fact, in this case the loss of performance caused by the approximation of the infinite-horizon problem using an finite-horizon
window is compensated by the use of more gains of the solution to the finite-horizon problem, which allows for a decrease of
the performance index.

TABLE 1 Comparison of the performance index for the centralized and decentralized LQR, for the stable system.

centralized (d = 1) centralized (d = 13) decentralized (d = 1) decentralized (d = 20)

mean(J (0)) 38.64 37.97 41.28 41.16

TABLE 2 Comparison of the performance index for the centralized and decentralized LQR, for the unstable system.

centralized (d = 1) centralized (d = 12) decentralized (d = 1) decentralized (d = 25)

mean(J (0)) 72.32 72.57 84.75 85.15

6 SIMULATION RESULTS FOR A QUADRUPLE-TANK NETWORK

In this section, the methods put forward in this paper are applied to a network of four tanks, as a means of assessing their
performance. Given that the dynamics of the projected system are nonlinear, to employ the methods devised one can approximate
its behaviour by an LTV system, linearizing and discretizing its dynamics about successive equilibrium points. For this reason, it
allows to assess the performance of the proposed decentralized estimation method when implemented in nonlinear time-varying
systems. The quadruple-tank network introduced in47 inspired the example showed herein.

6.1 Quadruple-tank network dynamics
Consider four interconnected tanks as shown in Fig. 5. The water levels of tank 1 to tank 4 are denoted by h1, h2, h3, and h4.
The network is controlled by two pumps, whose inputs are denoted by u1 and u2, which are controlled by tank 1 and tank 2,
in accordance with the schematic. Each pump is connected to a three-way valve that regulates the fraction of the flow, held
constant, that goes to each of the tanks supplied by the pump. Each tank has a sensor which measures its water level. Making
use of mass balances and Bernoulli’s law, the system dynamics, in the absence of noise, are given by

h
n
n
n
l
n
n
nj

Üh1(t) = * a1
A1

˘
2gh1(t) +

a3
A1

˘
2gh3(t) +

�1k1
A1

u1(t)
Üh2(t) = * a2

A2

˘
2gh2(t) +

a4
A2

˘
2gh4(t) +

�2k2
A2

u2(t)
Üh3(t) = * a3

A3

˘
2gh3(t) +

(1*�2)k2
A3

u2(t)
Üh4(t) = * a4

A4

˘
2gh4(t) +

(1*�1)k1
A4

u1(t)

, (26)

where A
i

and a
i

are the cross sections of tank i and of its outlet hole, respectively; constants �1 and �2 represent the fraction of
the flow that passes through the valves to the lower tanks; k1 and k2 are the constants of proportionality between the mass flow
and the input for each pump; and g denotes the acceleration of gravity. Furthermore, the input of each pump is subject to a hard
constraint u1,2 À [0, usat ], where u

sat À R+.
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Tank 3

Tank 1 Tank 2

h1

Tank 4

Pump 1 Pump 2

u1 u2

h2

h3

h4

FIGURE 5 Schematic of a quadruple-tank network.

The nonlinear dynamics (26) can be linearized about a given equilibrium point, characterized by equilibrium water levels, h0
1,

h
0
2, h

0
3, h

0
4, and corresponding inputs, u01 and u

0
2. Writing the state and control vectors, respectively, as

x
c
(t) =

b
f
f
f
fd

h1(t) * h
0
1

h2(t) * h
0
2

h3(t) * h
0
3

h4(t) * h
0
4

c
g
g
g
ge

and u
c
(t) =

4
u1(t) * u

0
1

u2(t) * u
0
2

5
,

the continuous-time linearized system dynamics are modelled by

Üx
c
(t) = A

c
(t)x

c
(t) + B

c
(t)u

c
(t) , (27)

with

A
c
(t) =

b
f
f
f
f
fd

* 1
T1

0 A3
A1T3

0
0 * 1

T2
0 A4

A2T4

0 0 * 1
T3

0
0 0 0 * 1

T4

c
g
g
g
g
ge

and

B
c
(t) =

b
f
f
f
f
fd

�1k1
A1

0
0 �2k2

A2

0 (1*�2)k2
A3(1*�1)k1

A4
0

c
g
g
g
g
ge

,

where T
i

is the time constant of tank i, given by

T
i
=

A
i

a
i

v
2h0

i

g
. (28)
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Provided that this system is slow, one can assume that both the water level measurements and control inputs are updated with
a constant period T . Under this assumption, the discretization of (27) yields

x(k + 1) = A(k)x(k) + B(k)u(k) ,

where

A(k) = e
A

c
(kT )T

, (29a)

B(k) =
`
r
rp

T

 
0

e
A

c
(kT )⌧

d⌧

a
s
sq
B
c
(kT ) , (29b)

and

u(k) = u
c
(kT ) . (29c)

It is important to remark that, to perform the linearization, each local controller ought to access the necessary variables of the
network that define the equilibrium point, through communication. Provided that this network varies slowly, it is not necessary
to perform the linearization at every time instant, thereby reducing the computational load and communication needs. Instead,
it may be updated with a given periodicity, T

lin
= qT , where q is an integer number.

6.2 Controller implementation
The problem considered for this network is the design of a decentralized solution to control the water level of the lower tanks.
For that reason, the output of the network is computed as in (1), with

H(k) =
4
1 0 0 0
0 1 0 0

5
.

Analysing the system dynamics one notices that, for any time instant k, an equilibrium point corresponds to the solution of a
system of 4 equations with 6 unknowns, h1(k),h2(k),h3(k),h4(k), u1(k) and u2(k). It is, thus, necessary to select two of these
variables to define an equilibrium point, which, for this simulation, were chosen to be the water levels of the lower tanks, h1(k)
and h2(k), as a means of ensuring that the system dynamics used for their control are as accurate as possible. For this reason,
each time a new linearization is performed, every local controller has to receive through communication the water level in the
lower tanks, compute the remaining variables that define the equilibrium point, and linearize the relevant entries of the matrix
A(k) about that point. Although measurements of the water level of the upper tanks could be available to the lower tanks via
a communication link between them, to reduce the need for such links, a fully decentralized network is considered instead. In
fact, the approach followed consists of a local controller in each of the lower tanks, which computes the control action of the
associated pump, making use of the measurement of its own water level only. The control action of the decentralized controllers
is computed using the tracker design proposed in Section 4, that makes use of the one-step method developed in Section 3 to
compute the feedback gains. Given that the reference signal one desires to track in the simulations is not a feasible trajectory, an
integral feedback term is also included alongside an anti-windup technique, as detailed in Section 4.2, to improve the steady-state
performance. Thus, for the linearized system, each local controller computes an input of the form

T
[u(k)]1 = * [K(k)]11

�
[x(k)]1 * [ Ñx(k)]1

�
*
⌅
K

I
(k)

⇧
11
⌅
x
I
(k)

⇧
1 + [ Ñu(k)]1 +

⌅
u
a
(k)

⇧
1

[u(k)]2 = * [K(k)]22
�
[x(k)]2 * [ Ñx(k)]2

�
*
⌅
K

I
(k)

⇧
22
⌅
x
I
(k)

⇧
2 + [ Ñu(k)]2 +

⌅
u
a
(k)

⇧
2

,

in such a way that each tank has only access to its measured water level and to the integral of its tracking error. Note that u
i
(k) and

[u(k)]
i
are distinct. Indeed, the former is the input to pump i and the latter is the i-th component of u(k). It is important to remark

that the dynamics of the quadruple-tank network verify the two conditions explored in Remark 6 for every time instant. Thus,
the reference values ( Ñx(k), Ñu(k),u

a
(k)) can be computed independently using (21) and (22) for each time instant. Furthermore,

( Ñx(k), Ñu(k)) does not have, necessarily, to be calculated with (21) using the linearized system. In fact, the analogous nonlinear
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equation is
h
n
n
n
n
l
n
n
n
nj

* a1
A1

t
2g Ñh1(k) +

a3
A1

t
2g Ñh3(k) +

�1k1
A1

Ñu1(k) = 0

* a2
A2

t
2g Ñh2(k) +

a4
A2

t
2g Ñh4(k) +

�2k2
A2

Ñu2(k) = 0

* a3
A3

t
2g Ñh3(k) +

(1*�2)k2
A3

Ñu2(k) = 0

* a4
A4

t
2g Ñh4(k) +

(1*�1)k1
A4

Ñu1(k) = 0
⌅
Ñh1(k) Ñh2(k)

⇧T = r(k)

, (30)

with

Ñx(k) =

b
f
f
f
fd

Ñh1(k) * h
0
1(k)

Ñh2(k) * h
0
2(k)

Ñh3(k) * h
0
3(k)

Ñh4(k) * h
0
4(k)

c
g
g
g
ge

, Ñu(k) =
4
Ñu1(k) * u

0
1(k)

Ñu2(k) * u
0
2(k)

5
,

where h
0
i
(k) and u

0
j
(k) are the equilibrium water level of tank i and equilibrium input of pump j, respectively, computed in the

last linearization prior to the time instant k. The unique closed-form solution to (30) is given by
h
n
n
l
n
nj

⌅
Ñh1(k) Ñh2(k)

⇧T = r(k)
⌅
Ñh3(k) Ñh4(k)

⇧T = ↵
⌧
[r(k)]1 [r(k)]2

˘
[r(k)]1 [r(k)]2

�T

⌅
Ñu1(k) Ñu2(k)

⇧T = �
⌧ ˘

[r(k)]1
˘
[r(k)]2

�T
, (31)

where ↵ À R2ù3 and � À R2ù2 are constant matrices, whose entries are a function of the physical parameters of the network
exclusively. It is also interesting to point out that (31) can also be used to compute the equilibrium point for each linearization,
setting r(k) =

⌅
h1(k) h2(k)

⇧T , given that the water levels of the lower tanks are the variables chosen to define the equilibrium
point. Note that the use of the nonlinear equilibrium solution (31) to find Ñx(k) and Ñu(k) is not only computationally e�cient
but also much more accurate because it does not rely on the linearization, which is only updated every q time steps. The actual
pump input is, thus, given by

T
u1(k) = * [K(k)]11

�
h1(k) * Ñh1(k)

�
*
⌅
K

I
(k)

⇧
11
⌅
x
I
(k)

⇧
1 + [ Ñu(k)]1 +

⌅
u
a
(k)

⇧
1 + u

0
1(k)

u2(k) = * [K(k)]22
�
h2(k) * Ñh2(k)

�
*
⌅
K

I
(k)

⇧
22
⌅
x
I
(k)

⇧
2 + [ Ñu(k)]2 +

⌅
u
a
(k)

⇧
2 + u

0
2(k)

. (32)

Although the controller design put forward is not projected to handle hard input constraints, as this network requires, to meet
those constraints on the control inputs of the pumps, the computed inputs, given by (32), are saturated.

Comparing the local controller (32) with the global controller of the network (25), it follows that the feedback gain of the
augmented system, K(k) =

⌅
K(k) K

I
(k)

⇧
, must follow the sparsity pattern defined by

E =
4
1 0 0 0 1 0
0 1 0 0 0 1

5
.

Given that both the centralized and one-step methods require the dynamics of the system in a time window that spans future
instants, and considering that the dynamics of the network vary with its state vector, it is not possible to simulate this method
online without the use of a mechanism that predicts the future evolution of the state vector, thus allowing to obtain the linearized
dynamics. For that reason, a very simple iterative LQR smoothing (iLQR) scheme, based on48,49, is used. This approach is an
iterative algorithm, applied to a finite window T , as described in Section 3.2, which consists of backward and forward passes
carried out in turns, as a means of computing the control action for the nonlinear system. For the initialization of the algorithm,
start with an initial control input and the resulting trajectory for the window considered, that is, u(⌧) for ⌧ = k, ..., k + T * 1
and x(⌧) for ⌧ = k, ..., k + T . From this initial trajectory, one can linearize the system dynamics around successive equilibrium
points and find an LTV system that approximates the nonlinear system throughout the window. In this particular case, for the
initialization, an initial control input was chosen such that the water level in the lower tanks remains constant throughout the
window, which approximates the nonlinear dynamics by an LTI system, due to the way the linearization was defined. Then
run the backward and forward passes, in this order, in turns, until convergence is reached. The backward pass consists of the
computation of the control action, using (32), considering the approximate LTV system given by the previous forward pass. Note
that Ñh1(⌧), Ñh2(⌧), Ñu(⌧), and u

a
(⌧) for ⌧ = k,… , k+T*1, only have to be computed once, since they do not depend on the evolution
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of the system. The forward pass is the simulation of the nonlinear system using the control action computed in the previous
backward pass, whose trajectory is used to update the LTV system that approximates the dynamics of the nonlinear system
throughout the window. The algorithm stops when the maximum relative di�erence of the norm of the actuation throughout the
window, computed in two consecutive iterations, is below 10*4. The linearizations performed in each iteration are also carried
out with a periodicity T

lin
. After convergence has been reached, one can make use of the first d gains of the window. A new

window {k+ d, ..., k + d + T * 1} is then defined and so forth. A flowchart of the iLQR scheme used for the gain computation
for a finite window is presented in Fig. 6.

Initialization: Select the finite window length, T .
Select the number of gains to use in each finite window, d.
Select an initialization control input,u(⌧), ⌧ = k,… , T * 1.

Compute Ñh1(⌧), Ñh2(⌧), Ñu(⌧), and
u
a
(⌧) for ⌧ = k,… , k + T * 1.

Simulate the nonlinear system using the
previously computed control inputs to obtain
an updated trajectory, x(⌧), ⌧ = k,… , k + T .

Linearize the nonlinear system
about x(⌧), ⌧ = k,… , k + T .

Use (7) to compute the one-step sequence
of gains, K(⌧), ⌧ = k,… , k + T * 1,

for the linearized LTV system.

Use (32) to compute the updated control
input, u(⌧), ⌧ = k,… , k + T * 1.

Is the stopping
criterion met?

Store K(⌧), Ñh1(⌧), Ñh2(⌧), Ñu(⌧), and
u
a
(⌧) for ⌧ = k,… , k + d * 1.

Yes

No

FIGURE 6 Flowchart of the iLQR scheme used for the gain computation for a finite window.
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6.3 Simulation results
The values of the physical constants of the quadruple-tank network are presented in Table 3. For those parameters, the constant
matrices that are used to compute the equilibrium points for each linearization, as well as for part of the feedforward control
action, using (31), rounded to 3 decimal places, are given by

↵ =
4
0.5041 1.769 *1.889
1.134 0.3249 *1.214

5
and � =

4
1.889 *1.011

*0.9444 1.769

5
.

The sampling time was set to T = 1 s and the linearization period to T
lin

= 10T . The initial level of the tanks is set to
h1 = h2 = h3 = h4 = 20 cm. The reference signal is given by

[r(t)]1 =
T

30 , t À [0, 200 s[ ‚ t g 400 s
20 , t À [200 s, 400 s[

, [r(t)]2 = 30 + 10 cos (t_35) ,

which is sampled with a periodicity of T .

TABLE 3 Values of the physical constants of the quadruple-tank network.

Constant Value

A1,A3 28 cm2

A2,A4 32 cm2

a1, 0.071 cm2

a2, 0.057 cm2

a3, a4 0.040 cm2

g 981 cm s*2
k1, k2 3.33 cm3 s*1 V*1

�1 0.7
�2 0.6
u
sat 12 V

As detailed in Section 3.2, the infinite-horizon solution is approximated by the solution of several finite-horizon problems
on a chosen window. Its length was selected to be T = 30, roughly twice the time constant of the slowest pole of the system,
which is enough for the centralized and one-step methods to approximate the infinite-horizon solution. The proposed method
is compared with the analogous centralized solution, i.e., using the unconstrained LQR solution to compute the LQR feedback
gains of (32). Due to the nonlinear dynamics of the network, the controller parameters were tuned empirically. The weighting
matrices were set to R(k) = I2, QT

= 20I2, and Q
I
= 0.05I2, and the integral state saturation limits vector was chosen to be

x
sat
I

= [10 10]T cm, for both methods.
Fig. 7 depicts the nonlinear simulation of the water level of the four tanks, as well the reference signal, for the centralized

and one-step methods. The simulation was also carried out making use of d = 15 and d = 10 of the gains computed for each
window instead of just one, for the centralized and decentralized solutions, respectively. Fig. 8 depicts the evolution of the input
to the pumps. First, it is clear that none of the solutions diverge and all drive the system state very close to the reference signal,
yielding very good performance. Note that the system is nonlinear and the control inputs are subject to hard constraints, none of
which were taken into account in the design of the decentralized controller. Moreover, the variation of water level in the tanks
is considerable, which allows for a significant variation in the dynamics of the system throughout the simulation. Second, it is
interesting to notice that, despite having considered a fully decentralized network design, the performance obtained with the
centralized solution is not considerably better, which makes the use of a decentralized solution very compelling for this network.
Third, regarding the MPC scheme used, it is clear that the use of more that one gain of each finite window does not introduce
a noticeable loss of performance, yielding results very similar to those which make use of just the first gains, even though the
dynamics of the system used for each window are predicted. The centralized solution allows, nevertheless, to make use of a
larger fraction of the gains of each finite window, which is consistent with the results obtained for the synthetic systems studied
in Section 5. For this reason, it is possible to reduce the computational cost of this control approach substantially, without any
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significant loss of performance. Fourth, the reference signal used cannot be followed by a feasible state trajectory, which means
the tracking error does not converge to zero. However, the use of integral action alongside an anti-windup technique allow for
very good steady-state performance, achieving very reduced tracking error. Furthermore, note that despite the sudden significant
variation, for t = 400 s, of the reference signal for tank 1, the tracking performance of tank 2 is almost una�ected. Fifth, it is
possible to point out the e�ects of the saturation of the input of the pumps. In fact, it is visible that, for roughly between t = 40 s
and t = 120 s, the evolution of the water level in tank 2 yields a significant tracking error. In fact, analysing Fig. 8, it is possible
to see that such error is due to the saturation of pump 2, since it is not possible to pump water out of the tanks.
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FIGURE 7 Evolution of the water levels of the quadruple-tank network.
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FIGURE 8 Inputs of pump 1 (left) and pump 2 (right) of the quadruple-tank network.
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Tank N/2+1

Tank 1 Tank 2

h1

Tank N/2+2

Pump 1

u1

h2

hN/2+1

hN/2+2

Pump 2
u2

…

Tank N/2

Tank N

hN/2

hN

Pump N/2
uN/2

…

…

FIGURE 9 Schematic of the N tanks network.

7 SIMULATION RESULTS FOR A NETWORK OF N TANKS

In this section, the methods put forward in this paper are applied to a network ofN tanks, which corresponds to the generalization
of the quadruple-tank network introduced in the previous section. This network is also nonlinear, thus to employ the method
devised in this paper one can approximate its behaviour by an LTV system, linearizing and discretizing its dynamics about
successive equilibrium points, as in the previous section. This network is presented to show the scalability of the proposed
methods.

7.1 N tanks network dynamics
Consider N interconnected tanks, as shown in Fig. 9, where N is an even integer. The water level of tank i is denoted by h

i
. The

network is actuated by N_2 pumps, which are controlled by the lower tanks, whose inputs are denoted by u
i

for i = 1, ...,N_2,
in accordance with the schematic. Each pump is connected to a three-way valve that regulates the fraction of the flow, held
constant, that goes to each of the tanks supplied by the pump. Each tank has a sensor, which measures its water level. Making
use of mass balances and Bernoulli’s law, the system dynamics, in the absence of noise, are given by

h
n
n
l
n
nj

A
i
Üh
i
(t) = *a

i

˘
2gh

i
(t) + aN

2 +i

t
2ghN

2 +i
(t) + �

i
k
i
u
i
(t), i = 1, ...,N_2

A
i
Üh
i
(t) = *a

i

˘
2gh

i
(t) + (1 * �

i*N

2 *1
)k

i*N

2 *1
u
i*N

2 *1
(t), i = N

2 + 2, ...,N
AN

2 +1
Üh N

2 +1
(t) = *aN

2 +1

t
2ghN

2 +1
(t) + (1 * �N

2
)kN

2
uN

2
(t)

, (33)

where A
i

and a
i

are the cross sections of tank i and of its outlet hole, respectively; the constant �
i

represents the fraction of
the flow that passes through the valve i to the lower tanks; k

i
is the constant of proportionality between the mass flow and the

input of pump i; and g denotes the acceleration of gravity. Furthermore, the input of each pump is subject to a hard constraint
u
i
À [0, usat ], where u

sat À R+.
Similarly to the procedure followed for the quadruple-tank network, the nonlinear dynamics are linearized about a given

equilibrium point, characterized by equilibrium water levels, h0
i
, i = 1, ...,N ; and inputs u0

i
, i = 1, ...,N_2. Writing the state
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and control vectors, respectively, as

x
c
(t) =

b
f
fd

h1(t) * h
0
1

4
h
N
(t) * h

0
N

c
g
ge

and u
c
(t) =

b
f
f
fd

u1(t) * u
0
1

4
uN

2
(t) * u

0
N

2

c
g
g
ge
,

the continuous-time linearized system is given by

Üx
c
(t) = A

c
(t)x

c
(t) + B

c
(t)u

c
(t) (34)

with A
c
(t) À RNùN and B

c
(t) À RNùN_2 given by
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,
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nj
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i
, i = j

(1 * �
j
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j
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i
, j = i *N_2 * 1

(1 * �
j
)k

j
_A

i
, i = N_2 + 1, j = N_2

0 , otherwise

,

where T
i

is the time constant of tank i, given by (28).
Provided that this system is slow, one can assume that the water level measurements and control inputs are updated with a

constant period T . Under this assumption, the discretization of (34) yields

x(k + 1) = A(k)x(k) + B(k)u(k) ,

whereA(k) andB(k) are discretized using (29). It is important to remark that, similarly to the quadruple tank network, to perform
the linearization, each local controller ought to access the necessary variables of the network that define the equilibrium point,
through communication. Provided that the water levels change slowly, it may be carried out with a given periodicity, T

lin
= qT ,

where q is an integer number, thereby reducing the computational load and communication needs.

7.2 Controller implementation
The problem considered for this network is the design of a decentralized solution to control the water level of the lower tanks.
For that reason, the output of the network is computed as in (1), using H(k) =

⌅
I
N_2 0

N_2
⇧
. Similarly to the quadruple

tank network, the water level of the lower tanks are the variables used to define each equilibrium point, as a means of ensuring
that the system dynamics used for their control are as accurate as possible. For this reason, each time a new linearization is
performed, every local controller has to receive through communication the water level of the lower tanks, compute the remaining
variables that define the equilibrium point, and linearize the relevant entries of matrix A(k) about that point. The controller
design approach, which is very similar to the one proposed for the controller design of the quadruple tank network in Section 6.2,
consists of a local controller in each of the lower tanks, which computes the control action of the associated pump, making use
of the measurement of its own water level only. The control action of the decentralized controllers is computed using the tracker
design proposed in Section 4, that makes use of the one-step method developed in Section 3 to compute the feedback gains.
Given that the reference signal one desires to track in the simulations is not a feasible trajectory, an integral feedback term is
also included alongside an anti-windup technique, as detailed in Section 4.2, to improve the steady-state performance. Thus, for
the linearized system, each local controller computes an input of the form

[u(k)]
i
= * [K(k)]

ii
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⇧
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⌅
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⇧
i
+ [ Ñu(k)]

i
+
⌅
u
a
(k)

⇧
i

for i = 1, ...,N_2, in such a way that each tank has only access to its measured water level and to the integral of its tracking
error. Note that u

i
(k) and [u(k)]

i
are distinct, the former is the input to pump i and the latter is the i-th component of u(k). To

compute ( Ñx(k), Ñu(k)), an analogous approach to the one presented in Section 6.2 is followed. The actual pump input is, thus,
computed making use of

u
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0
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(k) , (35)
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TABLE 4 Values of the physical constants of the N tanks network.

Constant Value

A
i
, i odd 28 cm2

A
i
, i even 32 cm2

a
i
, i odd f N_2 0.071 cm2

a
i
, i even f N_2 0.057 cm2

a
i
, i > N_2 0.040 cm2

g 981 cm s*2
k
i

3.33 cm3 s*1 V*1

�
i
, i odd 0.7

�
i
, i even 0.6
u
sat 12 V

where Ñh
i
(k) and Ñu

i
(k) are defined by

Ñx(k) =
b
f
fd

Ñh1(k) * h
0
1(k)

4
Ñh
N
(k) * h

0
N
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c
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ge

and Ñu(k) =
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0
1(k)

4
Ñu
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0
N_2(k)

c
g
ge
, (36)

where h0
i
(k) and u

0
j
(k) are the equilibrium water level of tank i and equilibrium input of pump j computed in the last linearization

prior to time instant k, respectively. Although the controller design put forward is not projected to handle hard input constraints,
as this network requires, to meet those constraints on the control inputs of the pumps, the computed inputs, given by (35), are
saturated. Comparing the local controller (35) with the global controller (25), it follows that the feedback gain of the augmented
system, K(k) =

⌅
K(k) K

I
(k)

⇧
, must follow the sparsity pattern defined by E =

⌅
I
N_2 0

N_2 I
N_2

⇧
.

Both the centralized and one-step methods require the dynamics of the system in a time window that spans future instants.
Considering that the dynamics of the network vary with its state vector, a mechanism that predicts the future evolution of the
state vector to obtain the linearized dynamics is necessary. For that reason, the iLQR scheme described in Section 6.2 is used.

7.3 Simulation results
The network was simulated for N = 40 tanks and the values of its physical constants are presented in Table 4. The sampling time
was set to T = 1 s and the linearization period to T

lin
= 10T . The initial level of the tanks is set to h

i
= 20 cm for i = 1, ...,N .

The reference signal is given by

[r(t)]
i
=

h
n
n
l
n
nj

25 + 5 sgn (sin (2⇡t_100)) , i = 4n + 1
30 + 10 cos (t_35) , i = 4n + 2
25 + 5 sgn (sin (2⇡t_200)) , i = 4n + 3
30 + 10 cos (t_50) , i = 4n + 4

, n À {0, ...,N_4 * 1} ,

which is sampled with a periodicity of T .
As detailed in Section 3.2, the infinite-horizon solution is approximated by the solution of several finite-horizon problems

on a chosen window. Its length was selected to be T = 30, roughly twice the time constant of the slowest pole of the system,
which is enough for the centralized and one-step methods to approximate the infinite-horizon solution. The proposed method
is compared with the analogous centralized solution, i.e., using the unconstrained LQR solution to compute the LQR feedback
gains of (32). Due to the nonlinear dynamics of the network, the controller parameters were tuned empirically. The weighting
matrices were set to R(k) = I

N_2, QT
= 20I

N_2, and Q
I
= 0.05I

N_2. The integral state saturation limits vector was selected as⌅
x
I

sat⇧
i
= 10 cm for i = 1, ...,N_2, for both methods.

Fig. 10 depicts the nonlinear simulation of the water level of four tanks, one for each of the four types of reference signals,
for the centralized and one-step methods. The simulation was also carried out making use of d = 15 and d = 10 of the gains
computed for each window instead of just one, for the centralized and decentralized solutions, respectively. Fig. 11 depicts the
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evolution of the input to the pumps associated with the tanks whose water level is plotted in Fig. 10. First, it is clear that none
of the solutions diverge and all drive the system state very close to the reference signal, yielding a very good performance. Note
that the system is nonlinear and the control inputs are subject to hard constraints, none of which were taken into account in the
design of the decentralized controller. Moreover, the variation of the water level in the tanks is considerable, which allows for a
significant variation in the dynamics of the system throughout the simulation. Second, the fact that the proposed method for the
computation of the decentralized feedback gains has a closed-form solution allows for its use in large-scale networks, as in this
example, showing the scalability of the methods put forward. Third, it is interesting to notice that, similarly to the quadruple
tank network, despite having considered a fully decentralized design, the performance obtained with the centralized solution is
not considerably better. In fact, given that the use of a decentralized solution reduces tremendously the communication needs,
particularly for a large-scale network as the case being considered, the use of a decentralized solution is even more compelling
than for the quadruple tank network. Forth, regarding the proposed MPC scheme, it is clear that the use of more that one gain
of each finite window does not introduce a noticeable loss of performance, yielding results very similar to those which make
use of just the first gains. For this reason, it is possible to reduce the computational cost of this control approach dramatically,
without any significant loss of performance.
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FIGURE 10 Evolution of the water levels of the network of N tanks.

8 COMPARISON BETWEEN THE CENTRALIZED AND DECENTRALIZED SOLUTIONS

In this section, the results obtained for the networks of interconnected tanks simulated in Sections 6 and 7 for the decentralized
solution proposed in this paper are further compared with the centralized solution. This analysis regards: i) performance; ii)
communication needs; and iii) computational cost.
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FIGURE 11 Inputs of the pumps of the network of N tanks.

Fist, consider the tracking fitness function

J
t
:=

Tsim…
⌧=0

(z(⌧) * r(⌧))T (z(⌧) * r(⌧)) ,

where Tsim is the number of time steps of a given simulation. The tracking fitness values of the centralized and decentralized
solutions presented in Sections 6 and 7, with Tsim = 600, are shown in Table 5. These values show that the use of one gain of
each window or more o�er an almost indistinguishable performance. Furthermore, it is possible to notice that there is a relative
increase roughly of only 2.0% and 0.81% for the decentralized solutions in relation to the centralized results, for the network of
N = 4 and N = 40 tanks, respectively.

TABLE 5 Tracking fitness values of the centralized and decentralized solutions presented Sections 6 and 7 for a network of N
interconnected tanks.

N = 4 N = 40

Centralized (d = 1) 0.6300 m2 7.406 m2

Centralized (d = 10) 0.6294 m2 7.407 m2

One-step (d = 1) 0.6423 m2 7.466 m2

One-step (d = 15) 0.6419 m2 7.466 m2

The centralized solution makes use of (N * 1)N_2 directional communication links, for a network of N tanks, which are
necessary to connect every lower tank to every other tank of the network. On the other hand, the decentralized solution would not
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need any communication links between tanks to compute the control action, if the system were LTV. However, since the network
is nonlinear, each lower tank has to receive, via a communication link, the water level of all the other tanks of the network to
compute the linearized dynamics of the network, requiring the same number of communication links as the centralized solution.
Nevertheless, the transmission rate is much lower in a decentralized configuration, given that it only requires one transmission
of the water level of each tank to the other tanks every q time-steps. In particular, for the simulations performed in Sections 6
and 7, it was set q = 10, which allows for a reduction of 90% in the transmission rate of the decentralized design in comparison
with the centralized configuration. Nevertheless, the number of such communication links can be lessened neglecting the water
level in some tanks for the computation of the equilibrium water level in each tank, whose influence is not very significant.

Some computational performance parameters are shown in Tables 6 and 7, regarding, respectively, the simulation of the
network with N = 4 and N = 40 tanks: i) the number of times that the iLQR method is performed; ii) the total time spent
during all the calls to the iLQR algorithm; iii) the average time spent in each iLQR call; iv) the number of finite windows
for which either the centralized or one-step gains were computed within all the iLQR calls; v) the average number of finite
window computations used in each LQR call; vi) the total time spent computing the centralized or one-step gains for all finite
windows; and vii) the average time spent in the computation of the gains for each finite window. The elapsed times shown in
these tables are wall-clock times, resulting from the average of five simulations of a MATLAB implementation on a 1.60GHz
Dual-Core Intel Core i5 with 4GB RAM. First, the number of iLQR calls is equal to Tsim_d, which suggests that to reduce
the computational load one should use the highest d possible that does not lower the performance significantly. In fact, for the
centralized and decentralized solutions, the use of d = 15 and d = 10, respectively, allowed for a decrease of roughly one order
of magnitude on the time of the iLQR gain computation. Second, it was assumed in the simulations presented in Sections 6 and 7
that the gain computation is instantaneous and thus there are no delays. However, it is possible to notice that the use of the iLQR
algorithm, which is necessary because of the nonlinearity of the network, introduces a delay at every instant that corresponds to
the beginning of an iLQR call, whose duration is the time taken per iLQR call. Albeit small, it is not negligible compared with
the time constant of the network for N = 40 tanks, for this particular implementation. Nevertheless, if the system were LTV,
it would only be necessary to compute the one-step gains once instead of iterating until convergence, which would introduce a
negligible delay even for the network of N = 40 tanks. Third, it is interesting to notice that, since the centralized gain has more
degrees of freedom, it is necessary to compute more finite window gains, on average, for the convergence of the iLQR iterations.
Fourth, while, for the quadruple-tank network, the gain computation on the one-step method for each window takes roughly as
much time as the centralized solution, for the network of N = 40 tanks it is almost twenty times slower. The computational
complexity comparison between the one-step method and centralized solution, detailed in Remark 2, is not verified in this case
because the values of N in these simulations are too low for an asymptotic comparison.

TABLE 6 Computational cost parameters for the gain computation of the simulation presented in Section 6 for the quadruple-
tank network.

iLQR iLQR Average time Computed Average windows Time computing Average time
calls time per iLQR call windows per iLQR call window gains per window

Centralized (d = 1) 600 119.4 s 0.1990s 1860 3.100 2.624 s 1.411 ms
Centralized (d = 10) 40 10.30 s 0.2575s 124 3.100 0.2247 s 1.812 ms

One-step (d = 1) 600 91.59 s 0.1526 s 1329 2.215 2.164 s 1.629 ms
One-step (d = 15) 60 11.11 s 0.1852 s 133 2.217 0.2740 s 2.061 ms

Fig. 12 depicts the time to compute a window of T = 30 gains averaged over 5 finite window computations as a function of
the dimension of the network. First, both solutions appear to asymptotically approach a linear relation between the logarithms of
both variables, thus both algorithms are of polynomial time. Note that it takes a large value of N to be possible to distinguish the
apparent asymptotic evolution. In fact, the transient is a consequence of terms of lower polynomial complexity that arise from
memory allocation and less intensive computations of the algorithm. Thus, it may take a large N for those transient terms to
become insignificant compared with the highest polynomial complexity of the operations performed in the algorithm. Moreover,
the apparent asymptotic linear relation is estimated using a linear regression, shown in Fig. 12 as well, which was obtained
making use of the data points with N g 212 for the centralized solution and N g 120 for the one-step method, achieving high
correlation coe�cients. Second, as detailed in Remark 2, the average time per window for the centralized solution and one-step
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TABLE 7 Computational cost parameters for the gain computation of the simulation presented in Section 7 for a network of
N = 40 interconnected tanks.

iLQR iLQR Average time Computed Average windows Time computing Average time
calls time per iLQR call windows per iLQR call window gains per window

Centralized (d = 1) 600 284.8 s 0.4747s 1822 3.037 11.69 s 6.414 ms
Centralized (d = 10) 40 21.76 s 0.5441s 121 3.025 0.8847 s 7.311 ms

One-step (d = 1) 600 404.7 s 0.6745 s 1460 2.433 176.2 s 120.7 ms
One-step (d = 15) 60 43.53 s 0.7255s 148 2.467 18.75 s 126.7 ms
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FIGURE 12 Average time to compute a window of T = 30 gains averaged over 5 finite window computations as a function of
the dimension of the network of interconnected tanks.

method grow asymptotically at a similar rate of O(N3). Finally, this analysis has only qualitative significance, since it depends
greatly on the implementation and on the hardware used to run it.

Taking everything analyzed in this section into consideration, it is possible to conclude that the use of a decentralized config-
uration comes with little performance penalty, but achieves a significant reduction in communication needs. Furthermore, the
use of more than one gain of each finite window does not penalize performance and allows for a significant reduction in com-
putational cost. Depending on the dimension of the network and on the implementation of the algorithm, it may be necessary to
account for delays in the computation of the gains at the beginning of each finite window. Finally, it is important to make clear
that if the system were LTV, there would be no need for the use of the iLQR algorithm which is responsible for increasing the
computational load significantly, as it is noticeable in the analysis carried out in this section.

9 CONCLUSION

Very little work has been carried out regarding the design of decentralized control solutions for arbitrary LTV systems. In this
paper, a method for the computation of decentralized LQR gains for arbitrary LTV systems with arbitrary time-invariant network
configurations, portrayed by the sparsity constraint that is imposed, is proposed. Moreover, a method for the tracking problem is
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also put forward, building on the solution to the regulator problem. These methods are obtained for a finite-horizon formulation
and then extended to the infinite-horizon problem by making use of an MPC-like scheme. Nevertheless, the methods put forward
require that a window of the future dynamics of the system is known, similarly to the corresponding centralized methods. First,
it was shown that the method for the computation of regulator gains proposed in this paper is able to compute a sequence of well-
performing stabilizing gains subject to an arbitrary sparsity constraint. Second, the regulator gains, as well as the control action
for the tracking problem, have a closed-form solution, thus they can be computed very rapidly and e�ciently. Third, regarding
the MPC-like scheme that was proposed, it was possible to conclude that the use of a considerable fraction of the gains computed
for each window yields a performance identical to the simulations using just one, which allows for a significant decrease in
computational load. Fourth, both algorithms put forward in this paper were applied to a nonlinear system of interconnected
tanks with hard constraints on the inputs, whose dynamics were approximated by an LTV system corresponding to successive
linearizations about the operations points. To predict a window of the future dynamics of the system, an iLQR algorithm was
used. Even though the system is nonlinear and the control inputs are subject to hard constraints, none of which were taken into
account in the design of the decentralized controller, the proposed solution drives the system state to the reference signal, yielding
very good performance. Fifth, despite having considered a fully decentralized network design, the performance obtained with
the centralized solution is not considerably better, which makes the use of a decentralized solution very compelling, allowing for
a significant decrease in the communication needs of the network. Sixth, it was possible to show the scalability of both methods,
with the successful application to a large-scale system. Finally, the average time per window for the one-step method and the
centralized solution, applied a network of N interconnected tanks, grow asymptotically roughly with O(N3).

How to cite this article: L. Pedroso, and P. Batista (2022), Discrete-time decentralized linear quadratic control for linear time-
varying systems, Int J Robust Nonlinear Control, xxx;xx:x–x.

APPENDIX

A DERIVATION OF THE CLOSED-FORM ONE-STEP SUB-OPTIMAL SOLUTION TO THE
DECENTRALIZED FINITE-HORIZON LINEAR QUADRATIC REGULATOR PROBLEM

The proposed derivation of the one-step method for the computation of decentralized LQR gains, which correspond to a
sub-optimal solution to the finite-horizon decentralized LQR problem, follows the Lagrange-multiplier approach detailed, for
instance, in50. The goal of using this approach is to ease the inclusion of the sparsity constraint K(k) À Sparse(E), the state
equation (2), and the linear feedback action (3), which allows to write (6) as an unconstrained optimization problem.

Writing an augmented performance index, J ®(k), that takes into account the linear feedback action (3), as well as the state
equation (2), yields

J
®(k) = x

T (k + T )Q(k + T )x(k + T ) +
k+T*1…
⌧=k

x
T (⌧)

�
Q(⌧) +K

T (⌧)R(⌧)K(⌧)
�
x(⌧)

+
k+T*1…
⌧=k

�T (⌧ + 1) [(A(⌧) * B(⌧)K(⌧)) x(⌧) * x(⌧ + 1)] ,
(A1)

where �(⌧ + 1) À Rn is the Lagrange-multiplier associated with each of the constraints that arise from the state equation. The
augmented performance index (A1) is often written, for convenience, as a function of the Hamiltonian, defined, in this case, as

H(k) = x
T (k)

�
Q(k) +K

T (k)R(k)K(k)
�
x(k) + �T (k + 1) (A(k) * B(k)K(k)) x(k) ,

which yields

J
®(k) = x

T (k + T )Q(k + T )x(k + T ) * �T (k + T )x(k + T ) +H(k) +
k+T*1…
⌧=k+1

�
H(⌧) * �T (⌧)x(⌧)

�
. (A2)
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Taking the di�erential of the augmented performance index (A2), one obtains

dJ
®(k) = (2Q(k + T )x(k + T ) * �(k + T ))Tdx(k + T )

+
0
)H(k)
)x(k)

1T

dx(k) +
k+T…
⌧=k+1

0
)H(⌧ * 1)

)�(⌧) * x(⌧)
1T

d�(⌧)

+
0

)H(k)
)vec (K(k))

1T

dvec (K(k)) +
k+T*1…
⌧=k+1

L0
)H(⌧)

)vec (K(⌧))

1T

dvec (K(⌧)) +
0
)H(⌧)
)x(⌧) * �(⌧)

1T

dx(⌧)
M

.

(A3)

Define the set � of integer pairs of the form (i, j) to index the non-zero entries of K(k) as
T

(i, j) À � if [E]
ij
ë 0

(i, j) Ã � otherwise
, i = 1, ...,m, j = 1, ..., n . (A4)

The necessary conditions for the constrained minimum follow from (A3) and from the sparsity constraint. For a fixed initial
state x(k) and free final state x(k + T ), the constrained minimum requires that dJ ®(k) = 0 holds for any: i) dx(⌧), with ⌧ =
k+1, ..., k+T ; ii) d�(⌧), with ⌧ = k+1, ..., k+T ; and iii) lT

i
dK(⌧)l

j
, with ⌧ = k, ..., k+T * 1 and (i, j) À � . Hence, it follows

that

x(⌧ + 1) = )H(⌧)
)�(⌧ + 1) , ⌧ = k, ..., k + T * 1 , (A5a)

�(⌧) = )H(⌧)
)x(⌧) , ⌧ = k + 1, ..., k + T * 1 , (A5b)

l
T

i

)H(⌧)
)K(⌧) lj = 0 , ⌧ = k, ..., k + T * 1, (i, j) À � , (A5c)

l
T

i
K(⌧)l

j
= 0 , ⌧ = k, ..., k + T * 1, (i, j) Ã � , (A5d)

and

�(k + T ) = 2Q(k + T )x(k + T ) , (A5e)

where l
i

is defined as in Theorem 1. Above, (A5a) is the state equation, (A5b) is the costate equation, (A5c) is the stationary
condition, (A5d) is the sparsity constraint, and (A5e) is the boundary condition. It is interesting to remark the usefulness of
the Hamiltonian function, which allows to write the constraints of the optimization problem as neat identities involving its
partial derivatives. As the form of the boundary condition suggests, the Lagrage-multipliers can possibly be written as �(k) =
2P(k)x(k), where P(k) is a symmetric positive semidefinite matrix. In that case, from the boundary condition (A5e), it follows
that P(k + T ) = Q(k + T ). In fact, making use of the costate equation (A5b), this hypothesis yields

P(⌧)x(⌧) =
�
Q(⌧) +K

T (⌧)R(⌧)K(⌧)
�
x(⌧) + (A(⌧) * B(⌧)K(⌧))T P(⌧ + 1)x(⌧ + 1) ,

⌧ = k,… , k + T * 1, which holds for every x(⌧) if and only if

P(⌧) = Q(⌧) +K
T (⌧)R(⌧)K(⌧) + (A(⌧) * B(⌧)K(⌧))T P(⌧ + 1) (A(⌧) * B(⌧)K(⌧)) .

For this reason, the hypothesis on the form of the Lagrange multipliers, �(k) = 2P(k)x(k), is valid, and P(k) is given by the
recursive closed-form expression (8). Making use of (A5c), and using also the closed-loop system dynamics

x(⌧ + 1) = (A(⌧) * B(⌧)K(⌧))x(⌧) , (A6)

one can write
l
T

i

⌅
R(⌧)K(⌧)x(⌧)xT (⌧) * B

T (⌧)P(⌧ + 1) (A(⌧) * B(⌧)K(⌧)) x(⌧)xT (⌧)
⇧
l
j
= 0 , (A7)

for all (i, j) À � and ⌧ = k,… k + T * 1. Note that (A7) depends on x(⌧), ⌧ = k,… k + T * 1, which is not readily available
in a decentralized formulation. For that reason, unlike the centralized finite-horizon problem, finding all the solutions to (A7),
being the global minimum among them, is not possible without the knowledge of x(⌧), ⌧ = k,… k + T * 1. For that reason, it
is only possible to compute one sub-optimal solution using this equation, designated herein by the one-step solution. For more
details on the properties of this solution see Remark 3. Introducing the sparsity constraint (A5d), this solution satisfies

T
l
T

i

⌅
S(⌧)K(⌧) * B

T (⌧)P(⌧ + 1)A(⌧)
⇧
l
j
= 0 , (i, j) À �

l
T

i
K(⌧)l

j
= 0 , (i, j) Ã �

, ⌧ = k,… , k + T * 1, (A8)
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where S(⌧) is defined as in Theorem 1. The sub-optimal gain is, then, given by the solution of (A8), which, taking its transpose,
can also be written asT

l
T

j

⌅
K

T (⌧)S(⌧) * A
T (⌧)P(⌧ + 1)B(⌧)

⇧
l
i
= 0 , (i, j) À �

l
T

j
K

T (⌧)l
i
= 0 , (i, j) Ã �

, ⌧ = k,… , k + T * 1. (A9)

Note that (A9) has the same form, for the transpose of the gain, as the equation that arises in the LTI formulation of the one-step
method for the decentralized estimation problem, put forward in51, Theorem 4.1. The closed-form solution (7) follows from that
result.

One can also prove, by induction, that
J (i) = x

T (i)P(i)x(i) , (A10)
for i = k,… , k + T . First, note that J (k + T ) = x

T (k + T )P(k + T )x(k + T ), which follows directly from the definition of the
finite-horizon performance index (5) and the fact that P(k+ T ) = Q(k+ T ). Moreover, for i = k,… , k+ T * 1, it follows from
(5) and the command action (3) that

J (i) = J (i + 1) + x
T (i)

�
Q(i) +K

T (i)R(i)K(i)
�
x(i) . (A11)

Substituting the inductive hypothesis (A10) in (A11) and making use of the closed-loop system dynamics (A6) yields

J (i) = x
T (i)

�
Q(i) +K

T (i)R(i)K(i) + (A(i)*B(i)K(i))T P(i + 1) (A(i)*B(i)K(i))
�
x(i) ,

which by comparison with (8) concludes the proof by induction. Hence, for the particular case of J (k), the sub-optimal cost,
which is attained using the sub-optimal sequence of gains (7), is given by (9).

B DERIVATION OF THE ONE-STEP METHOD AS THE CLOSED-FORM SOLUTION TO A
RELAXED DECENTRALIZED FINITE-HORIZON LINEAR QUADRATIC REGULATOR
PROBLEM

The one-step gain presented in Theorem 1 can be shown to be the closed-form solution to (11). For a time-instant ⌧, P(⌧) is
given by (8). Taking the derivative of its trace with respect to K(⌧) yields

)

)K(⌧) tr(P(⌧)) = *2BT (⌧)P(⌧ + 1)A(⌧) + 2S(⌧)K(⌧) . (B12)

Define � to index the non-zero entries of E as in (A4). Equaling the nonzero entries (i, j) À � of (B12) to zero and introducing
the sparsity constraint on the gain matrix yields (A8). The solution to optimization problem (11) is, thus, given by (7).

C ALTERNATIVE DERIVATION OF THE ONE-STEP SOLUTION TO THE
DECENTRALIZED FINITE-HORIZON LINEAR QUADRATIC REGULATOR PROBLEM

Consider the finite-horizon performance index (5). Recall that it can be written as (A10), in which P(i) is given by the recursive
backward-time closed-form expression (8), as shown in A. To make use of the optimality principle, on which dynamic pro-
gramming is based, assume the optimal cost-to-go at time instant i + 1, J?(i + 1), is known. Note that such optimal cost-to-go
depends on the state of the system at time instant i+ 1, x(i+ 1). Therefore to put emphasis on this dependence, it is represented
henceforth by J

?(i + 1, x(i + 1)). By the definition of the finite horizon-performance index (5)

J (i, x(i)) = x
T (i)Q(i)x(i) + u

T (i)R(i)u(i) + J (i + 1,A(i)x(i) + B(i)u(i)) . (C13)

Applying the principle of optimality52, Proposition 1.3.1 to (C13)

J
?(i, x(i)) = min

K(⌧)ÀSparse(E)
⌧=i,…,k+T*1

J (i, x(i))

= x
T (i)Q(i)x(i) + min

K(i)ÀSparse(E)

`
r
rp
u
T (i)R(i)u(i) + min

K(⌧)ÀSparse(E)
⌧=i+1,…,k+T*1

J (i + 1,A(i)x(i) + B(i)u(i))
a
s
sq
.
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Therefore, the decentralized finite-horizon LQR problem (6) can be written as T * 1 optimization problems, one for each gain
of the finite window,

min
K(i)ÀSparse(E)

�
u
T (i)R(i)u(i) + J

? (i + 1,A(i)x(i) + B(i)u(i))
�
, (C14)

i = k,… , k + T * 1. Making use of the closed-loop system dynamics (A6), as well as of (A10), one can rewrite (C14) as

min
K(i)ÀSparse(E)

⌅
x
T (i)

�
K

T (i)R(i)K(i) + (A(⌧) * B(i)K(i))TP(i + 1)(A(i) * B(i)K(i))
�
x(i)

⇧
. (C15)

Note that P(i+1) does not depend onK(i), thus, it is possible to solve (C15) for eachK(i) backward in time. Taking the derivative
of the objective function of (C15) w.r.t. the unconstrained entries of K(i) yields

l
T

l

⌅
R(i)K(i)x(i)xT (i) * B

T (⌧)P(i + 1) (A(i) * B(i)K(i)) x(i)xT (i)
⇧
l
j
= 0 , (C16)

for all (l, j) À � , where the set � is defined as in (A4), and i = k,… k + T * 1. Note that (C16) is analogous to the constrained
condition on each gain that arises using the Lagrange multiplier approach (A7). Thus it can be solved likewise. It is important
to remark that, similarly to the Lagrange multiplier approach, it is only possible to compute a sub-optimal solution to (C16),
which is designated by one-step solution, which is shown to be the optimal solution to a relaxed version of the original regulator
problem (see Remark 3). Having this in mind, the one-step method attempts to minimize J (k) by computing a sequence of gains
backward in time. Starting at i = k + T * 1, for each backward step i, K(i) is computed such that it attempts to minimize J (i)
and follows the imposed sparsity constraint.

D DERIVATION OF THE LINEAR QUADRATIC TRACKER FEEDFORWARD TERMS

The following derivation makes use of the Lagrange multiplier approach. The Lagrangian function of the optimization problem
can be written as

L(k) = 1
2

k+T*1…
⌧=k

�
Ñx(⌧ + 1) * Ñx(⌧) * B(⌧)u

a
(⌧)

�T
H

T (⌧ + 1)H(⌧ + 1)
�
Ñx(⌧ + 1) * Ñx(⌧) * B(⌧)u

a
(⌧)

�

+
k+T…
⌧=k

�
�T (⌧) ((A(⌧) * I) Ñx(⌧) + B(⌧) Ñu(⌧)) + �T (⌧) (H(⌧) Ñx(⌧) * r(⌧))

�
.

(D17)

The necessary conditions for the constrained minimum follow from (D17)
)L(k)
)�(⌧) = (A(⌧) * I) Ñx(⌧) + B(⌧) Ñu(⌧) = 0 , ⌧ = k,… , k + T ,

)L(k)
)�(⌧) = H(⌧) Ñx(⌧) * r(⌧) = 0 , ⌧ = k,… , k + T ,

)L(k)
) Ñx(k) = H

T (k+1)H(k+1) Ñx(k)*HT (k+1)H(k+1) Ñx(k+1)+HT (k+1)H(k+1)B(k)u
a
(k)

+(A(k)*I)T�(k)+HT (k)�(k) = 0,

)L(k)
) Ñx(⌧) = H

T (⌧)H(⌧) Ñx(⌧)+HT (⌧+1)H(⌧+1) Ñx(⌧)*HT (⌧ + 1)H(⌧ + 1) Ñx(⌧+1)*HT (⌧)H(⌧) Ñx(⌧*1)

+HT (⌧+1)H(⌧+1)B(⌧)u
a
(⌧) *H

T (⌧)H(⌧)B(⌧*1)u
a
(⌧*1)+(A(⌧)*I)T�(⌧)

+HT (⌧)�(⌧) = 0, ⌧ = k + 1,… , k + T * 1 ,
)L(k)

) Ñx(k+T ) = H
T (k+T )H(k+T ) Ñx(k+T )*HT (k+T )H(k+T ) Ñx(k+T *1)

*HT (k+T )H(k+T )B(k+T *1)u
a
(k+T *1)+(A(k+T )*I)T�(k+T )

+HT (k+T )�(k+T ) = 0,

)L(k)
) Ñu(⌧) = B

T (⌧)�(⌧) = 0 , ⌧ = k,… , k + T ,

)L(k)
)u

a
(⌧) = B

T (⌧)HT (⌧ + 1)H(⌧ + 1)B(⌧)u
a
(⌧) * B

T (⌧)HT (⌧+1)H(⌧+1) Ñx(⌧+1)

+ B
T (⌧)HT (⌧+1)H(⌧+1) Ñx(⌧) = 0 , ⌧ = k,… , k + T * 1 ,
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which can be written has the system of linear equations (19). As shown in Section 4.1, the linear equality constraint (13) has,
at least, one solution ( Ñx(⌧), Ñu(⌧)). Furthermore, let f

k
denote the objective function of the optimization problem, i.e., f

k
:=≥k+T*1

⌧=k d(⌧)THT (⌧ +1)H(⌧ +1)d(⌧). Note that f
k

features positive semidefinite matrices HT (⌧)H(⌧), for ⌧ = k+1,… , k+ T ,
since H(⌧) has full rank for ⌧ À N0. For that reason, there is at least one global constrained minimum for the minimization
problem (18). Thus, at least one of the solutions to (19) corresponds to the global minimum.

Let p be the dimension and {v1,… , v
p
} a basis of the null space of matrix G. The solutions to (19) are of the form

Ñ�? = Ñ�< +
p…

i=1
t
i
v
i
,

where Ñ�< is a particular solution and t1,… , t
p
À R. All the solutions to (19) are critical points, i.e.,

)f
k

) Ñ�
ÛÛÛÛ Ñ�= Ñ�?

= 0 .

Therefore, using the chain rule,
)f

k

)t
i

=
)f

k

) Ñ�
ÛÛÛÛ Ñ�= Ñ�?

�
) Ñ�
)t

i

= 0 � v
i
= 0 ,

for i = 1,… , p. Hold every t
j

constant, with j À {1,… , p}\{i}. Then, given that f
k

is continuous and di�erentiable for t
i
À R,

f
k

is constant over the set of solutions to (19), one of which is the global minimum. Therefore all of the solutions to (19) achieve
global optimality.
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