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1IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
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Summary

This paper aims to explore a new technique for structural damage identification using
cubic spline interpolation. The method is based on the interpolation of modal rota-
tions measured with shearography, making use of the analytical derivative of the
spline to compute the modal curvature, which is known to be very sensitive to dam-
age. As a means of reducing noise and measurement uncertainty propagation to a
minimum, an expression for an optimal spatial sampling is derived. Furthermore,
a baseline-free damage factor, allied with an optimal sampling, is also introduced.
The proposed identification method is validated using experimental data of a beam.
Using a damage localisation quality index, a comparison between the present method
and one using finite di�erences is carried out, showing that the di�erentiation of
spline interpolation leads to better damage identifications. The results obtained with
the proposed approach show robustness and consistency in the localisations. Addi-
tionally, the hurdles of identifying small and multiple damage are tackled with the
proposed method, yielding a good performance.

KEYWORDS:
Damage identification,Optimal sampling, Multiple damage, Shearography, Cubic spline interpolation,
Beam

Nomenclature

� damage localisation quality index

✓ modal rotation field of the undamaged structure

É✓ modal rotation field of the damaged structure

Ö✓ measured modal rotation field of the damaged structure

E(u) error associated with noise and measurement uncertainty

E(p) error associated with the propagation of noise and measurement uncertainty after diferentiation

E(m) error associated with the use of spline interpolation as an approximation of the derivative
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E(t) error associated with the combination of all error sources (total error)

h(opt) optimal spatial sampling interval

h uniform spatial sampling interval

q modal rotation number

N number of measured modal rotations

s cubic spline

mi second derivative of the spline function evaluated in node xi

�b absolute error in vector b

�m error propagated to vector m

� average sum of the error weights

ACDF adjusted curvature damage factor

F (m)(x) robust fit of ) É✓q(x)_)x

ÇDF normalised damage factor

MCDF modified curvature damage factor

1 INTRODUCTION

Structural damage identification is a field with great social and economical impact, since it provides a solution to the prevention of
structural failure, whose occurrence leads to catastrophic harm, especially as far as public-safety is concerned. Given this fact, it
is essential to have a range of methods that are able to e�ciently monitor structural integrity and identify potential damaged areas.
Such techniques prove to be quite useful across various engineering fields, namely mechanical, civil, aeronautical, aerospace
and naval engineering. In view of its implications, researchers have been giving much attention to this field over the past decades
and a wide spectrum of methods arose, whose ultimate goal is to detect, localise and quantify the damage present in a structure.
Indeed, Rytter1 suggested the categorisation of a damage identification scheme by four identification levels, which is followed
in this paper. These increasingly complex levels comprise, respectively: (i) Detection, which indicates the presence of damage;
(ii) Localisation, which gives information about where is the damage located in the structure; (iii) Assessment, which provides
insight into the size of the damage; (iv) Consequence, which evaluates the safety conditions and the remaining life of the structure.
Almost exclusive consideration has been given to non-destructive inspection methods because of their broader applicability.
Among them one can highlight acoustic, ultrasonic, radiographic, magnetic, vibrational, thermographic and eddy current based
techniques. In particular, vibration based schemes for damage identification, which have been subjected to plenty of research
throughout the past couple of decades, became very popular, although many of the proposed methods do not fully meet the
expectations.

The underlying principle of a vibration based scheme is the fact that a localised damage changes the local dynamic charac-
teristics of a structure, thus measuring its dynamic response provides useful information to the identification of the damage.
Furthermore, such schemes allow for global identification methods not requiring the a priori knowledge of the vicinity or the
site of the damage, as many others do. Moreover, as it was put forward by Pandey et al.

2, by using numerical examples, the anal-
ysis of the curvature mode shape, i.e. the second spatial derivative of the vibrational displacement mode shape, and comparison
with its undamaged counterpart, reveals a localised anomaly where the damage is located.

The state-of-the-art approaches are detailed in Table 1. However, only a small amount of research has been done on directly
exploring the properties of cubic spline interpolation as a means of obtaining an approximation of the modal curvature fields3,4,5.
The major drawback of using finite di�erences to estimate derivatives is the fact that measurement uncertainty and noise are
propagated and amplified, and, therefore, one needs to mitigate such e�ects. Sazonov and Klinkhachorn6 computed the modal
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curvature shape by applying finite di�erences to approximate the second derivative of the modal displacement. They also pro-
vided an optimal spatial sampling interval in order to minimise the e�ects of noise and measurement error and their propagation,
which was validated by numerical examples. Moreno-García et al.

7 also developed an optimal spatial sampling interval to min-
imise the noise and measurement error amplification, in the approximation of the first four derivatives of the modal displacement
on a composite plate. Mininni et al.

8 presented a method based on the computation of the curvature mode shape via finite dif-
ferences of modal rotation fields of a beam, i.e. the first spatial derivative of the vibrational displacement mode shape, obtained
experimentally using shearography. As thoroughly described in Francis et al.

9 and Araújo dos Santos et al.
10, shearography is

an optical technique which enables the measurement of the gradient of the displacement fields. Not only is this technique not as
prone to noise as the one proposed by Sazonov and Klinkhachorn6, since it requires only the approximation of a first derivative,
but also an optimal spatial sampling was derived.

TABLE 1 State of the art approaches.

Reference Type of structure Data Post-processing technique
2 Cantilever and simply supported analytical beam Numeric Finite di�erences
11 Simply supported and continuous beams Numeric/Experimental Finite di�erences
6 Aluminum beam Numeric Finite di�erences
12 Cantilever beam Experimental Finite di�erences
13 Aluminium beams Experimental Finite di�erences
14 Simple supported beam Numeric Finite di�erences
15 Cantilever beams Numeric/Experimental Finite di�erences
7 Laminated composite plate Numeric Finite di�erences
16 Laminated composite plates Numeric Finite di�erences
8 Beam Experimental Finite di�erences
17 Beam Experimental Finite di�erences
18 Cantilever beam Numeric/Experimental Finite di�erences
19 Bridge structures Numeric Finite di�erences
20 Euler–Bernoulli beams Numeric Finite di�erences
21 Interstate 40 bridge Experimental Finite di�erences
22 Plexiglas cantilever beam and steel plate Experimetal Wavelet transform
23 Cantilever plate/FRP composite plate Numeric/Experimental Wavelet transform
24 Cantilever beam Numeric/ Experimental Wavelet transform
25 Fully clamped square layered composite plate Numeric Wavelet transform
26 Euler–Bernoulli beam component (EBC) Numerical/Experimental Wavelet transform
27 Cantilever steel beam with a stationary roving mass Experimental Wavelet transform
28 Cantilever and a simple supported beam Numeric Wavelet transform
29 Damaged plate Numeric/Experimental Wavelet transform
30 Damaged beams Numeric Wavelet transform
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Nevertheless, the results obtained by these researchers are not fully satisfactory. In fact, even considering an optimal sampling,
there are oscillations induced by the noise propagation such that it is di�cult to localise small damage and experimental data
of the undamaged structure may be required. Rucka and Wilde22 explore the application of wavelet transform to damage iden-
tification. Rucka24 also investigates the benefits and limitations of considering higher vibrational modes. In these two research
papers and in order to reduce the boundary e�ects, a cubic spline was used, but only to extrapolate additional points from the
numerical simulation data. A similar approach was considered by Katunin et al.

29, who also stated that the most e�ective way
of signal extension is the cubic spline extrapolation. Solis et al.

27 applied cubic splines, but only to reduce the influence of
experimental random and local noise and also to obtain additional modal information at interpolation points and thus obtaining
clearer information from wavelet analysis. These comprise some of the various methods proposed, which take advantage of an
optimal spatial sampling for the use of finite di�erences or the noise filtering properties of the continuous wavelet transform.

This paper presents a new method for damage identification, which takes advantage of the smoothing properties of cubic
spline interpolation. A cubic spline is a function defined in a piecewise manner by third order polynomials such that continuity
of the function itself and its derivatives up to the second order is ensured. On account of this fact, the analytical derivative of
each piece of the spline consists of a smoothed approximation of the derivative of the interpolated data, whereas the use of
finite di�erences would yield discontinuities. Furthermore, when computing the derivative using samples of a curve with cubic
spline interpolation, all the samples considered influence the computation, whereas only neighbouring samples are considered
using finite di�erences. For the reasons mentioned above, one would expect this technique to have a greater immunity to noise
and measurement uncertainty propagation when compared with finite di�erences, allowing, therefore, for a clearer damage
identification. Additionally, an optimal spatial sampling interval is derived as a means of setting the influence of measurement
uncertainty and noise propagation to a minimum. This approach is based on the di�erentiation of modal rotation fields, obtained
using shearography, as suggested in Lopes et. al.

31, leading to lower noise susceptibility and higher measurement precision.
As stated earlier in this paper, shearography is an optical technique which enables the measurement of the gradient of the

displacement fields. Therefore, computing an approximation of the modal curvature shape using the analytical derivative of the
interpolating cubic spline of the rotation fields, provided experimentally by shearography, should yield an acceptable immunity
level to both noise and measurement uncertainty. It is important to note that if one interpolates the displacement field by a
cubic spline, the curvature is obtained by its second derivative and is, thus, only piecewise linear. On the other hand, if one
computes the curvature after interpolating the rotation field, the curvature will be defined in a piecewise manner by second order
polynomials. Furthermore, there are already portable commercial shearography devices, as we can see in Francis et al.

9, which
measure the modal rotation field in real-time. In fact, given that after the acquisition the computation of the modal curvature
field with the presented method is straight-forward, it is easily implemented in practical cases.

The performance of the present method is assessed using experimental data. Furthermore, small and multiple damage scenar-
ios are explored with special attention, because most of the current methods are not able to deal with such complex cases. On
top of that, damage localisation and relative quantification is performed using two di�erent damage factor schemes, combining
all the available modes. The first scheme is defined by the di�erence between damaged and undamaged scenarios and the sec-
ond is based on a baseline-free approach. This last scheme, based on optimal spatial sampling of a cubic spline interpolation
and a robust Fourier fitting, leads to the best results. The performance achieved by the method put forward in this paper is also
compared tothe performance obtained using finite di�erences. This comparison is carried out by computing a damage localisa-
tion quality index. The results obtained with the proposed damage identification method reveal the potential and flexibility to
be extended to plates and tridimensional structures. However, this analysis is not undergone herein, given that this paper focus
on the derivation of the optimal sampling interval and its proof of concept, whose careful analysis is required as we are dealing
with a novel approach to damage identification.

This paper is organized as follows. In Section 2, a theoretical analysis is conducted, addressing basic definitions, as well as
concepts involved, such as the type of matrices one obtains in the formulation of cubic splines. In Section 3, the method of
damage localisation and relative quantification using cubic spline interpolation is adressed. The results of the application of said
technique are presented and discussed on Section 4. Finally, Section 5 presents the main conclusions of this paper.

2 THEORETICAL ANALYSIS OF CUBIC SPLINE INTERPOLATION

In this section, a theoretical analysis is conducted, addressing basic definitions, as well as concepts involved, such as the type of
matrices one obtains in the formulation of cubic splines.
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The formal definition of a cubic spline is as follows: given a one-dimensional mesh, � = {x0,… , xn}, with x0 < x1 < 5 < xn,
a function s : [x0, xn] ô R is said to be a cubic spline which interpolates the points (x0, y0),… , (xn, yn), if the following
conditions are met:

1. s À C2[x0, xn];

2. for x À [xi*1, xi], i = 1, 2,… , n, s is a third degree polynomial;

3. s(xi) = yi, i = 0, 1,… , n ,

where the di�erentiability class C2 is, by definition, the class of continuous functions whose derivatives, up to the second order,
exist and are also continuous.

To define an interpolating spline of the points (x0, y0),… , (xn, yn), one starts by constraining the continuity of its second
derivative, given in Lagrange’s form by

s®® = mi*1
xi * x
hi

+ mi
x * xi*1

hi
, (1)

for x À [xi*1, xi], where hi = xi * xi*1 and mi is the second derivative of the spline function evaluated in node xi.
Integrating equation (1) twice and constraining the continuity of the spline by setting

s(xi*1) = yi*1
s(xi) = yi

(2)

yields, for x À [xi, xi*1]

s = mi*1
(xi * x)3

6hi
+ mi

(x * xi*1)3

6hi
+
H

yi*1 * mi*1
h2
i
6

I

xi * x
hi

+
H

yi * mi
h2
i
6

I

x * xi*1
hi

. (3)

Di�erentiating equation (3) one gets

s® = *mi*1
(xi * x)2

2hi
+ mi

(x * xi*1)2

2hi
+

yi * yi*1
hi

* (mi * mi*1)
hi
6

(4)

and constraining its continuity one obtains the identity

mi*1
hi
6 + mi

hi + hi+1
3 + mi+1

hi+1
6 =

yi+1 * yi
hi+1

*
yi * yi*1

hi
, (5)

for i = 1,… , n * 1, which, for the particular case of uniform spacing, h , is given by

mi*1 + 4mi + mi+1 =
6
h2 (yi+1 * 2yi + yi*1) . (6)

Given a dataset one may compute an approximation of the derivative of the corresponding sampled function as the derivative
of the interpolating spline, given by equation (4), once m0,… ,mn are determined. To compute these constants one must make
use of equations (5) or (6), if we have a uniform spacing, which define a set of n * 1 linear equations. Since we have n + 1
unknowns mi, two additional restrictions, the so-called boundary conditions, ought to be imposed. Provided that a large number
of samples are taken of the rotation of the beam, the e�ect of the boundary conditions is limited to its edges, therefore, for the
sake of simplicity, the following analysis is undergone considering the constraints

m0 = 0
mn = 0 ,

(7)

resulting in what is known as a natural spline. It is, thus, possible to write the system of linear equations to determine the second
derivative of interpolating spline evaluated at the inner nodes, m1,… ,mn*1, assuming uniform spacing h, in compact form as

Am = b , (8)

which, in expanded form, is written as

b

f

f

f

f

f

d

4 1 0
1 4 7
7 7 7

7 4 1
0 1 4

c

g

g

g

g

g

e

b

f

f

f

f

f

d

m1
m2
4

mn*2
mn*1

c

g

g

g

g

g

e

=

b

f

f

f

f

f

d

6
�

y2 * 2y1 + y0
�

_h2

6
�

y3 * 2y2 + y1
�

_h2

4
6
�

yn*1 * 2yn*2 + yn*3
�

_h2

6
�

yn * 2yn*1 + yn*2
�

_h2

c

g

g

g

g

g

e

. (9)
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It is particularly interesting to note that matrix A in equation (8) is a symmetric positive definite and diagonally dominant
tridiagonal matrix. According to Gershgorin circle theorem32, its spectrum is bounded by 4* 1* 1 = 2 and 4+ 1+ 1 = 6.
Since matrix A is also a normal matrix, its condition number is upper bounded by 3 as n ô ÿ. For these reasons, the system
of equations in (8) can be solved using the Thomas algorithm33, allowing, therefore, for a very e�cient method of determining
m. Furthermore matrix A, in equation (8), is a square symmetric tridiagonal Toeplitz matrix, whose properties are necessary to
model the propagation of errors. These properties are presented in what follows and consist of particularised results obtained
by Yueh34.

Let T be a n ù n tridiagonal Toeplitz matrix of the form

T =

b

f

f

f

f

d

b a 0
a 7 7
7 7 a

0 a b

c

g

g

g

g

e

: (10)

1. T has n distinct eigenvalues given explicitly by

�k = b + 2a cos k⇡
n + 1 , k = 1,… , n ; (11)

2. The eigenvector v(k) = [v(k)1 ,… , v(k)n ]Ò, corresponding to eigenvalue �k, can also be written explicitly as

v(k)j = sin kj⇡
n + 1 , j = 1,… , n . (12)

3 DAMAGE LOCALISATION AND RELATIVE QUANTIFICATION METHOD

Applying spline interpolation, described in the previous section, to the modal rotation field, a quadratic approximation of the
curvature field is obtained. Conversely, using the displacement field, one would have to di�erentiate the interpolating spline
twice resulting in a linear approximation of the curvature field. In other words, whereas in the latter case one makes use of
equation (1), which is the approach followed in this paper, in the former equation (4) is applied.

3.1 Optimal spatial sampling interval
In any damage identification method there are two kinds of errors: (i) the error of the numerical technique used and (ii) the
propagation of noise and measurement uncertainty. The goal of this analysis is to seek an optimal uniform spatial sampling
interval, which minimises the combined e�ect of the propagation of such errors. Such optimal spacing should reject oscillations
given by the errors that are intrinsic to the experimental procedure, allowing, simultaneously, small perturbations to the curvature
of the beam at the damaged zone to be identified.

First, the error induced by approximating the modal curvature field, of mode q at a point x< by the derivative of the cubic
spline which interpolates uniformly samples of the modal rotation field without any noise contamination, denoted herein as
É✓q(x) is bounded by35,36

E(m)
q (x<) f 1

24
Û

Û

Û

Û

Û

)4 É✓q(x)
)x4

Û

Û

Û

Û

Ûÿ
h3 , (13)

where h is the uniform sampling interval. Although this expression suggests a global dependence of the error, for small grids
and smooth functions, as the case being explored, it is a valid approach to define the error locally37. Furthermore, the constant
1_24 is proven to be optimal38 and, thus, it is valid to consider the following approximation:

E(m)
q (x<) ˘ 1

24
Û

Û

Û

Û

Û

)4 É✓q(x<)
)x4

Û

Û

Û

Û

Û

h3 . (14)

It is important to remark that the error of the method itself increases proportionally to the third power of h.
Second, samples of É✓q(x), given by Ö✓q(x), are contaminated with error associated with noise and measurement uncertainty,

E(u)
q , defined for a point x< and mode q as

É✓q(x<) = Ö✓q(x<) + E(u)
q (x<) . (15)
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To model this error, one may set a bound to its absolute value. It is noticeable, from the error analyses presented in Zastavnik
et al.

39 and Lopes et al.
40, that the noise and measurement uncertainty reach large values in maximum amplitudes of the modal

rotations or its vicinity, whereas it is negligible in amplitudes close to zero, suggesting an approximately linear dependence.
Although there is no physical principle that indicates such linear dependence, it is, herein, shown that it is a good approximation
for experimental results, yielding good results. For these reasons, and defining ✏ as the relative precision of the smoothed modal
rotation field measurements, E(u)

q is modelled herein as

E(u)
q (x<) f ✏  Ö✓q(x<) , (16)

where ✏ is estimated to be the standard deviation of the normalised rotation field profiles after having been smoothed for di�erent
experimental samples. The smoothing scheme used consisted in applying a least-squares cubic B-spline filter to the experimen-
tal data8. The analysis of the error propagation is treated statistically and is carried out under the assumption that noise and
measurement uncertainty for di�erent samples are uncorrelated. Furthermore, provided that the objective of this derivation is to
find an optimal spatial sampling interval to remove irregularities in the curvature field profile due to the amplification of errors,
throughout this derivation the error in the samples to be considered is the maximum given by equation (16).

Considering the system of linear equations (8) used to compute the second derivative of the interpolating spline, which needs
to be evaluated at each node, one can see that the components of vector b are written as

bi =
6
h2

� É✓q(xi+1) * 2 É✓q(xi) + É✓q(xi*1)
�

, (17)

whenever the samples of the rotation field are contaminated with errors. Accounting for the propagation of errors in accordance
to equation (15) the absolute error in vector b, represented by �b, has its components given by

�bi =
6
h2

⇠

E(u)
q (xi+1) * 2E(u)

q (xi) + E(u)
q (xi*1)

⇡

. (18)

Taking into consideration equation (16) and the assumptions initially made, the absolute value of the components of �b is
approximated as

�bi ˘

v

⇠ 6
h2

⇡2
�

✏ Ö✓q(x)
�2+

⇠12
h2

⇡2
�

✏ Ö✓q(x)
�2+

⇠ 6
h2

⇡2
�

✏ Ö✓q(x)
�2

˘ 6
˘

6 ✏
h2 

Ö✓q(x) .

(19)

This expression can be used to establish a relation between �b and the error propagated to vector m, denoted as �m. Considering
the errors �b and �m, equation (8) is rewritten as

A(m + �m) = b + �b (20)

and thus
A �m = �b . (21)

It is fundamental to remark that A is a square symmetric tridiagonal Toeplitz matrix, of the form in equation (10). As it is
apparent from the properties of this type of matrices, namely the one described by equation (11), all eigenvalues of A are
non-null, therefore A is invertible and equation (21) can be written as

�m = A*1�b . (22)

Furthermore, A is diagonalizable and has distinct eigenvalues. Given this fact, one can perform an eigendecomposition and
write A = VDVÒ, where V is a nùn matrix whose kth column corresponds to the normalised eigenvector v(k) given by equation
(12); D is a nùn diagonal matrix whose diagonal entries are the eigenvalues of A, i.e. Dkk = �k given by equation (11). Making
use of such factorisation, the inverse of A is written as

A*1
ij = VikD*1

kl Vlj , (23)

where
D*1

kl = 1
�k

�kl , (24)

being �kl the Kronecker delta and �k are the eigenvalues of A. Rewriting equation (23) and substituting in equation (22) yields

�mi =
VikVkj

�k
�bj . (25)
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FIGURE 1 Variation of � with h

From the definition of the inverse of a matrix, one can see that the diagonal entries of the inverse of a tridiagonal matrix are
dominant over the remaining entries. This fact suggests, as expected, a strong dependence of the ith component of �m on the
ith component of �b. It is, therefore, valid, considering the assumptions made on the error model, to write

�mi ˘ �(h)�bi , (26)

where �(h) is defined as

�(h) = 1
n

n
…

i=1

H n
…

j=1

n
…

k=1

Û

Û

Û

Û

Û

VikVkj

�k

Û

Û

Û

Û

Û

I

, (27)

in the sense that it is the average sum of the error weights. Taking into consideration the dominance of the diagonal entries,
by the definition above, it is clear that � varies proportionally with 1_h, since n ◊ 1_h. Furthermore, since values of h with
meaning are very close to zero one approximates �(h) by a linear relation around zero, which yields

�(h) = �0 + �1h , (28)

where �0, �1 À R.
For these reasons, substituting equation (19) in equation (26) it is possible to write

�mi ˘
6
˘

6�0✏
h2 

Ö✓q(x) +
6
˘

6�1✏
h



Ö✓q(x) . (29)

Fig. 1 shows the the dependence of � with h, which not only validates the linear approximation around zero, but also indicates
that both �0 and �1 are of the same order of magnitude. Given this fact, for values of h around zero, the second term in equation
(29) is negligible, yielding

�mi ˘
6
˘

6�0✏
h2 

Ö✓q(x) . (30)

The analytical derivative of the cubic spline is given by equation (4), which applied to the rotation field data yields a quadratic
polynomial given by

) É✓q(x<)
)x

˘ *mi*1
(xi * x<)2

2h + mi
(x< * xi*1)2

2h +
Ö✓q(xi) * Ö✓q(xi*1)

h
* (mi * mi*1)

h
6 , (31)

for x< À [xi*1, xi]. It is visible, in the expression above, that, for a given experimental data interpolation caracterized by constant
moments mi, the propagated error is maximum at either of the nodes. This way, instead of considering the propagated error
of a given interpolation for every spatial position x<, the spatially maximum error is considered. Given the fact that the goal
is to minimise the oscillations in the entirety of the curvature graph, one must take this into account and, thus, consider the
minimisation of such error amplification for the points in which it is more likely to occur, i.e., the nodes. It is particularly
important to do this analysis for this expression, as if one takes the mean of the error instead, the propagation of the error related
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to the second derivative at each node would cancel out. This result would certainly lead to unwanted oscillations. As a result,
the induced error, E(p)

q (x<), is considered to be the maximum, which is attained at either of the nodes, and given by

E(p)
q (x<) ˘ *�mi*1

h
2 +

E(u)
q (xi)
h

*
E(u)

q (xi*1)
h

* �mi
h
6 + �mi*1

h
6

˘ *�mi*1
h
3 * �mi

h
6 +

E(u)
q (xi)
h

*
E(u)

q (xi*1)
h

.
(32)

Neglecting correlations between errors and considering equations (16) and (30)

E(p)
q (x<) ˘

y

x

x

x

w
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3
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+
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6

⇡21
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+ 2
⇠ 1
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✏ Ö✓q(x<)
�2

˘
✏ Ö✓q(x<)

h
� ,

(33)

with � defined as
� =

t

30�20 + 2 . (34)
It is important to note that the error concerning the propagation of the measurement uncertainty is inversely proportional to h.

Considering equations (14) and (33), the total error is, approximately, given by

E(t)
q (x) ˘ 1

24
Û

Û

Û

Û

Û

)4 É✓q(x)
)x4

Û

Û

Û

Û

Û

h3 +
✏ Ö✓q(x)

h
� . (35)

Taking into account that the two kinds of error behave di�erently in relation to h, it is possible to determine h(opt)
q such that the

expression above is minimised. Taking the derivative in relation to h of the expression above and equaling it to zero yields

h(opt)
q =

`

r

r

r

p

8✏�
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Û
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. (36)

It is interesting to note that the expression above suggests the error varies with x. However, as it will be discussed in the next
section,  Ö✓q(x)_

Û

Û

Û

Û
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)x4

Û

Û

Û

Û

is approximately constant in the interval considered. As a result, one can take the mean of the quotient
in question yielding
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, (37)

where numerical simulation values for the undamaged scenario are used.

3.2 Factors for damage localisation
Following a similar approach as the one in Abdel Wahab et al.

11 and Mininni et al.
8 it is possible to make use of the data

of the structure in an undamaged scenario to detect and make a prediction on the location of damage present in the structure.
Indeed, the di�erence between the curvature profiles for the undamaged and damage scenarios should yield a good indicator of
its location. As a matter of fact, the modified curvature damage factor is defined as8

MCDF(x) = 1
N

N
…

q=1

Û

Û

Û

Û

Û

) É✓q(x)
)x

*
)✓q(x)
)x

Û

Û

Û

Û

Û

, (38)

where N is the number of experimentally measured modes. The use of this factor is a way of combining the contribution of all
the modes available, and thus of summing the damage signatures. However, it requires that data of the undamaged condition
has been previously measured. Often, especially for older structures, such data may have not been collected and thus it is
not available. Therefore, a baseline-free alternative must be sought. In view of this problem, instead of using the curvature
field of the undamaged structure as a comparison, one may use a profile that robustly fits the damaged curvature field. The
fundamental concept behind such approach is that a robust fit, in the sense that outliers are rejected, of the curvature field of
the damaged structure preserves the smoothness of its undamaged areas, neglecting, simultaneously, the damage signatures,
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which are regarded as outliers. Selecting an appropriate model, in the areas identified as outliers, the fitted curve will consist
of a smooth extension of the undamaged curvature profile. For these reasons, the di�erence between these profiles should yield
good performance as far as detecting abnormalities in the modal curvature profile of a structure is concerned. Nevertheless, this
scheme is very sensitive to perturbations, since it relies on a robust fit, meaning that measurement and noise error wrongfully
flag damage on the structure. Given this fact, the use of an optimal spatial sampling, as a means of mitigating the e�ect of such
errors, is necessary.

Knowing the present problem relies on a vibrational analysis of a structure one may take advantage of its periodic properties
for the construction of the fitness model. On account of that, a fitness model based on the Fourier Series is also put forward in
this paper, given that it is guaranteed to converge and it is composed of periodic functions. This model is designated herein as
adjusted curvature damage factor, ACDF, and is defined as

ACDF(x) = 1
N

N
…

q=1

Û

Û

Û

Û

Û

) É✓q(x)
)x

* F (m)(x)
Û

Û

Û

Û

Û

, (39)

where F (m)(x) is the robust fit of ) É✓q(x)_)x using a partial Fourier series expansion with m terms, i.e. a finite sum of the form

F (m)(x) =
a0
2 +

m
…

k=1

�

ak cos (k!x) + bk sin (k!x)
�

, (40)

where ak and bk are the coe�cients of the Fourier series. It is important to remark that if one sets a large value for m, the
curvature damage signatures are no longer regarded as outliers. Conversely, a small value leads to the incapacity of the model
to fit the curvature profile of the structure.

Aquisition of Ö✓q(x) for q =
1, ...,N with shearography

Numerical simulation of ✓

Computation of h(opt)
q

for q = 1, ...,N
[Equation (37)]

Computation of ) É✓q(x)_)x for
q = 1, ...,N using cubic spline

interpolation with h(opt)
q [Equation (31)]

Identification of damage using MCDF
[Equation (38)] or ACDF [Equation (39)]

FIGURE 2 Flowchart of the proposed approach for damage identification.

The approach described in this section is schematically represented in Fig. 2. This approach is validated and the performance
of both damage factors is assessed and compared in the next section. Furthermore, the dependence of damage size on the
significance of the signature obtained with this method is also explored, as a means of relative quantification.
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FIGURE 3 Experimental apparatus used.

3.3 Index for damage localisation quality
To allow for a quantification of the damage localisation quality, an index, inspired in a similar one presented in Moreno-García
et al.

16, is introduced, as follows

� = 1 *
≥Np

i=1
ÇDF (xi)

Np
, (41)

in which ÇDF is the normalised damage factor used, i.e. either the MCDF or the ACDF, and xi with i À {1, ...,Np}, are the points
at which the damage factor is computed. The normalised damage factor, ÇDF , is such that the magnitude of the highest peak is
unitary, being adequate to evaluate the quality of single damage scenarios only. This index may be interpreted as the normalized
area above the damage factor, which would be unitary for an ideal localisation, i.e. a localisation in which the damage factor is
zero except for a unitary peak of infinitesimal width, corresponding to the damage. As a result, this index evaluates how far is a
localisation from the ideal one, due to the influence of noise and dispersion of the identification, for a given method. The damage
localisation quality index in equation (41) is applied in this work to compare the sensitivity of the damage factors presently
introduced and also to compare the present approach, based on cubic spline interpolation, with others previously used.

4 RESULTS AND DISCUSSION

4.1 Experimental Setup and damage scenarios
As stated in the previous sections, the present method is subjected to a validation, for a broad variety of damage scenarios,
using experimental data obtained from shearography. The analysed structure is an aluminium beam suspended by rubber bands
at both edges, corresponding to a free-free condition. The natural frequency for each mode depends on the damage scenario
being considered, as the sti�ness of the beam decreases with the presence of damage. Therefore, to excite the beam at its natural
frequency, one has to measure it experimentally, for each damage scenario. In the experimental setup devised, such values
were determined by measuring the beam response with a microphone after having excited the beam with an impact hammer.
A loudspeaker, emitting a sinusoidal wave, was placed behind the beam to excite it at its natural frequencies, while the modal
rotation fields were being measured. The shearography system was placed at 1.2 meters from the suspended beam, allowing for
the recording of the phase map of the entirety of the beam, which was afterwards processed applying filtering and unwrapping
techniques, which are thoroughly described in Mininni et al.

8. The apparatus used is shown in Fig. 3, which is thoroughly
described in Mininni et al.

8.
The aluminium beam of dimensions 400 mm ù 40 mm ù 3 mm, which was tested under di�erent damage scenarios. The

damage scenarios inflicted to the beam were created using an electronically controlled milling machine, which carved slots of
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FIGURE 4 Zoomed-in view of the specimen with the two slots.

a certain width and depth, with a 5 micrometer precision. Furthermore, the slots were created in two distinct locations and for
several depths, as a means of testing the damage identification method viability for a wide range of situations. Measurements
have also been taken on the undamaged beam, followed by increasingly deeper slots at one location and finally, multiple damage
scenarios, in which increasingly deeper slots are carved in the second location, while leaving the first constant. The depth of
each slot is measured in di�erent points, after the milling process, and averaged. Slot 1 had a width of 5 mm and slot 2 a width
of 3 mm, the depths of the slots corresponding to each damage scenario are presented in Table 2. A zoomed-in view of the
specimen with the two slots is shown in Fig. 4 and diagrams for damage scenarios four and eight are presented in Figs. 5 and 6.

After the unwrapping and filtering of the phase maps, the rotation fields for each damage scenario for the first four modes were
obtained. It is important to remark that, throughout this paper, the modal rotation field is normalised, such that its maximum
amplitude is unitary, allowing for a better comparison between damage scenarios. Profiles of the rotation fields of the undamaged
scenario and the fourth damage scenario are represented, respectively, in Figs. 7 and 8. Comparing these two figures, it is very
di�cult to notice any di�erence between them, justifying the need to analyse the profile of the curvature instead.

4.2 Optimal spatial sampling
The relative precision of the modal rotation profiles, ✏, is estimated to be 5 ù 10*5. Applying a linear regression on the data in
Fig. 1 yields �0 = 0.5000 and �1 = *0.9373. Furthermore, the quotient  Ö✓q(x)_

Û

Û

Û

Û

)4 É✓q(x)
)x4

Û

Û

Û

Û

is, for numerical simulation data of
the undamaged case scenario, approximately constant over the length of the beam for each mode, thus it is valid to consider its
average instead. Making use of equation (37) it is possible to compute the optimal spatial sampling, h(opt), for each mode, which
are listed in Table 3.

TABLE 2 Damage scenarios.

Damage scenarios Slot 1 Depth [mm] Slot 2 Depth [mm]

1 0.10 –
2 0.22 –
3 0.30 –
4 0.41 –
5 0.41 0.03
6 0.41 0.10
7 0.41 0.19
8 0.41 0.30
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Slot 1

Slot 1

FIGURE 5 Diagram of the beam corresponding to damage scenario four; All dimensions are in mm.

Slot 2

Slot 2

Slot 1 Slot 1

FIGURE 6 Diagram of the beam corresponding to damage scenario eight; All dimensions are in mm.
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FIGURE 7 Profiles of the rotation fields of the undamaged scenario for the first four modes, respectively, from left to right.
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FIGURE 8 Profiles of the rotation fields of the fourth damage scenario for the first four modes, respectively, from left to right.

TABLE 3 Optimal spatial sampling for modes 1, 2, 3 and 4.

Mode 1 2 3 4

h(opt) [mm] 15.85 9.54 6.82 5.30

Some examples of computing the profiles of the curvature by applying cubic spline interpolation are presented in Figs. 9–11
and are subjected to a thorough analysis. As a means of assessing the performance of the optimal spatial sampling scheme, the
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FIGURE 9 Profile of the curvature fields of the fourth damage scenario for modes one to four, respectively from the left to the
right columns.

curvature profiles obtained with such optimal interval are compared with undersampling and oversampling situations. Oversam-
pling corresponds to an interval equal to the resolution of the measured rotation profiles, which is, for the data gathered, equal
to 0.17 mm and undersampling to an interval which is twice the computed optimal interval.

As a matter of fact, Fig. 9 represents the curvature mode shapes for the most dramatic single damage scenario, i.e. damage
scenario four, in which a comparison is carried out between the interval derived to be optimum and cases of oversampling and
undersampling, for each of the first four modes. Analysing, these plots one can clearly localise a consistent anomaly for the first
three modes corresponding to the damage. It is very interesting to point out that, as expected, for small values of the spatial
sampling interval the curve is very prone to perturbations caused by noise, and as h increases so does its resistance to those
perturbations, having the side e�ect, however, of smoothing the spike caused by the damage. This clearly indicates the need
to select the sampling interval as a means of balancing these e�ects. Looking at the first row of plots in Fig. 9, corresponding
to the oversampling situation, it is clear that for all the modes one sees random perturbations due to noise. On the other hand,
setting the sampling interval to the optimum value obtained via the scheme devised, these perturbations are no longer noticeable,
yielding a distinct spike in an otherwise smooth curve. This spike, whose location is consistent across the modes, corresponds
to the damage inflicted to the beam represented in the plots by a vertical dashed line, validating not only the use of the modal
curvature shape as a mean of identifying damage, but also the benefits of using an optimal sampling interval. Furthermore, if
one increases the parameter h beyond the optimum interval, the abnormality in the curve due to the damage is significantly
reduced, decreasing the quality of the identification, as visible in the last row of plots in Fig. 9.

It is also very interesting to remark that the damage signature is not visible for the fourth mode. In fact, looking at the position
of the vertical dashed line, one concludes that it falls in the vicinity of a zero-crossing point of the fourth mode, leading to
an inconclusive identification. This fact is one of the drawbacks of using higher vibrational modes, since the higher the mode
considered the greater is the number of zero-crossing points, augmenting the likelihood of a damage falling into such regions.
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FIGURE 10 Profiles of the curvature fields of the first damage scenario for modes one to four, respectively from the left to the
right columns.

Furthermore, it is of great importance to compare the proneness to noise of the di�erent modes. It is noticeable from the analysis
of the plots of Fig. 9 that the higher the mode is, the greater the resistance to noise. For instance, for the oversampling situation
of first mode the perturbations due to noise are tremendous, but considering higher modes this e�ect starts to fade, resulting in
barely visible oscillations in the curve of the fourth mode. This trait is an advantage of using higher vibration modes, allowing for
the use of a smaller sampling interval and therefore considering more data points, which leads to a more marked peak. In other
words, for higher vibrational modes the perturbations are eliminated for a smaller sampling interval and, therefore, the damage
signature is not as smoothed as in lower modes. Detailed analyses of the noise in shearography measurements are carried out in
Zastavnik et al.

39 and in Lopes et al.
40.

Fig. 10 shows the curvature mode shapes for the smallest single damage scenario, i.e. damage scenario one, in which the
performance of the optimal spatial sampling is evaluated, for each of the first four modes. This scenario exhibits a considerable
challenge to any damage identification method. In fact, the vast majority of the available methods fail to tackle successfully small
damage, mainly due to the di�culty of the distinction between noise perturbations and damage signatures, given the similarity
in their orders of magnitude. In fact, a technique allowing for such identification should provide for a means of computing
the derivative of the modal rotation field in a manner that it takes into account the smoothness of the resulting curve, and
simultaneously reducing to a minimum the irregularities resulting of noise and measurement uncertainty. The method presented
in this paper was designed to be endowed with such properties. In fact, as depicted in Fig. 10, the use of cubic spline interpolation
to the data alongside an optimal choice of the spatial sampling interval successfully identifies the smallest damage. As a matter
of fact, considering the plot regarding the optimal interval for the first, second and third modes, one consistently identifies a
clear damage signature, which stands out against the smoothness of the curve. Again, as seen in the analysis of Fig. 9, given
the location of the damage it is not possible to make any conclusive identification from the plots of the fourth mode. Mininni et

al.
8 also analysed this damage scenario using finite di�erences as a means of computing the modal curvature from the rotation
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FIGURE 11 Profiles of the curvature fields of the eighth damage scenario for modes one to four, respectively from the left to
the right columns.

field of the beam using shearography. Despite the good results obtained overall by the method presented by these researchers,
also using an optimal spatial sampling interval, they were not able to identify the first damage scenario, since the perturbation
caused by the damage in the curvature is of the same order of magnitude as the oscillations due to noise propagation allowed
by the di�erentiation tool used. Comparing Figs. 9 and 10 one readily notices the consistency of the damage localisation of the
present method. Furthermore, it is also visible that the amplitude of the damage signature provides a means of a relative damage
quantification, because the abnormality in the curvature increases significantly with the severity of the damage. This result is
theoretically expected since a more significant damage locally reduces the sti�ness more dramatically and, thus, the dynamic
response of the structure.

Fig. 11 represents the curvature mode shapes for the most dramatic multiple damage scenario, i.e. damage scenario eight, in
which the e�ectiveness of the optimal spatial sampling in identifying multiple damage is tested. This scenario also poses a chal-
lenge to damage identification techniques. However, there are some methods which can achieve this type of identification8,41,29.
Using an optimal spatial sampling interval, one can clearly notice, analysing Fig. 11, that the method presented in this paper also
identifies successfully multiple damage. In fact, the damage corresponding to the first slot is marked with a clear peak on the
first three modes. One can also easily spot a distinct damage signature of the second slot for modes one and three. Given that the
location of the slots coincides with the zero-crossing vicinity of some modal shapes, it is not possible to identify the first slot in
the fourth mode, neither the second slot in the second and fourth modes. Comparing Fig. 11 with Figs. 9 and 10, one can readily
conclude that the use of equation (4), which gives the derivative of the cubic spline, is very robust since the damage of the first
slot is localised consistently. Furthermore, comparing Figs. 9 and 11 the amplitude of the damage signature is unvarying for the
modes where it is localised. For these reasons, the method put forward in this paper shows clear signs of robustness.
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FIGURE 12 Comparison of the curvature profiles of the second damage scenario for the first mode using finite di�erences and
spline interpolation, both with optimal sampling.

It is also worth comparing the results obtained using finite di�erences with those using cubic spline interpolation. The finite
di�erence in the central point x< À [xi*1, xi] is given by

) É✓q(x<)
)x

˘
Ö✓q(xi+1) * Ö✓q(xi*1)

2h (42)

where h is the distance from xi*1 to x< and from x< to xi+1. One can obtain the formula above by di�erentiating the first order
polynomial

É✓q(x<) ˘ Ö✓q(xi*1) + Ö✓q[xi*1, xi+1](x< * xi*1) (43)
where Ö✓q[xi*1, xi+1] is a divided di�erence. Alternatively, a formulation based on Taylor series expansions can be carried out to
obtain (42)8. It can be seen that equation (42) is much simpler than equation (31), because it comes from the di�erentiation of a
first order polynomial, instead of a third order polynomial. As a matter of fact, Fig. 12 shows the curvature profiles of the second
damage scenario for the first mode using finite di�erences, with an optimal spatial sampling derived in Mininni et al.

8, and
using cubic spline interpolation with the optimal sampling interval put forward in this paper. Analysing these plots it is easily
perceivable that the use of an optimal spatial sampling interval allied with finite di�erences is unable to completely remove
the oscillations due to noise and measurement uncertainty propagation. On the other hand, the use of cubic spline interpolation
proves to be able to remove these oscillations, confirming that the use of the presented technique is endowed with better noise
rejection properties. It is also important to remark that the improvement provided by this technique, regarding noise rejection,
comes with the advantage of having a sharper damage signature.

4.3 Damage localisation and relative quantification
In this subsection the values for the MCDF and ACDF are computed for the experimental data gathered, presented previously in
this section. The curvature profiles used to obtain these curves are normalised to provide for a better assessment of the quality of
the identification. The following damage localisations are obtained considering the optimal sampling interval. Furthermore, a
threshold line is also represented in the damage factor plots as a horizontal dashed line, to allow for a better visual discrimination.
This threshold is defined as the average of the damage factor plus its standard deviation. As a result, there is a strong indication
of the presence of damage only if a peak stands out from the average conditions of the beam.

4.3.1 Modified Curvature Damage Factor
Fig. 13 shows the MCDF for the single damage scenarios, i.e. scenarios one to four, computed using equation (38). Analysing
this figure one can clearly notice a distinct peak in all four damage scenarios which corresponds to the carved slot, represented in
the plots by a vertical dashed line. It is important to remark that damage was consistently localised, even for the smallest damage
inflicted on the beam. However, given the same order of magnitude of the damage signature and the propagated measurement
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FIGURE 13 MCDF(x) using four modes for the single damage scenarios one to four.
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FIGURE 14 MCDF(x) using four modes for the multiple damage scenarios five to eight.

error of the first damage scenario, it is not possible to distinguish between them, resulting in a reduced localisation quality.
Nevertheless, for damage scenarios two to four, one can undoubtedly make a distinction between the influence of the propagated
error and the presence of damage. It is also interesting to point out that there is a clear dependence of the damage severity on the
magnitude of the peak. Moreover, similarly to the curvature plots, the width of the anomaly on the MCDF plots is of a greater
order of magnitude when compared with the width of the carved slot.

The computed MCDF for the multiple damage scenarios, i.e. scenarios five to eight, is presented in Fig. 14. Looking at the
plots of this figure one can see the di�culty in locating very small multiple damage for the fifth scenario. For the sixth to eighth
damage scenarios, a small damage is consistently localised corresponding to the second slot carved on the beam. Due to the
similarity in magnitude of the propagated measurement errors and the damage signature of the second slot, its localisation is
impossible in the fifth scenario. For the sixth and seventh damage scenarios the identification has poor quality, with the damage
signature falling below the threshold line. Nevertheless, the present method provides for a clear localisation for the eighth
scenario. It is interesting to point out that the magnitude of the peak corresponding to the first slot is very consistent across
damage scenarios four to eight, and also that the amplitude of the peak relative to the second slot is an indicator of the size of
the damage inflicted.
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FIGURE 15 Comparison of MCDF(x) using four modes for the second damage scenario with finite di�erences and cubic spline
interpolation.

TABLE 4 Comparison of the damage localisation quality index, �, for the single damage scenarios.

Damage Scenario 1 2 3 4

Finite Di�erences (MCDF) 0.5595 0.8028 0.8705 0.8841
Finite Di�erences (ACDF) 0.7760 0.9197 0.9399 0.9452

Spline Interpolation (MCDF) 0.5844 0.8399 0.8718 0.8925
Spline Interpolation (ACDF) 0.8809 0.9359 0.9439 0.9462

Furthermore, analysing Fig. 15 it is possible to compare the MCDF for the second damage scenario using finite di�erences
and cubic spline interpolation, which corresponds to the smallest damage possible to detect using the MCDF for any of the
methods. Inspecting both plots it is noticeable that the use of finite di�erences is more permeable to noise and measurement
uncertainty propagation, while the damage signature of both techniques is very similar as far as both magnitude and distinctness
are concerned. First, the damage detection threshold line is lower using the present method, therefore being able to discriminate
smaller damage, when compared with a method based on finite di�erences. Second, Table 4 depicts the damage localisation
quality index, computed for both methods. It is clear from its analysis that, using the MCDF, the present approach consistently
outperforms the one based on finite di�erences. The di�erence between identification qualities is more significant for small
damage, when the order of magnitude of the propagated error is similar to the order of magnitude of the damage signatures.
Finally, the use of finite di�erences is also more vulnerable to edge e�ects, wrongfully flagging damage at the extremity of the
beam.

4.3.2 Adjusted Curvature Damage Factor
Driven by the usual lack of undamaged vibration data of a structure, a baseline-free scheme for damage localisation is also put
forward in this paper. Fig. 16 shows the ACDF for single damage scenarios, i.e. scenarios one to four, computed using equation
(39). The parameter m used to obtain such values was set to 8, which proved adequate for a fit of the first four vibrational modes.
Analysing the plots of this figure, it is clear that the influence of the propagated error was significantly reduced, enabling for a
very clear and consistent localisation of all single damage scenarios. It is important to point out that the magnitude of the peaks
in this figure is very similar to the magnitude of peaks of Fig. 13 for the same scenarios, showing clear signs of robustness. As a
matter of fact, unlike ACDF, MCDF uses a baseline which is also subjected to measurement error, therefore it would be expected
that the noise yielded by MCDF is inherently larger. For this reason, ACDF provides for a clearer localisation and distinction
between propagated error and damage signature, even for small damage.

Fig. 17 shows the ACDF for multiple damage scenarios, i.e. scenarios five to eight. This values were computed considering
a parameter m = 8. Looking at the plots of this figure one can see that a localisation of the second slot is possible for scenarios
seven and eight. Indeed, the identification for scenario six is very poor given the reduced dimension of the damage inflicted,
whose damage signature falls below the threshold line. When comparing Fig. 17 with Fig. 14, it is interesting to remark that not
only is the dimension of the peaks associated with the first slot consistent and very similar, but also that there is a similarity in
the magnitude of the signatures corresponding to the second slot, which has slight variations due to the greater error inherent to
the MCDF. Table 4 shows the damage localisation index computed with the MCDF and ACDF, for the single damage scenarios.
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FIGURE 16 ACDF(x) with m = 8 using four modes for the single damage scenarios one to four.
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FIGURE 17 ACDF(x) with m = 8 using four modes for the multiple damage scenarios five to eight.

It is very clear that the baseline-free damage factor, ACDF, put forward in this paper outperforms, by a considerable margin, the
MCDF, which is not baseline-free. This is particularly evident for scenarios in which the damage is small. Indeed, the relative
di�erence between the quality index for damage scenario one is 34%.

Fig. 18 shows the comparison of the ACDF for the first damage scenario between the use of finite di�erences and cubic
spline interpolation. In fact, it is clear from the analysis of this figure that the noise contamination is significantly greater if
one uses finite di�erences. For this reason, the damage detection threshold line is considerably higher, leading to a poorer
damage identification. Table 4 shows the damage localisation quality index of single damage scenarios for both approaches. It
is evident that the use of cubic spline interpolation consistently achieves a better localisation quality, which is more significant
for small damage. Furthermore, the vulnerability of a finite di�erence based approach to edge e�ects is also illustrated in the
corresponding plot, wrongfully flagging damage at both extremities.

Recalling the results of Figs. 12, 15 and 18 and Table 4, it is clear that the scheme presented in this paper constitutes a
significant improvement over other vibration-based methods previously presented.
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FIGURE 18 Comparison of ACDF(x) using four modes for the first damage scenario with finite di�erences and cubic spline
interpolation.

5 CONCLUSIONS

The technique put forward in this paper consists of a new approach for damage localisation and relative quantification based on
the analysis of the modal curvature shape. The modal curvature is determined by using cubic spline interpolation as a means
of di�erentiating the modal rotation fields, obtained experimentally with speckle shearography. Using the curvature profiles for
all the available modes, the computation of two damage factors is carried out as a mean of locating and relatively quantifying
damage. By analysing the results of the proposed approach, several conclusions were reached. First, the optimal spatial sampling
interval was found to play a role of great importance when it comes to balancing the noise and measurement uncertainty errors
and the contrast of the damage signature. Second, using the smoothing properties of the analytical derivative of the cubic spline
function applied to the modal rotation field data, one is able to obtain very smooth curvature profiles with a distinct damage
signature. Third, both the damage factors presented, one of which is baseline-free, successfully localises small and multiple
damage, using experimental data, yielding very good results, a hurdle that a large majority of the available methods fail to
overcome. Fourth, it is important to remark that the amplitude of the damage signature increases with the severity of the damage
it refers to. Fifth, a comparison between finite di�erences and spline interpolation results, using a damage localisation quality
index, shows that the best damage localisations are obtained using the latter. Sixth, throughout the analysis of the results it was
possible to conclude that the present technique is very robust, consistent not only on localising the damage but also yielding
a damage signature whose amplitude is identical for the same slot, when comparing single, multiple damage scenarios and
computations with distinct damage factors. Finally, the novel approach to damage identification presented in this paper has a lot
of potential and flexibility to be extended to plates and tridimensional structures. This analysis falls, however, out of the scope
of this paper, which focus on the derivation of the optimal sampling interval and its proof of concept.
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