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ABSTRACT
This paper addresses the problem of designing distributed state estimation solutions

for a network of interconnected systems modelled by linear time-varying (LTV) dy-

namics, in a discrete-time framework. The problem is formulated as a classical opti-

mal estimation problem, for the global system, subject to a given sparsity constraint

on the filter gain, which reflects the distributed nature of the network. Two methods

are presented, both of them able to compute a sequence of well performing stabil-

ising gains. Moreover, both methods are validated resorting to simulations of: i) a

randomly generated synthetic LTV system; and ii) a large-scale nonlinear network

of interconnected tanks. One of the proposed methods relies on a computationally

e�cient solution, thus it is computed very rapidly. The other achieves better perfor-

mance, but it is computationally more expensive and requires that a window of the

future dynamics of the system is known. When implemented to a nonlinear network,

approximated by an LTV system, the proposed methods are able to compute well

performing gains that stabilise the estimation error dynamics. Both algorithms are

scalable, being adequate for implementation in large-scale networks.

KEYWORDS
Linear time-varying systems; distributed Kalman filter; distributed estimation;

interconnected systems

1. Introduction

Over the past decades, distributed estimation and control has been a highly researched
topic, since it provides a solution to the estimation and control problems of large-scale
networks of interconnected systems. In fact, it emerges as an alternative to the use of
well known centralized solutions, which become unfeasible to implement as the dimen-
sion of the network increases. The popularity of distributed solutions is also increasing
with the widening of its applications to a broad range of engineering fields. Exam-
ples of such applications are unmanned aircraft formation flight (Bereg, Dı́az-Báñez,
Lopez, Rozario, and Valavanis (2015); Ra↵ard, Tomlin, and Boyd (2004); Thien and
Kim (2018); Wolfe, Chichka, and Speyer (1996)), unmanned underwater formations
(Curtin, Bellingham, Catipovic, and Webb (1993); Healey (2001); Viegas, Batista,
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Oliveira, and Silvestre (2012); Yuan, Licht, and He (2017)), satellite constellations
(Ivanov, Monakhova, and Ovchinnikov (2019); Russell Carpenter (2002); Shaw (1999)),
automated highway control (Alam, Mårtensson, and Johansson (2015); Bender (1991);
Mu, Yan, Spurgeon, and Zhao (2016); Yanakiev and Kanellakopoulos (1996)), and ir-
rigation networks (Cantoni et al. (2007); Gómez, Rodellar, and Mantecón (2002); Li
(2014); Prodan, Lefevre, Genon-Catalot, et al. (2017)).

Although plenty of work has been carried out in distributed control of linear time-
invariant systems (LTI), the problem of designing such controllers, which consists in
solving an optimisation problem subject to a constraint that arises from the distributed
nature of the configuration, is extremely di�cult, as discussed by Blondel and Tsit-
siklis (2000), and remains an open problem. In fact, the optimal solution for a linear
system with Gaussian noise may be nonlinear, as discussed by Witsenhausen (1968).
Furthermore, it has been shown that the solution of a distributed design control prob-
lem is the result of a convex optimisation problem if and only if quadratic invariance
of the controller set is ensured (Lessard and Lall (2010, 2015)). For those reasons,
the overwhelming majority of the approaches found in the literature attempt to find
the optimal linear solution, which is also a di�cult nonconvex optimisation problem
that remains unsolved. On top of that, given the di�culty in finding the optimal linear
solution, the most common approach found in the literature is to approximate the non-
convex optimisation problem by a convex one, which allows to obtain an approximate
solution to the original problem. This is the approach followed in this paper. However,
this paper and most of the research that follows this approach do not have stability or
boundedness guarantees for the closed-loop system. Having said that, the research on
distributed estimation of linear time-varying (LTV) systems, which is naturally more
challenging, has been undergone to a much lesser extent. For instance, one of the few
papers in this matter is Heydari and Demetriou (2016), for a consensus based protocol,
in which an adaptive strategy is developed for a network of agents that collaboratively
estimate the state of an LTV system. In this context, this paper addresses the problem
of designing a distributed state estimation solution for a network of systems modelled
by LTV dynamics, in a discrete-time framework. A general scheme for the design of
distributed filters is followed in this paper, in which the problem is formulated as a
classical optimal estimation problem, for the global system, with a given sparsity con-
straint on the filter gain. Such sparsity constraints impose certain entries of the global
gain matrix to be null, following a structure that reflects the distributed nature of the
network, necessary for the implementation of the distributed state estimator. It is also
assumed that limited communication between agents is possible.

This paper introduces two methods for the computation of distributed filter gains for
an arbitrary network of interconnected LTV systems with an arbitrary time-invariant
network configuration. The configuration of the network is shaped by the available
directed communication links between agents, which allow for sharing information.
In this paper, it is shown that it can be portrayed by a sparsity constraint on the
filter gains, as put forward in Section 2. Both methods consist of the generalisation
of those introduced in Viegas, Batista, Oliveira, and Silvestre (2018) for the partic-
ular problem of decentralized relative navigation for LTI systems. In this paper, the
generic decentralized estimation problem for networks of interconnected systems with
dynamic couplings, as well as output measurement couplings, is addressed with em-
phasis on the limited data transmissions between agents. Albeit straightforward, this
generalisation requires attention to some details on its implementation, given that one
seeks a sequence of stabilising filter gains instead of a single steady-state gain. It is
also important to consider the computational complexity of the proposed methods,
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since the computations have to be carried out online. This generalisation not only
allows for a significant widening of the application of both methods, even to nonlinear
systems, but it is also presented in a generic framework, allowing for its application
to a broad range of fields. The classical infinite-horizon optimisation problem subject
to a sparsity constraint is nonconvex. Hence, the methods that are proposed herein
rely on conveniently defined convex relaxations of the original optimisation problem
to achieve a computationally e�cient approximation to its solution. The first method
proposed, denoted as the one-step method in the sequel, follows a similar approach
as the classical Kalman filter, minimising at each time step the trace of the covari-
ance of the estimation error. This method is computationally very e�cient, exhibits a
closed-form solution, and it does not require any particular initialisation. However, its
solution is sub-optimal. The second method, denoted as the finite-horizon algorithm in
the sequel, is used to compute an approximation to the finite-horizon problem instead,
which is then extended to thse original infinite-horizon formulation. Albeit iterative,
each iteration of this algorithm can be computed in closed-form and, although it re-
quires a sequence of gains for its initialisation, they do not need to be stabilising or
even to follow the sparsity constraint. Finally, both methods are validated resorting to
numerical simulations. In addition to a randomly generated synthetic system, a large-
scale nonlinear network of tanks is also considered. A MATLAB implementation of the
decentralized algorithms put forward in this paper can be found in the DECENTER

toolbox available at https://decenter2021.github.io (accessed on 10 July 2021).
This paper is organised as follows. In Section 2, the estimation problem is formu-

lated and the assumptions that are considered are introduced. In Sections 3 and 4, the
one-step and finite-horizon methods are presented, respectively. Section 5 details the
implementation of both methods to a synthetic LTV system, comparing their perfor-
mance and illustrating some details of their application. In Section 6, both methods are
applied to a large-scale nonlinear network of interconnected tanks. Finally, Section 7
presents the main conclusions of this paper.

1.1. Notation

Throughout this paper, the identity, null, and ones matrices, all of proper dimensions,
are denoted by I, 0, and 1, respectively. Alternatively, In is also used to represent the
n ⇥ n identity matrix. The entry (i, j) of a matrix A is denoted by [A]ij . The i-th
component of a vector v 2 Rn is denoted by vi, and diag(v) denotes the n⇥ n square
diagonal matrix, whose diagonal is v. Similarly, diag(A1, ...,AN ) denotes the square
block diagonal matrix whose diagonal blocks are given by matrices A1, ...,AN . The
vectorisation of a matrix A, denoted herein by vec(A), returns a vector composed of
the concatenated columns of A. Given a symmetric matrix P, P � 0 and P ⌫ 0 are
used to point out that P is positive definite and positive semidefinite, respectively.
The Kronecker product of two matrices A and B is denoted by A⌦B.

2. Problem statement

2.1. Network dynamics model

Consider a network of N interconnected systems, Si, with i = 1, . . . , N . The topology
of the network, which is assumed to be time invariant, is defined by the dynamic
and output measurement couplings between systems. Such coupling topologies may
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be represented by directed graphs, or digraphs, G := (V, E), composed of a set V of
vertices and a set E of directed edges. An edge e incident on vertices i and j, directed
from j towards i, is denoted by e = (j, i). For a vertex i, its in-degree, ⌫�i , is the
number of edges directed towards it, and its in-neighborhood, D�

i , is the set of indices
of the vertices from which such edges originate. Conversely, for a vertex i, its out-
degree, ⌫+i , is the number of edges directed from it, and its out-neighborhood, D+

i , is
the set of indices of the vertices towards which such edges are directed. For a more
detailed overview of the elements of graph theory used to model this network, see
Wallis (2010); West et al. (1996). In this framework, each system is represented by
a vertex, i.e. system Si is represented by node i, and the dynamics couplings and
output measurement couplings are represented by the directed graphs d

G and m
G,

respectively. In this configuration, if the dynamics of Si depend on the dynamics of
system Sj , then this coupling is represented by an edge directed from vertex j towards
vertex i, i.e. edge e = (j, i) in the directed graph d

G. Conversely, if the output of Si

depends on the dynamics of system Sj , then this coupling is represented by an edge
directed from vertex j towards vertex i, i.e. edge e = (j, i) in the directed graph m

G.
It is important to stress that the direction of the edge matters. Note, for instance,
that the fact that the dynamics of Si depend on the dynamics of system Sj does not,
necessarily, imply the converse.

The dynamics of system Si are modelled by the following discrete-time LTV system

8
>>>><

>>>>:

xi(k + 1) = Ai,i(k)xi(k) +Bi,i(k)ui(k) +wi,dD�
i
(k)+

P

j2dD�
i

(Ai,j(k)xj(k) +Bi,j(k)uj(k)) ,

yi(k) = Ci(k)xi(k) + vi,mD�
i
(k) +

P

j2mD�
i

Ci,j(k)xj(k),

(1)

where xi(k) 2 Rni is the state vector, ui(t) 2 Rmi is the input vector, which is
assumed to be known, and yi(t) 2 Roi is the output vector, all of system Si; matrices
Ai,j(k) 2 Rni⇥nj (k), Bi,j(k) 2 Rni⇥mj (k), and Ci,j(k) 2 Roi⇥ni(k) are known time-
varying matrices that model the dynamics of system Si and its couplings with the
other systems in its in-neighborhood; vectors vi,mD�

i
(k) 2 Roi and wi,dD�

i
(k) 2 Rni

are the observation and process noise, respectively, whose models are defined in the
sequel.

The global dynamics of the network are, then, modelled by a generic LTV system
of the form

(
x(k + 1) = A(k)x(k) +B(k)u(k) +w(k)

y(k) = C(k)x(k) + v(k)
, (2)

where x(k) := col(x1(k), . . . ,xN (k)) 2 Rn is the global state vector,
u(k) := col(u1(k), . . . ,uN (k)) 2 Rm is the global input vector, and
y(k) := col(y1(k), . . . ,yN (k)) 2 Ro is the global output vector; v(k) :=
col(v

1,mD�
1
(k), . . . ,vN,mD�

N
(k)) is the observation noise, modelled as a zero-mean white
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Gaussian process with associated covariance matrix given by the block matrix

R(k) :=

2

66664

R1,1(k) R1,2(k) . . . R1,N (k)

R
T
1,2(k)

. . .
...

...
. . .

...
R

T
1,N (k) . . . . . . RN,N (k)

3

77775
,

where Ri,j(k) 2 Roi⇥oj models the correlation between vi,mD�
i
(k) and vj,mD�

j
(k);

w(k) := col(w
1,dD�

1
(k), . . . ,wN,dD�

N
(k)) is the process noise, modelled as a zero-mean

white Gaussian process with associated covariance matrix given by the block matrix

Q(k) :=

2

66664

Q1,1(k) Q1,2(k) . . . Q1,N (k)

Q
T
1,2(k)

. . .
...

...
. . .

...
Q

T
1,N (k) . . . . . . QN,N (k)

3

77775
,

where Qi,j(k) 2 Rni⇥nj models the correlation between wi,dD�
i
(k) and wj,dD�

j
(k);

A(k) 2 Rn⇥n, B(k) 2 Rn⇥m, and C(k) 2 Ro⇥n are block matrices given by

A(k) :=

2

6664

A1,1(k) A1,2(k) . . . A1,N (k)

A2,1(k)
. . .

...
...

. . .
...

AN,1(k) . . . . . . AN,N (k)

3

7775
,

B(k) :=

2

6664

B1,1(k) B1,2(k) . . . B1,N (k)

B2,1(k)
. . .

...
...

. . .
...

BN,1(k) . . . . . . BN,N (k)

3

7775
,

and

C(k) :=

2

6664

C1,1(k) C1,2(k) . . . C1,N (k)

C2,1(k)
. . .

...
...

. . .
...

CN,1(k) . . . . . . CN,N (k)

3

7775
.

Note that some of the block entries of matrices R(k),Q(k),A(k), B(k), and C(k)
may be null due of the nonexistence of couplings between every pair of systems. In
fact, if: i) (j, i) /2 d

E with i 6= j, then Ai,j = Qi,j = 0ni⇥nj and Bi,j = 0ni⇥mj ; and
ii) (j, i) /2 m

E with i 6= j, then Ci,j = 0oi⇥nj and Ri,j = 0oi⇥oj . The pair (A(k),C(k))
is assumed to be uniformly completely observable.

Before proceeding with the statement of the estimation problem, it is worth point-
ing out that virtually all large-scale networks have sparse dynamics. In particular,
matrices A(k),B(k),C(k),R(k), and Q(k) are generally sparse. In the limit scenario
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of i) fully decoupled dynamics, A(k), B(k), and Q(k) are block diagonal; and ii) fully
decoupled outputs, C(k) and R(k) are block diagonal. Most of the time, a large-scale
network is fully decoupled either regarding the dynamics or the outputs of the sys-
tems. For that reason, various works focus on only one of these couplings. Viegas et
al. (2018), for instance, focus only on networks with output coupling between systems,
to solve the decentralized relative navigation problem. In this paper, the network is
treated generically, at no point making any assumptions on the sparsity of matrices
A(k),B(k),C(k),R(k), or Q(k).

2.2. Filter design

The goal is to design a distributed filter for a network of N interconnected systems,
whose global dynamics are described by the LTV system (2), under limited communi-
cation between systems in a distributed configuration. In this paper, state estimation
is assumed to be achieved by a dynamical filter based on prediction-update steps
employed in a Kalman filter. The prediction step is, thus, given by

x̂i(k + 1|k)=Ai,i(k)x̂i(k|k)+Bi,i(k)ui(k)+
X

j2dD�
i

(Ai,j(k)x̂j(k|k)+Bi,j(k)uj(k)) , (3)

where x̂i(k+1|k) denotes the predicted state estimate of system Si at instant k+1 and
x̂i(k|k) the updated state estimate of system Si at instant k. The global prediction
step can be written as

x̂(k + 1|k) = A(k)x̂(k|k) +B(k)u(k) , (4)

where x̂(k+1|k) := col(x̂1(k+1|k), . . . , x̂N (k+1|k)) denotes the global predicted state
estimate at instant k + 1 and x̂(k|k) := col(x̂1(k|k), . . . , x̂N (k|k)) the global updated
state estimate at instant k. Note that, to perform the prediction step according to (3),
each system Si ought to receive, through communication, the updated state estimates
x̂j(k|k) with j 2

d
D

�
i . Thus, the directed communication links required to perform

the update step are represented by the directed graph d
G.

In a centralized configuration, each system has access to the global output mea-
surement, at the expense of all-to-all communication via a central system. In a de-
centralized configuration, that is not the case. Each system Si has only access to a
subset of the measurement outputs, which is defined by another directed graph o

G.
It is important to remark that, unlike directed graphs d

G and m
G, which are defined

by the physical system under study, o
G can be freely selected during the filter design

stage. In this framework, each system is represented by a vertex, i.e. system Si is
represented by node i, and if system Si has access to the output measured by system
Sj , then this link is represented by an edge directed from vertex j towards vertex i,
i.e. edge e = (j, i) in the directed graph o

G. The update step is, thus, given by

x̂i(k|k) = x̂i(k|k� 1)+Ki,i(k) (yi(k)� ŷi(k)) +
X

j2oD�
i

(Ki,j(k) (yj(k)� ŷj(k))) , (5)

where ŷi(k) denotes the predicted output of system Si at time instant k, which is
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given by

ŷi(k) :=
X

j2mD�
i

Ci,j(k)x̂j(k|k � 1) , (6)

and Ki,j(k), i = 1, . . . , N , j 2 o
D

�
i , are the distributed filter gains. It is also important

to remark that, to perform: i) the update step according to (5), each system Si ought
to receive, through communication, the output yj(k) and predicted output ŷj(k) with
j 2 o

D
�
i ; and ii) the computation of the predicted output according to (6), each system

Si ought to receive, through communication, the predicted state estimates x̂j(k|k� 1)
with j 2 m

D
�
i . Thus, the directed communication links required to perform the update

step are represented by the union of the directed links of the directed graphs m
G and

o
G.
The global update step can be written as

x̂(k|k) = x̂(k|k � 1) +K(k) (y(k)�C(k)x̂(k|k � 1)) , (7)

where K(k) 2 Rn⇥o is the global filter gain, which must follow a sparsity pattern
imposed by o

G. Let E 2 Rn⇥o denote a sparsity pattern of the form

E =

2

64
E11 . . . E1N
...

. . .
...

EN1 . . . ENN

3

75 ,

where Eij 2 Rni⇥oj with

Eij =

(
1 , (j, i) 2 o

E

0 , (j, i) /2 o
E

. (8)

The set of matrices which obey the sparsity constraint determined by E is defined as

Sparse(E) =
�
[K]ij 2 Rn⇥o : [E]ij = 0 =) [K]ij = 0; i = 1, ..., n, j = 1, ..., o

 
.

Note that the global update step (7) is equivalent to the concatenation of the local
update steps (5) if and only if K(k) 2 Sparse(E). An example of a sparsity pattern
is given in Section 6 for a network of interconnected tanks. It is worth remarking
that, if there is all-to-all communication, then E = 1, which corresponds to a cen-
tralized configuration. It is also important to stress that, although the choice of the
output communication links between systems can take advantage of the known dy-
namic dependences between systems, which makes use of the communication links that
are already in place and yields better performance, a generic and predefined sparsity
pattern is considered.

Defining P(k|k�1) ⌫ 0 2 Rn⇥n and P(k|k) ⌫ 0 2 Rn⇥n as the global covariance of
the estimation error at instant k after the prediction and update steps, respectively,
one can write

P(k|k � 1) = A(k � 1)P(k � 1|k � 1)AT (k � 1) +Q(k � 1) , (9)
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and

P(k|k) = K(k)R(k)KT (k) + (I�K(k)C(k))P(k|k � 1)(I�K(k)C(k))T , (10)

for the global system. Note that designing a distributed filter for a network of in-
terconnected systems, whose local dynamics are described by the LTV system (1),
is equivalent to designing a global filter (4),(7), whose gain must follow a sparsity
pattern.

With the definition of a sparsity pattern, it is now possible to formulate the problem
of designing a distributed filter for the global LTV system (2). One aims to optimally
compute a sequence of filter gains that follow the sparsity pattern required by the
structure of the network of systems, which is assumed to be time-invariant. For an
infinite-horizon and a known and time-invariant sparsity pattern E, solve the optimi-
sation problem

minimise
K(i)2Rn⇥o

i2N

lim
T!+1

1

T

TX

k=1

tr(P(k|k))

subject to K(i) 2 Sparse(E), i 2 N .

(11)

It is assumed, throughout the paper, that the distributed state observer is stabilis-
able. The assumption on the uniform observability of the pair (A(k),C(k)) is only a
necessary condition for the existence of a stabilising sequence of sparse gains.

Because of the sparsity constraint, the optimisation problem (11) is nonconvex and
its optimal solution is still an open problem. To overcome this di�culty the optimisa-
tion problem may be relaxed so that it becomes convex, allowing for the use of well
known optimisation techniques. Albeit optimal for the modified problem, the relaxed
solution is only an approximation to the solution of the original problem. For this
reason, careful relaxation is necessary to ensure that the separation between both so-
lutions is minimal. This approach is designated convex relaxation and will be used to
derive the methods put forward in this paper.

Each of the following two sections presents a method for computing approximate
solutions to the optimisation problem (11). The proposed methods are the time-varying
counterparts of the one-step and finite-horizon methods presented in Viegas et al.
(2018) for the relative navigation problem of LTI systems.

2.3. Communication requirements

As discussed in the previous subsection, there are various communication requirements
associated with each step of the distributed filter. To sum up, each system Si has to
receive through communication from Sj : i) the updated state estimates x̂j(k�1|k�1)
with j 2

d
D

�
i ; ii) the predicted state estimates x̂j(k|k � 1) with j 2

m
D

�
i ; and

iii) the output yj(k) and predicted output ŷj(k) with j 2
o
D

�
i . Thus, the required

directed links correspond to the union of the directed edges that make up the directed
graphs d

G,mG, and o
G. Note that each system Si is required to communicate with

other systems, with which it is coupled either dynamically or through the output
measurement. For that reason, generally speaking, it is feasible to establish these links
in practice. While we maintain full generality for the structure of di↵erent networks,
in a typical application either d

D
�
i = ; 8i or m

D
�
i = ; 8i, and o

G is chosen according
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to the physical structure of the system.
Another very important aspect to take into account is the synchronisation of the

data transmissions. On one hand, the updated state estimates x̂j(k � 1|k � 1) with
j 2

d
D

�
i , the predicted state estimates x̂j(k|k � 1) with j 2

m
D

�
i , and the predicted

output ŷj(k) with j 2
o
D

�
i can be transmitted to system Si at any time since time-

instant k�1 until time instant k. For that reason no complex synchronisation protocols
are required. On the other hand, the transmission of the output yj(k) with j 2

o
D

�
i

is required at time instant k in system Si, but it is only available at time instant k in
system Sj . For this reason, very complex synchronisation algorithms are required to
handle these transmission without causing prohibitively large delays. Furthermore, for
large-scale networks, this synchronisation becomes unfeasible to implement in practice,
so it is usual to adopt a fully distributed configuration instead, i.e., setting o

V = ;

and o
E = ; in the filter design stage. In such configuration, according to the definition

of the sparsity pattern (8), the gain of the global system must follow a block diagonal
structure.

Often, for dynamically coupled networks of interconnected systems, the initial model
of the network is continuous-time. After discretisation, which is required to implement
estimation and control techniques in a digital computer, the number of dynamical
couplings between agents increases. An example of such phenomenon is presented in
Section 6 for a network of interconnected tanks. The additional dynamical couplings,
that arise with the discretisation of the continuous-time dynamics of the network,
are generally very weak. For that reason, in applications where the cost of establishing
communication links is high, it is usually a good practice to consider only the dominant
couplings in m

G and find a compromise between the accuracy of the prediction step
and the communication burden.

3. One-step method for computation of filter gains

For the derivation of the one-step method, an approach similar to the one used for
the unconstrained Kalman filter is used. In fact, the gain in each instant is computed
so that the trace of the covariance of the estimation error for that same instant is
minimised. The optimisation problem (11) is, thus, modified to

minimise
K(k)2Rn⇥o

tr(P(k|k))

subject to K(k) 2 Sparse(E) ,
(12)

for k 2 N, given the predicted estimation error covariance, P(k|k � 1), at each time
step. Substituting (10) in the objective function of the relaxed optimisation problem
(12) yields a quadratic function in relation to K(k). Given that the sparsity constraint
is convex, the relaxed optimisation problem (12) is convex, allowing for the use of
techniques similar to those used to solve the unconstrained problem. However, using
this formulation, the computation of each gain does not take into account its influence
on the estimation error covariance of future time steps, yielding a sub-optimal solution
to the original problem. In spite of that, its solution can be obtained in closed-form.

Theorem 3.1. Let li denote a column vector whose entries are all set to zero except

for the i-th one, which is set to 1, and define Li := diag(li). Define a vector mi 2 Ro

9



to encode the non-zero entries in the i-th row of K(k) following

(
mi(j) = 0, [E]ij = 0

mi(j) = 1, [E]ij 6= 0
, j = 1, ..., o ,

and let Mi = diag(mi). Then, the optimal one step gain that solves (12) is given by

K(k) =
nX

i=1

LiP(k|k � 1)CT (k)Mi (I�Mi +MiS(k)Mi)
�1 , (13)

which can be solved e�ciently (see Remark 2), where S(k) is the innovation covariance

at step k, given by

S(k) = C(k)P(k|k � 1)CT (k) +R(k) . (14)

Proof. See A.

Remark 1. Note that, using the result above, the sequence of gains that solves the
optimisation problem (12) can be computed forward in time. This computation takes
turns propagating the predicted error covariance using (10) and (9), in this order, and
computing the optimal gain making use of (13). For this reason, this method is said
to be causal, in the sense that, for each instant, the gain computation does not require
the future dynamics of the system to be known a priori. Allied with the fact that it
is computationally e�cient, this method allows for the online computation of the gain
for each time step.

Remark 2. The closed-form solution (13) has a computational complexity of O(n4).
Instead of using it, the exact numeric algorithm proposed in Pedroso and Batista
(2021) can be, alternatively, applied to (A1) to compute each gain with a computa-
tional complexity of O(|�|3), where |�| denotes the number of nonzero entries of E.
Usually, in distributed control applications, |�| is given by |�| ⇡ cn, where c 2 N is
a constant. It, thus, follows that a computational complexity of O(n3) is achieved,
which is equal to the one of the centralised solution. An e�cient MATLAB imple-
mentation of this method can be found in the DECENTER toolbox available at
https://decenter2021.github.io (accessed on 10 July 2021).

4. Finite-horizon method for the computation of filter gains

The finite-horizon method, presented in this section, seeks to find an approximation
to the solution of the infinite-horizon problem (11) considering, in a first instance,
the equivalent finite-horizon problem, i.e. to compute a sequence of filter gains that
minimise the sum of the trace of the covariance of the estimation error over a given
finite window W 2 N. The optimisation problem is, thus, given by

minimise
K(i)2Rn⇥o

i=1,...,W

WX

k=1

tr(P(k|k))

subject to K(i) 2 Sparse(E), i = 1, ...,W .

(15)

10
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However, similarly to the infinite-horizon problem, this problem is nonconvex. There-
fore, to make use of well known optimisation techniques, convex relaxation is employed.
In fact, instead of minimising the sequence of gains as a whole, one may iteratively
minimise each gain of the sequence individually, while taking into account its e↵ect
on the whole finite window. The solution of the original finite-horizon optimisation
problem (15) can, thus, be approximated by the solutions of the relaxed optimisation
problem

minimise
K(k)2Rn⇥o

WX

i=1

tr(P(i|i))

subject to K(k) 2 Sparse(E) ,

(16)

for k = 1, ...,W . Expanding the objective function of the optimisation problem above,
one readily concludes, after some algebraic manipulation using (9) and (10), that, for
each k, it is quadratic in relation to K(k). Given that the sparsity constraint is also
convex, not only is the relaxed optimisation problem (16) convex for each k, but it
also has a closed-form solution, as detailed in the following result.

Theorem 4.1. Define a matrix Z such that the vector Zvec(K(k)) contains the non-

zero entries of K(k) according to the desired sparsity pattern. The closed-form solution

of (16) is given by

vec(K(k)) = Z
T
�
Z(S(k)⌦⇤(k + 1))ZT

��1
Zvec (⇤(k + 1)P(k|k � 1)C(k)) , (17)

which can be computed e�ciently (see Remark 5), where S(k) is given by (14) and

⇤(k + 1) = In +
WX

i=k+1

�
T (k + 1, i)�(k + 1, i) ,

with

�(ki, kf ) =

kfY

j=ki

(In �K(ki + kf � j)C(ki + kf � j))A(ki + kf � j � 1) , (18)

for ki  kf and �(ki, kf ) = In for ki > kf .

Proof. See B.

For an example on how to compute matrix Z for a given sparsity pattern, see
(Viegas et al., 2018, Section 5). Each time a gain is modified, the sequence of error
covariance matrices needs to be updated, which can be computationally expensive.
Nevertheless, analysing the closed-form solution for the computation of K(k), given
by (17), one readily notices it only makes use of the error covariance of instants up
to k. For this reason, the gains can be computed in reverse order, i.e. from the last
time step of the window to the first, updating the covariances when all the gains of
the window have already been computed. Repeating this process, that is, taking turns
computing the sequence of gains backwards in time and recomputing the covariance
matrices forward in time, the sequence of gains converges to a near-optimal solution

11



of the finite-horizon optimisation problem (15). This process is referred to, herein, as
an outer loop iteration. This algorithm is presented in Table 1.

Table 1. Algorithm for the computation of the sequence of gains using the finite-horizon method.

(1) Initialisation: Select a window size, W, an initial covariance
P(0|0) ⌫ 0, and compute a set of initial filter gains K(k),
k = 1, ...,W , using, e.g., the one-step method. See Remark
3 for more details on the initialisation. Compute the resulting
covariances P(k|k), k = 1, ...,W .
Select a stopping criterion, e.g., a minimum improvement on the
objective function of the finite-horizon optimisation problem
(15) or a fixed number of iterations.

(2) While: stopping criterion is not met
(a) For: i = W, ..., 1

(i) Recompute K(i) using (17).
(b) Recompute the covariances P(k|k), k = 1, ...,W , for the

new filter gains, using (9) and (10).
(3) Return: the sequence of gains K(k), for k = 1, ...,W .

Remark 3. As pointed out in Table 1, the finite-horizon algorithm requires a sequence
of gains and error covariance matrices for its initialisation. This issue is addressed
similarly to the LTI counterpart of the finite-horizon algorithm. For more details see
(Viegas et al., 2018, Remark 2).

Remark 4. Note that the finite-horizon algorithm, unlike the one-step method, is
not causal, in a sense that, for each instant, the gain computation requires a window
of the future dynamics of the system to be known. For this reason, the application of
this algorithm is possible either if one has a model of the evolution of the system with
time or if it is used in combination with an online system identification algorithm.

Remark 5. The closed-form solution (17) has a computational complexity of
O(|�|(no)2), where |�| denotes the number of nonzero entries of E. Instead of us-
ing it, the exact numeric algorithm proposed in Pedroso and Batista (2021) can be,
alternatively, applied to (B2) to compute each iteration with a computational com-
plexity of O(|�|3). Usually, in distributed control applications, |�| is given by |�| ⇡ cn,
where c 2 N is a constant. It, thus, follows that a computational complexity of O(n3)
is achieved for each iteration, which is equal to the one of the centralized solution. An
e�cient MATLAB implementation of this method can be found in the DECENTER

toolbox available at https://decenter2021.github.io (accessed on 10 July 2021).

It is evident that it is unfeasible to make W ! 1 to approximate the solution
of the infinite-horizon problem (11) due to the increasing computational load as W
becomes large. Instead, one considers a finite window, W , that is large enough so
that the gains computed within that window converge to those that are obtained if
an arbitrarily large window is used. The appropriate length for this finite window
varies depending on the system dynamics. The gains may, then, be computed for the
appropriate window and used until the end is reached, instant when a new window is
defined and new gains are computed using as initial covariance, P0

new, the covariance
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at the end of the previous window, Pprev(W |W ).
However, an important characteristic of the finite-horizon algorithm is that it is

greedy. In fact, given that the estimation error covariance in the time instants after the
window is not taken into account in the cost function of the finite-horizon algorithm,
it is possible to select gains that allow for a sudden decrease of the trace of the
error covariance at the end of the window. This e↵ect can be noticed in Section 5,
when this procedure is applied to a synthetic system. At first sight, this may seem an
advantageous characteristic, however, the use of the gains near the end of the window,
responsible for the sudden decrease of the trace, deteriorates the performance after
the transition to the next window, resulting in a sudden spike of the trace. Although,
in this example, the sudden decrease may seem small and negligible at first sight, its
impact is significant and it is important to take it into account, as it is exemplified
in Section 5. Assume the sudden decrease of the trace occurs d time steps before
the end of the window. Instead of using the gains computed for each window until
its end, one should only use them until the instant W � d. At this instant a new
window is defined using as initial covariance, P0

new, the covariance of the previous
window before the sudden decrease, Pprev(W � d|W � d). Following this approach
it is possible to approximate the evolution that would be obtained setting W ! 1,
with a manageable computational load and requiring the dynamics of the system to
be known only until W time steps ahead, when computing the sequence of gains to be
used for each window. This will be exemplified in Sections 5 and 6.

5. Simulation results for a synthetic system

In this section, the implementation of the one-step method and of the finite-horizon
algorithm to a synthetic system is simulated. The matrices of the synthetic system,
whose constant parts were randomly generated, rounded to 3 decimal places, are given
by:

A(k) =

2

64

�0.695 �0.844 �0.991 �0.831
0.652 �0.115 0.550 �0.200
0.0767 �0.787 0.635 �0.480
0.992 0.924 0.737 0.600

3

75+

2

64

0 0 cos (k/10) 0
0 e�k/100 0 0
0 0 0 sin2 (k/10)

cos (k/20) 0 0 0

3

75 ,

C(k) =

"
0.096 0.956 0.235 0.015
0.132 0.575 0.353 0.043
0.942 0.060 0.821 0.169

#
+

2

4
0 0 e�k/50 0
0 0 cos (k/10) 0
0 sin (k/10) 0 0

3

5 ,

Q(k) =

2

64

7.535 �3.023 �2.421 1.356
�3.023 6.342 5.537 �0.074
�2.421 5.537 7.363 1.753
1.356 �0.074 1.753 1.549

3

75+

2

64

sin2 (k/13) 0 0 0
0 0 0 0
0 0 cos2 (k/10) 0
0 0 0 0

3

75 ,

R(k) =

"
1.057 2.918 �1.093
2.918 8.792 �5.366
�1.093 �5.366 8.921

#
+

2

4
0 0 0
0 cos2 (k) 0
0 0 sin2 (k)

3

5 ,

and

E =

2

64

1 0 0
0 1 1
0 1 0
1 0 1

3

75 .
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The finite-horizon was applied to approximate an infinite-horizon window, as dis-
cussed in Section 4, with W = 45, d = 15, and performing 32 outer loop iterations.
Fig. 1 depicts the evolution of the trace of the covariance of the estimation error for
20000 Monte Carlo simulations. The vertical dashed lines in this plot indicate the
transitions between finite windows used in the finite-horizon algorithm. First, from
Fig. 1, one can conclude that the finite-horizon method applied to approximate the
infinite-horizon consistently outperforms the one-step method. Moreover, the transi-
tion between windows of the finite-horizon appears to be smooth, not having been
a↵ected by the sudden decrease in error covariance at the end of each finite window.
Fig. 2 depicts the projected evolution of the trace of the covariance of the estimation
error if one were to use d = 0. Analysing this plot, one can readily point out a sud-
den increase at the beginning of each new window, resulting in a significantly poorer
estimation performance compared to the implementation described in Section 4 and
depicted in Fig. 1. This practical example clearly demonstrates the advantage of using
overlapping windows in the finite-horizon algorithm.
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Figure 1. Evolution of the trace of the covariance of the estimation error for 20000 Monte Carlo simulations.
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Figure 2. Projected evolution of the trace of the covariance of the estimation error with d = 0 in the

implementation of the finite-horizon algorithm.
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6. Simulation results for a network of N tanks

In this section, both methods put forward in this paper are applied to a large-scale
network of N tanks, as a means of assessing their performance. Given that the dy-
namics of the projected network are nonlinear, to employ the methods devised one can
approximate its behaviour by an LTV system, linearising and discretising its dynamics
about successive equilibrium points. For this reason, it allows to assess the performance
of the proposed distributed estimation methods when implemented in nonlinear time-
varying systems. The quadruple-tank network introduced in Johansson (2000) inspired
the example shown herein.

6.1. N tanks network dynamics

Consider N interconnected tanks, as shown in Fig. 3, where N is an even integer. The
water level of tank i is denoted by hi. The network is actuated by N/2 pumps, which
are controlled by the lower tanks, whose inputs are denoted by ui for i = 1, ..., N/2,
in accordance with the schematic. Each pump is connected to a three-way valve that
regulates the fraction of the flow, held constant, that goes to each of the tanks supplied
by the pump. Each tank has a sensor, which measures its water level, with output yi
for tank i. Making use of mass balances and Bernoulli’s law, the system dynamics, in
the absence of noise, are given by

8
>>>>><

>>>>>:

Aiḣi(t) = �ai
p

2ghi(t) + aN
2
+i

q
2ghN

2
+i(t) + �ikiui(t), i = 1, ..., N/2

Aiḣi(t) = �ai
p

2ghi(t) + (1� �i�N
2
�1

)ki�N
2
�1

ui�N
2
�1

(t), i = N
2
+ 2, ..., N,

AN
2
+1

ḣN
2
+1

(t) = �aN
2
+1

q
2ghN

2
+1

(t) + (1� �N
2
)kN

2
uN

2
(t)

yi(t) = kchi(t), i = 1, ..., N

(19)

where Ai and ai are the cross sections of tank i and of its outlet hole, respectively;
the constant �i represents the fraction of the flow that passes through the valve i
to the lower tanks; ki is the constant of proportionality between the mass flow and
the input of pump i; g denotes the acceleration of gravity; and kc is the constant of
proportionality between the water level and the output of each sensor.

The nonlinear dynamics are linearised about a given equilibrium point, characterised
by equilibrium water levels, h0i , i = 1, ..., N ; inputs u0i , i = 1, ..., N/2; and outputs y0i ,
i = 1, ..., N . Writing the state, control, and output vectors, respectively, as

xc(t) =

2

64
h1(t)� h0

1

...
hN (t)� h0N

3

75 , uc(t) =

2

64

u1(t)� u0
1

...
uN

2
(t)� u0N

2

3

75 , yc(t) =

2

64
y1(t)� y0

1

...
yN (t)� y0N

3

75 ,

the continuous-time linearised system is given by

(
ẋc(t) = Ac(t)xc(t) +Bc(t)uc(t) +wc(t)

yc(t) = Cc(t)xc(t) + vc(t)
, (20)
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Figure 3. Schematic of the N tanks network.

with Ac(t) 2 RN⇥N , Bc(t) 2 RN⇥N/2, and Cc(t) 2 RN⇥N given by

[Ac(t)]ij =

8
><

>:

�1/Ti , i = j
Aj

AiTj
, j = i+N/2

0 , otherwise

,

[Bc(t)]ij =

8
>>><

>>>:

�iki/Ai , i = j

(1� �j)kj/Ai , j = i�N/2� 1

(1� �j)kj/Ai , i = N/2 + 1, j = N/2

0 , otherwise

,

and

Cc(t) = kcIN ,

where Ti is the time constant of tank i, given by

Ti =
Ai

ai

s
2h0i
g

.

Vectorswc(t) 2 RN and vc(t) 2 RN are the process and observation noise, modelled as
zero-mean uncorrelated white Gaussian processes, with associated covariance matrices
Qc(t) ⌫ 0 2 RN⇥N and Rc(t) � 0 2 RN⇥N , respectively.

Provided that this system is slow, one can assume that the water level measurements
and control inputs are updated with a constant period T . Under this assumption, the
discretisation of (20) yields

(
x(k + 1) = A(k)x(k) +B(k)u(k) +w(k)

y(k) = C(k)x(k) + v(k)
,

16



where w(k) and v(k) are also zero-mean uncorrelated white Gaussian processes with
associated covariance matrices Q(k) ⌫ 0 2 RN⇥N and R(k) � 0 2 RN⇥N , and A(k),
B(k), C(k), Q(k), R(k), and u(k) are the result of the discretisation using

A(k) = eAc(kT )T

B(k) =

✓Z T

0

eAc(kT )⌧d⌧

◆
Bc(kT )

C(k) = Cc(kT )

Q(k) =

Z T

0

eAc(kT )⌧
Qc(kT )e

Ac
T
(kT )⌧d⌧

R(k) = Rc(kT )

u(k) = uc(kT ) .

It is important to remark that to perform the linearisation, each local filter ought
to access the estimates of the variables of the network that define the equilibrium
point, through communication. Provided that the water levels change slowly, it may
be carried out with a given periodicity, Tlin = qT , thereby reducing the computational
load and communication needs.

6.2. Filter implementation

The problem considered for this network is the design of a distributed state estimation
solution in which each tank has i) only access to the measurement of its water level,
i.e., a fully distributed configuration is considered ; and ii) may receive state estimates
of other tanks through communication, to perform the prediction step of each local
filter. The approach followed consists in the implementation of a local filter in each of
the tanks, which estimates exclusively its own water level, relying on a communication
link with some of the other tanks. The directed communication links that are imple-
mented between tanks are carefully chosen to allow for an accurate prediction step of
the local filters, requiring only estimates of the other tanks already available at the
previous time-step. On the other hand, the update step is undergone in a fully dis-
tributed framework, not requiring the transmission of sensor outputs between tanks.
Unlike previous state estimates, sensor outputs of each tank are only available at the
same instant the communication is performed, thus their transmission is harder to
implement using slow communication links without introducing a delay. Thus, the low
coupling between agents in this particular example is exploited. For more details, see
Section 2.3.

In continuous-time, the analysis of matrices Ac(t) and Bc(t) suggests that each
lower tank i is only dynamically coupled to the tank above, tank i + N/2, through
Ac(t). However, when this network is analysed in discrete-time, the tank whose pump
supplies water to tank i+N/2, alters, during each discretisation interval, the rate at
which water flows from tank i+N/2 to tank i. For that reason, after the discretisation
of matrix Bc(t), one notices that each lower tank i is also dynamically coupled to
the control input of the lower tank, whose pump supplies the tank i + N/2, through
B(k). Thus, in discrete-time, the predicted state estimate for the lower tanks is, for
i = 2, ..., N/2, given by

x̂i(k+1|k) = [A(k)]ii x̂i(k|k)+[A(k)]i,i+N
2
x̂i+N

2
(k|k)+[B(k)]ii ui(k)+[B(k)]i,i�1

ui�1(k)
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and, for tank 1, by

x̂1(k+1|k) = [A(k)]
11
x̂1(k|k)+[A(k)]

1,1+N
2
x̂
1+

N
2
(k|k)+[B(k)]

11
u1(k)+[B(k)]

1,N
2
uN

2
(k).

Note that ui(k) and ui(k) are distinct, the former is the input to pump i and the latter
is the i-th component of u(k), which is the input relative to the equilibrium point.
The updated estimate follows

x̂i(k + 1|k + 1) = x̂i(k + 1|k) +Ki(k + 1) (yi(k)� [C(k + 1)]ii x̂i(k + 1|k)) ,

where Ki(k+1) is the filter gain. Again, yi(k) and yi(k) are distinct, the former is the
output of the water level sensor in tank i and the latter is the i-th component of y(k).
The equations above reflect the communication needs for the lower tanks. Each lower
tank i has to receive an estimate of the water level in the tank above it, and also the
control input given by the tank whose pump supplies water to the tank above tank i.

Either in continuous-time or discrete-time, each upper tank i is only dynamically
coupled to the control input of the tank whose pump supplies tank i, through B(k).
Thus, the predicted state estimate for an upper tank i is, in discrete-time, given by

x̂i(k + 1|k) = [A(k)]ii x̂i(k|k) + [B(k)]i,i�N/2�1
ui�N/2�1(k) ,

for i = N/2 + 2, ..., N , and by

x̂N
2
+1

(k + 1|k) = [A(k)]N
2
+1,N

2
+1

x̂N
2
+1

(k|k) + [B(k)]N
2
+1,N

2
uN

2
(k) ,

for i = N/2 + 1. The updated estimate follows

x̂i(k + 1|k + 1) = x̂i(k + 1|k) +Ki(k + 1) (yi(k)� [C(k + 1)]ii x̂i(k + 1|k)) , (22)

where Ki(k + 1) is the filter gain. Analysing (22), each upper tank i has to receive,
through communication, the input computed by the tank whose pump supplies tank i.
A schematic of the communication links necessary for the proposed distributed solution
is depicted in Fig. 4, which shows that only 3N/2 directed communication links are
used out of a possible N(N�1) links. As an example, for the network of N = 40 tanks,
simulated in Section 6.3, less than 4% of the possible directed communication links
are used. It is important to remark that, in this particular example, given that the
couplings between agents are weak, it is possible to implement few communication links
without compromising estimation performance significantly. However, in networks with
stronger couplings, there is a greater degradation of performance when compared with
a centralized solution, which is the price to pay for an easier or feasible implementation.

Grouping the local filters, it is possible to write the dynamics of the global filter,
whose gain is subject to a sparsity constraint. The predicted estimate of the global
filter is given by

x̂(k + 1|k) = A(k)x̂(k|k) +B(k)u(k) ,

and the updated state estimate by

x̂(k + 1|k + 1) = x̂(k + 1|k) +K(k + 1) (y(k + 1)�C(k + 1)x̂(k + 1|k)) ,
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Figure 4. Schematic of the communication links for the N tanks network.

where K(k+1) is the global filter gain. Comparing the global and local filter dynamics,
it follows that K(k) = diag(K1(k), ...,KN (k)), which is equivalent to setting a sparsity
constraint on the global gain corresponding to the sparsity pattern E = IN . It is
interesting to remark that the sparsity constraint allows only for 1/N of the total
entries of the gain to be non-null, which alongside the imposed diagonal structure
results in a very simple update step. One may reckon, at first sight, that such a severe
constraint would result in a significant loss of performance when compared with the
unconstrained solution. However, as the simulation results of Section 6.3 show, due to
the weak couplings between agents, the performance loss is actually small.

6.3. Simulation results

The network was simulated for N = 40 tanks and the values of its physical constants
are presented in Table 2. The process noise covariance matrix was randomly generated
taking into consideration the dynamical dependencies between the tanks, and the
observation noise covariance matrix was set to Rc = IN , in accordance with the
noise of the measurements of the water levels. The sampling time was set to T = 1 s
and the linearisation period to Tlin = 10T . Analysing the system dynamics, given by
(19), one notices that an equilibrium point corresponds to the solution of a system
of N equations with 3N/2 unknowns. It is, thus, necessary to select N/2 of these
variables to define an equilibrium point, which, for this simulation, were chosen to
be the estimates of the water levels of the lower tanks, h1, ..., hN

2
. For this reason,

each time a new linearisation is performed every local filter has to receive through
communication the water level in the lower tanks, compute the remaining variables
that define the equilibrium point, and linearise the relevant entries of matrix A about
that point. The initial level of the tanks is set to hi = 20 cm for i = 1, ..., N and the
initial covariance matrix to P0 = 10IN cm2. Considering that the only goal is to assess
the estimation performance, an open-loop control law is chosen, as given by

ui(t) =

(
4V t < 400

6V t � 400
, i = 1, ...,

N

2
.

The finite-horizon algorithm was initialised with the gains computed using the one-
step method. Moreover, 5 outer loop iterations were used, which proves to be enough
for the convergence of the finite-horizon solution within 10�5 of the limit solution.
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Table 2. Values of the physical constants of the N tanks network.

Constant Value
Ai, i odd 28 cm2

Ai, i even 32 cm2

ai, i odd  N/2 0.071 cm2

ai, i even  N/2 0.057 cm2

ai, i > N/2 0.040 cm2

kc 0.5 Vcm�1

g 981 cm s�2

ki 3.33 cm3 s�1V�1

�i, i odd 0.7
�i, i even 0.6

Given that the finite-horizon method requires the dynamics of the system in a time
window that spans future instants, and considering that the dynamics of the network
vary with its state vector, it is not possible to simulate this method online without the
use of a mechanism that predicts the future evolution of the state vector, thus allowing
to obtain the linearised dynamics. To allow for the comparison of both methods put
forward in this paper, at the beginning of each window, the finite-horizon method
receives, through communication, the estimated water-level in all the tanks, which
allows for the computation of all outer loop iterations without requiring additional
communication. Given that the actuation is known, it simulates the linear evolution
of the network until the end of the window, linearising the system with the same
periodicity Tlin.

Fig. 5 depicts the evolution of the di↵erence between the trace of the estimation
error covariance of the finite-horizon algorithm for a window W = 40 and W = 300. It
reveals that the sudden decrease due to the greediness of the method, when compared
with the trace of the covariance of the estimation error, is not significant. In fact, the
use of a window W = 40, of which none of the gains computed near the end of the
window is ignored, i.e. setting d = 0, allows for a sudden decrease that is roughly
6 orders of magnitude below the magnitude of the trace of the covariance of the
estimation error, which proves to be adequate for the application of the finite-horizon
algorithm to approximate the solution of the infinite-horizon problem, as detailed in
Section 4.

Figs. 6 depicts the nonlinear simulation of the water level in tanks 13 and 31, as
well as the estimates for the centralized solution, one-step method, and finite-horizon
algorithm. It is clear that none of the solutions diverge and all provide estimates
that are close to the true water level in the tank. Fig. 7 depicts the evolution of
the trace of the covariance of the estimation error, obtained with 5000 Monte Carlo
simulations. Analysing this plot, one can readily note that there are no significant
di↵erences between the one-step and finite-horizon solutions. Moreover, both achieve
a performance close to the centralized solution.

7. Conclusion

Very little work has been carried out regarding the design of distributed state estima-
tion solutions for networks of interconnected systems modelled by LTV dynamics. In
this paper, two methods for the computation of distributed filter gains for an arbitrary

20



0 5 10 15 20 25 30 35 40
-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
10

-5

Figure 5. Evolution of the di↵erence between the trace of the covariance of the estimation error of the

finite-horizon algorithm for a window W = 40 and W = 300, for the N = 40 tanks network.
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Figure 6. Evolution of the water level and of the estimates of the di↵erent filters, for the N = 40 tanks

network.
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Figure 7. Evolution of the trace of the covariance of the estimation error, obtained with 5000 Monte Carlo
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LTV network with arbitrary time-invariant network configurations, portrayed by the
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sparsity constraint that is imposed, were proposed, as a generalisation of previously
obtained results for LTI systems. This generalisation allows for a significant widening
of the application of both these methods, even to nonlinear systems. First, it was shown
that both methods put forward in this paper are able to compute a sequence of well
performing stabilising gains subject to an arbitrary sparsity constraint. Second, the
one-step method can be computed very e�ciently and does not require that the future
dynamics of the system are known. Third, the finite-horizon algorithm achieves better
performance but it is computationally more expensive and requires that a window of
the future dynamics of the system is known. Fourth, both algorithms put forward in
this paper were applied to a nonlinear network, whose dynamics were approximated
by an LTV network corresponding to successive linearisations about the operations
points. It was possible to conclude that, even though the original system is nonlinear,
the proposed methods are able to compute well performing gains that stabilise the
estimation error dynamics. Fifth, for networks with weak couplings between agents,
the one-step and finite-horizon solutions o↵er a similar performance, even though a
very sparse and simple filter configuration was implemented. Sixth, it was possible to
show the scalability of both methods, having been implemented to a large-scale sys-
tem. Finally, note that, when applied to a nonlinear network, the proposed methods
require the establishment of additional communication links to perform the linearisa-
tion of the system, compared to the application to an LTV network. Further work on
this topic should address this drawback.
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Appendix A. Derivation of the closed-form optimal gain for the one-step

method

The optimal gain for the one-step method is obtained by solving the optimisation
problem

minimise
K(k)2Rn⇥o

tr(P(k|k))

subject to K(k) 2 Sparse(E) .

The estimation error covariance for the instant k is given by (10). Taking the derivative
of its trace with respect to K(k) yields

@

@K(k)
tr(P(k|k)) = �2P(k|k � 1)CT (k) + 2K(k)S(k) , (A1)

where S(k) is as defined in (14). For each k, (A1) is identical to its time-invariant
counterpart, therefore the same techniques, found in Viegas et al. (2018), may be
employed to solve @tr(P(k|k))/@K(k) = 0. The solution of this optimisation problem
is, thus, given by (13).

Appendix B. Derivation of the closed-form optimal gain for the

finite-horizon algorithm

One starts by noticing that the optimisation problem (16) is equivalent to

minimise
K(k)2Rn⇥o

WX

i=k

tr(P(i|i))

subject to K(k) 2 Sparse(E) ,

since P(i|i) does not depend on K(k), for i < k. Without loss of generality, assume
A is invertible. Using (9) and (10), for j � k, the estimation error covariance can be
written as

P(j|j) = �(k, j)P(k � 1|k � 1)�T (k, j) +
jX

i=k

�(i+ 1, j)K(i)R(i)KT (i)�T (i+ 1, j)+

jX

i=k

�(i, j)A�1(j � 1)Q(j � 1)A�T (j � 1)�T (i, j) ,
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where �(ki, kf ) is defined as in (18). Taking the derivative of the trace of P(j|j) with
respect to K(k) yields

@

@K(k)
tr(P(j|j)) = 2�T (k + 1, j)�(k + 1, j)

�
K(k)S(k)�P(k|k � 1)CT (k)

�
. (B1)

For each k, (B1) is identical to its time-invariant counterpart, therefore the same
techniques, found in Viegas et al. (2018), may be employed to solve

WX

j=k

@tr(P(j|j))/@K(k) = 0 . (B2)

The solution of this optimisation problem is, thus, given, in closed-form, by (17), which
can be computed e�ciently.
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