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Abstract: In this short communication, an algorithm for efficiently solving a sparse matrix equation,
which arises frequently in the field of distributed control and estimation theory, is proposed. The
efficient algorithm stems from the fact that the sparse equation at hand can be reduced to a system
of linear equations. The proposed algorithm is shown to require significantly fewer floating point
operations than the state-of-the-art solution. The proposed solution is applied to a real-life example,
which models a wide range of industrial processes. The experimental results show that the solution
put forward allows for a significant increase in efficiency in relation to the state-of-the-art solution.
The significant increase in efficiency of the presented algorithm allows for a valuable widening of the
applications of distributed estimation and control.

Keywords: sparsity constraint; sparse matrix; sparse matrix equation; distributed control; distributed
estimation

1. Notation

The n⇥ o null matrix and the null vector of dimension n are denoted by 0n⇥o and 0n,
respectively. The i-th component of a vector v is denoted by [v]i, and the entry (i, j) of a
matrix A is denoted by [A]i,j. The vectorization of a matrix A, denoted herein by vec(A),
returns a vector composed of the concatenated columns of A. The Kronecker product of
two matrices A and B is denoted by A⌦ B. The cardinality of a set c is denoted by |c|.

2. Introduction

Sparse matrix equations arise in various real-life problems in a broad range of engi-
neering fields. Thus, given their impact, they have been extensively studied for a long
time [1]. In recent developments in the field of distributed estimation and control theory, a
sparse matrix equation has arisen, for which, to the best of the knowledge of the authors,
an efficient algorithm for its solution has not yet been proposed.

Consider the matrix equation
(
[AXB� C]i,j = 0 , (i, j) 2 c

[X]i,j = 0 , (i, j) /2 c
, (1)

where A 2 Rn⇥n, B 2 Ro⇥o, and C 2 Rn⇥o are known and X 2 Rn⇥o is the unknown.
Let E 2 Rn⇥o represent a known sparsity pattern, and define the set c of integer pairs of
the form (i, j) to index the nonzero entries of E as

(
(i, j) 2 c , [E]i,j 6= 0
(i, j) /2 c , otherwise

, i = 1, . . . , n, j = 1, . . . , o . (2)

Equation (1) arises frequently in the field of distributed control and estimation theory.
In fact, it is the backbone of the state-of-the-art methods for distributed filter design [2] and
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controller synthesis [3] for large-scale dynamical systems. However, the solution to (1),
presented in these papers, relies on an inefficient closed-form matrix computation. Define a
matrix Z, such that the vector Zvec(E) contains all the nonzero elements of E. The solution
to (1) presented in the literature is given by

vec(X) = Z
T
⇣

Z(B⌦A)ZT

⌘�1
Zvec(C) , (3)

as proven in ([2], Appendix B). Note that (3) requires the multiplication of a matrix of
dimension |c|⇥ no by other dimension no⇥ no, which requires O(|c|(no)2) floating point
operations. The number of practical applications, where it is convenient to model the
interconnection of complex systems as a whole network, has been steadily increasing [4].
They have emerged in a broad range of engineering fields such as irrigation networks [5,6],
power systems networks [7,8], traffic networks [9–12], and industrial processes [13]. Never-
theless, given the substantial increase in memory and processing power needed to control
such systems, the classical control solutions cannot be implemented in practice. That is why,
over the past decades, an effort has been made towards the development of distributed and
computationally efficient algorithms to handle such systems. In this short communication,
an algorithm to obtain an efficient and exact solution to (1) is proposed, which significantly
increases the applicability of distributed methods that address the control and estimation
problems for large-scale dynamical systems.

3. Materials and Methods

The following result is the basis for the algorithm proposed in this short communica-
tion.

Theorem 1. The system of Equation (1) can be reduced to a system of linear equations of dimension
|c|,

Sx = r , (4)

where S 2 R|c|⇥|c|, r 2 R|c|, and x 2 R|c| is the vector of the ordered nonzero entries of vec(X).

Proof. For every integer pair (i, j) 2 c, the first equation of (1) is given by

n

Â
k=1

o

Â
l=1

[A]i,k[X]k,l [B]l,j � [C]i,j = 0 . (5)

Given the second equation of (1), one can rewrite (5) as

Â
(k,l)2c

[A]i,k[X]k,l [B]l,j � [C]i,j = 0 . (6)

Denote by x 2 R|c| the vector of the ordered nonzero entries of vec(X), and let f =
[f1 f2]T : N1 ! N2 denote the resulting one-to-one map between the entries of x and the
nonzero entries of X. Defining p := f�1(i, j) and q := f�1(k, l), it follows that satisfying
(6) for every integer pair (i, j) 2 c is equivalent to satisfying Sx = r , where S 2 R|c|⇥|c|

and r 2 R|c| are defined such that

[S]p,q = [A]f1(p),f1(q)[B]f2(q),f2(p) , (7)

p = 1, . . . , |c| , q = 1, . . . , |c|; and

[r]p = [C]f(p) , p = 1, . . . , |c| ; (8)
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respectively. It then follows that the solution to (1) is

[X]i,j =

(
[x]f�1(i,j) , (i, j) 2 c

0 , (i, j) /2 c
, (9)

where x is the solution of (4).

Corollary 1. It follows immediately from Theorem 1 that (1) admits: (i) one and only one solution
if S is full rank; (ii) infinitely many solutions if (4) is consistent and S is not full rank; and (iii) no
solution if (4) is inconsistent.

Proposition 1. Algorithm 1 can be used to obtain the solution to (1), with O(|c|3) floating point
operations.

Proof. Algorithm 1 computes S 2 R|c|⇥|c| and r 2 R|c| according to (7) and (8), respec-
tively. It, then, follows from Theorem 1 that (1) can be reduced to the solution to Sx = r.
The LU decomposition of S can be carried out with O(|c|3) floating point operations, using
Gaussian elimination. The type of solution is then assessed according to Corollary 1. If the
solution is unique, it follows from Theorem 1 that it is given by (9), which is implemented
in Algorithm 1.

Algorithm 1 Algorithm to efficiently compute the exact solution to (1)
Input: A 2 Rn⇥n, B 2 Ro⇥o, C 2 Rn⇥o, and E 2 Rn⇥o

Output: Solution to (1), X 2 Rn⇥o, if one unique solutions exists.
Compute set c according to (2);
p 0; S 0|c|⇥|c|; r 0|c|; X 0n⇥o;
for (i, j) 2 c do // Possibly parallelly

p p + 1; [r]p  [C]i,j; q 0;
for (k, l) 2 c do

q q + 1; [S]p,q  [A]i,k[B]l,j;
end

end

Solve Sx = r for x; // LU decomposition
Assess type of solution according to Corollary 1;
if Sx = r has a unique solution then

p 0;
for (i, j) 2 c do // Possibly parallelly

p p + 1; [X]i,j  [x]p;
end

return X;
else

Flag type of solution;
end

Remark 1. It is important to point out that each of the three main steps of Algorithm 1 can be
carried out in parallel. The first and last steps for loops of Algorithm 1 (which are commented on)
can be carried out in parallel, for each j. In this case, the variable p has to be initialized, for each j,
with the number of nonzero entries of E in the first j� 1 columns. Moreover, the LU decomposition
can also be carried out in parallel [14,15].

Remark 2. There are asymptotically faster algorithms for computing the LU decomposition of
a square matrix. For instance, the Strassen algorithm [16] can perform the LU decomposition
of S in O(|c|log2 7) floating point operations. Moreover, the Coppersmith–Winograd algorithm
[17] requires only O(|c|2.38) floating point operations. However, an improvement in relation to
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the Strassen algorithm can only be noticed for large values of |c|. For more details, see ([18],
Section 1.4).

Remark 3. In the field of distributed estimation and control theory, |c| is the sum of the number of
sensor output signals available to each node of the network, and n is the order of the state–space
dynamics of the whole system network. Given that, for most applications, each node has a similar
order and a similar number of sensor output signals available, then |c| ⇡ cn, where c 2 N is a
constant. The system detailed in Section 4 illustrates this claim. It, thus, follows that the ratio of the
number of floating points operations required by the proposed algorithm and the number required
by the state-of-the-art methods is O(o�2).

4. Results

In this section, the solution to the sparse matrix equation (1) is used to design a
distributed filter for a large-scale network of N tanks. The computational efficiency of
the synthesis with the proposed solution is compared to the state-of-the-art synthesis
procedure. This network is widely studied [3,19,20] because it is analogous to a broad
range of industrial processes. Consider N interconnected tanks, as shown in Figure 1,
where N is an even integer. The water level of tank i is denoted by hi. The network is
actuated by N/2 pumps, which are controlled by the lower tanks, whose inputs are denoted
by ui for i = 1, . . ., N/2, in accordance with the schematic. Each pump is connected to a
three-way valve that regulates the fraction of the flow, held constant, that goes to each of
the tanks supplied by the pump. Each tank has a sensor, which measures its water level.
Making use of mass balances and Bernoulli’s law, the system dynamics, in the absence of
noise, are given by

8
>>><

>>>:

Aiḣi(t) = �ai
p

2ghi(t) + a N
2 +i

q
2gh N

2 +i(t) + gikiui(t), i = 1, . . . , N/2

Aiḣi(t) = �ai
p

2ghi(t) + (1� gi� N
2 �1)ki� N

2 �1ui� N
2 �1(t), i = N

2 + 2, . . . , N

A N
2 +1ḣ N

2 +1(t) = �a N
2 +1

q
2gh N

2 +1(t) + (1� g N
2
)k N

2
u N

2
(t),

, (10)

where Ai and ai are the cross sections of tank i and of its outlet hole, respectively; the
constant gi represents the fraction of the flow that passes through the valve i to the lower
tanks; ki is the constant of proportionality between the mass flow and the input of pump i;
and g denotes the acceleration of gravity.

Tank N/2+1

Tank 1 Tank 2

h1

Tank N/2+2

Pump 1

u1

h2

hN/2+1

hN/2+2

Pump 2
u2

…

Tank N/2

Tank N

hN/2

hN

Pump N/2
uN/2

…

…

Figure 1. Schematic of the N tanks network.
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The values of the constant parameters of the network are presented in Table 1. The
dynamics of the network are nonlinear, thus the system is linearized about its operational
point, which is selected to be h(i) = 15 cm, i = 1, . . . , N. The distributed filter is synthe-
sized with the finite-horizon method ([2], Section 5), which is shown to have better state
estimation performance in relation to other distributed filter synthesis methods. Each
iteration k of this method computes a new gain, K(k) 2 Rn⇥o, solving

(⇥
L(k + 1)K(k)S(k)�L(k + 1)P(k|k� 1)CT⇤

i,j = 0 , (i, j) 2 c

[K(k)]i,j = 0 , (i, j) /2 c
, (11)

where L(k + 1) 2 Rn⇥n, S(k) 2 Ro⇥o, and P(k|k � 1) 2 Rn⇥n are defined in [2], with
n = o = N. Moreover, C = IN is the output matrix of the network and, given the
configuration of the network, the sparsity pattern that defines the set c is given by E = IN .
Note that (11) has the same form as (1), for which a novel efficient solution is proposed in
this short communication.

Table 1. Values of the physical constants of the N tanks network.

Constant Value

Ai, i odd 28 cm2

Ai, i even 32 cm2

ai, i odd  N/2 0.071 cm2

ai, i even  N/2 0.057 cm2

ai, i > N/2 0.040 cm2

g 981 cm s�2

ki 3.33 cm3 s�1 V�1

gi, i odd 0.7
gi, i even 0.6

The goal is to compare the computational efficiency of the gain synthesis using the
solution to (11) proposed in this short communication and compare it to the state-of-the-art
solution (3). In that sense, the gain synthesis is performed for both alternatives, for a
range of N. Figure 2 depicts the elapsed wall-clock time for the distributed filter synthesis,
resulting from the average of three simulations of a MATLAB implementation on a single
thread of a server with 24GB RAM and 24 Intel Xeon hexa-core CPUs at 2.40GHz. A
MATLAB implementation of the distributed filter synthesis, of the application to the N
tanks network, and of Algorithm 1, can be found in the DECENTER toolbox available at
https://decenter2021.github.io (accessed on 23 June 2021). Figure 2 also depicts the linear
regression in the logarithmic scale of the asymptotic evolution, which is considered to be
achieved for N > 40. First, if the solution of (11) is the bottleneck of the gain synthesis
procedure, one would expect that the synthesis wall-clock time grows asymptotically with
O(N5) for the state-of-the-art solution, and O(N3) for the novel solution proposed in
this short communication. It is possible to conclude from Figure 2 that this is, in fact,
the case. The experimental complexity is slightly lower than what was projected, since
MATLAB makes use of efficient LU decomposition algorithms like the ones pointed out in
Remark 2. Second, it is also possible to confirm that the use of the solution proposed in this
short communication leads to a ratio of wall-clock synthesis time between the proposed
solution and the state-of-the-art solution that evolves with O(N�2.035). This improvement
significantly widens the applicability of various distributed methods to large-scale systems.

https://decenter2021.github.io
https://decenter2021.github.io
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Figure 2. Synthesis wall-clock time of a distributed filter for the N tanks network, as a function of
the dimension of the network.

5. Conclusions

In this short communication, an algorithm for efficiently solving the sparse matrix
equation (1), which arises frequently in the field of distributed control and estimation
theory, is proposed. The state-of-the-art methods for distributed filter design and controller
synthesis rely on a very inefficient computation of the solution to (1), requiring O(|c|(no)2)
floating point operations. In this letter, an algorithm is proposed to compute the solution to
this equation with O(|c|3) floating point operations. For distributed estimation and control
theory applications, the ratio of the number of floating points operations required by the
proposed algorithm and the number required by the state-of-the-art methods is O(o�2).
Furthermore, the algorithm proposed in this short communication was applied to an
example representative of real-life large-scale industrial processes, and was compared
to the state-of-the-art solution. It is shown that the solution put forward allows for a
decrease of the computational complexity of the gain synthesis from O(N4.805), which is
obtained for the state-of-the-art solution, to O(N2.770), where N is the dimension of the
network. The significantly greater efficiency achieved with the proposed algorithm allows
for the state-of-the-art distributed control and estimation algorithms to be implemented in
an online framework and for large-scale dynamical systems, which would otherwise be
unfeasible.
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4. Šiljak, D.D.; Zečević, A. Control of large-scale systems: Beyond decentralized feedback. Annu. Rev. Control 2005, 29, 169–179.

[CrossRef]
5. Conde, G.; Quijano, N.; Ocampo-Martinez, C. Modeling and control in open-channel irrigation systems: A review. Annu. Rev. Con-

trol 2021, 51, 153–171. [CrossRef]
6. Cantoni, M.; Weyer, E.; Li, Y.; Ooi, S.K.; Mareels, I.; Ryan, M. Control of large-scale irrigation networks. Proc. IEEE 2007, 95, 75–91.

[CrossRef]
7. Chen, C.; Wang, J.; Kishore, S. A distributed direct load control approach for large-scale residential demand response. IEEE Trans.

Power Syst. 2014, 29, 2219–2228. [CrossRef]
8. Bumiller, G.; Lampe, L.; Hrasnica, H. Power line communication networks for large-scale control and automation systems.

IEEE Commun. Mag. 2010, 48, 106–113. [CrossRef]
9. Tan, T.; Bao, F.; Deng, Y.; Jin, A.; Dai, Q.; Wang, J. Cooperative deep reinforcement learning for large-scale traffic grid signal

control. IEEE Trans. Cybern. 2019, 50, 2687–2700. [CrossRef]
10. Keyvan-Ekbatani, M.; Yildirimoglu, M.; Geroliminis, N.; Papageorgiou, M. Multiple concentric gating traffic control in large-scale

urban networks. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2141–2154. [CrossRef]
11. Carlson, R.C.; Papamichail, I.; Papageorgiou, M.; Messmer, A. Optimal mainstream traffic flow control of large-scale motorway

networks. Transp. Res. Part C Emerg. Technol. 2010, 18, 193–212. [CrossRef]
12. Li, Y.; Yang, L.; Yang, G. Network-based coordinated motion control of large-scale transportation vehicles. IEEE/ASME

Trans. Mechatron. 2007, 12, 208–215. [CrossRef]
13. Vadigepalli, R.; Doyle Iii, F.J. Structural analysis of large-scale systems for distributed state estimation and control applications.

Control Eng. Pract. 2003, 11, 895–905. [CrossRef]
14. Buoni, J.J.; Farrell, P.A.; Ruttan, A. Algorithms for LU decomposition on a shared memory multiprocessor. Parallel Comput.

1993, 19, 925–937. [CrossRef]
15. Liu, Z.; Cheung, D. Efficient parallel algorithm for dense matrix LU decomposition with pivoting on hypercubes. Com-

put. Math. Appl. 1997, 33, 39–50. [CrossRef]
16. Strassen, V. Gaussian elimination is not optimal. Numer. Math. 1969, 13, 354–356. [CrossRef]
17. Coppersmith, D.; Winograd, S. Matrix multiplication via arithmetic progressions. In Proceedings of the Nineteenth Annual ACM

Symposium on Theory of Computing, New York, NY, USA, 25–27 May 1987 ; pp. 1–6.
18. Pan, V. Complexity of algorithms for linear systems of equations. In Computer Algorithms for Solving Linear Algebraic Equations;

Springer: Berlin/Heidelberg, Germany, 1991; pp. 27–56.
19. Johansson, K.H. The quadruple-tank process: A multivariable laboratory process with an adjustable zero. IEEE Trans. Control

Syst. Technol. 2000. [CrossRef]
20. Casavola, A.; Garone, E.; Tedesco, F. A distributed multi-agent command governor strategy for the coordination of networked

interconnected systems. IEEE Trans. Autom. Control 2014, 59, 2099–2112. [CrossRef]

http://doi.org/10.1109/PROC.1977.10514
http://dx.doi.org/10.1016/j.conengprac.2018.03.014
http://dx.doi.org/10.1002/oca.2669
http://dx.doi.org/10.1016/j.arcontrol.2005.08.003
http://dx.doi.org/10.1016/j.arcontrol.2021.01.003
http://dx.doi.org/10.1109/JPROC.2006.887289
http://dx.doi.org/10.1109/TPWRS.2014.2307474
http://dx.doi.org/10.1109/MCOM.2010.5439083
http://dx.doi.org/10.1109/TCYB.2019.2904742
http://dx.doi.org/10.1109/TITS.2015.2399303
http://dx.doi.org/10.1016/j.trc.2009.05.014
http://dx.doi.org/10.1109/TMECH.2007.892830
http://dx.doi.org/10.1016/S0967-0661(02)00284-8
http://dx.doi.org/10.1016/0167-8191(93)90075-V
http://dx.doi.org/10.1016/S0898-1221(97)00052-7
http://dx.doi.org/10.1007/BF02165411
http://dx.doi.org/10.1109/87.845876
http://dx.doi.org/10.1109/TAC.2014.2318081

	Notation
	Introduction
	Materials and Methods
	Results
	Conclusions
	References

