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Decentralized linear quadratic control
Problem formulation: Local dynamics

Directed dynamic coupling graph dG:

I Each system is a node

I Each directed edge is a dynamical coupling

xi (k + 1) =
∑

j∈dD−i

(Ai ,j(k)xj(k) + Bi ,j(k)uj(k))
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Decentralized linear quadratic control
Problem formulation: Global dynamics

xi (k + 1) =
∑

j∈dD−i

(Ai ,j(k)xj(k) + Bi ,j(k)uj(k))

y
x(k + 1) = A(k)x(k) + B(k)u(k)
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Decentralized linear quadratic control
Problem formulation: Cost function

J(k) := xT (k + T )Q(k + T )x(k + T ) +
k+T−1∑
τ=k

(
xT (τ)Q(τ)x(τ) + uT (τ)R(τ)u(τ)

)

Global finite-horizon cost:

I MPC-like scheme to solve infinite-horizon problem

I Network-wise or decoupled control objectives
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Decentralized linear quadratic control
Problem formulation: Decentralized framework

Directed communication graph G:

I Each system is a node

I If system i has access to xj is represented by edge j → i

ui (k) = −
∑
j∈D−i

Ki ,j(k)xj(k)
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Decentralized linear quadratic control
Problem formulation: Information constraints

ui (k) = −
∑
j∈D−i

Ki ,j(k)xj(k)

y
u(k) = −K(k)x(k)

But K(k) is sparse: K(k) ∈ Sparse(ED)

Sparse(E) :=
{

K ∈ Rm×n : [E]ij = 0 =⇒ [K]ij = 0; i = 1, ...,m, j = 1, ..., n
}
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Decentralized linear quadratic control
Problem formulation: Nonconvex optimization problem

At each discrete-time instant k :

minimize
K(τ)∈Rm×n

τ=k,...,k+T−1

J(k)

subject to x(τ + 1) = A(τ)x(τ) + B(τ)u(τ), τ = k , ..., k + T − 1 ,

K(τ) ∈ Sparse(E), τ = k , ..., k + T − 1 ,

Nonconvex!
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Decentralized linear quadratic control
One-step convex relaxation

Challenges:

Physically meaningful relaxation

Separation between optimal and relaxed solutions

Approach:

Obtain necessary conditions for a constrained minimum

Analyze a convenient potential saddle point
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Decentralized linear quadratic control
One-step convex relaxation

Augment J(k) to write the Lagrangian

J ′(k) = xT (k + T )Q(k + T )x(k + T ) +
k+T−1∑
τ=k

xT (τ)
(

Q(τ) + KT (τ)R(τ)K(τ)
)

x(τ)

+
k+T−1∑
τ=k

λT (τ + 1) [(A(τ)− B(τ)K(τ)) x(τ)− x(τ + 1)]

Define the Hamiltonian

H(k) := xT (k)
(

Q(k) + KT (k)R(k)K(k)
)

x(k) + λT (k + 1) (A(k)− B(k)K(k)) x(k)
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Decentralized linear quadratic control
One-step convex relaxation

Rewrite the Lagrangian

J ′(k) = xT (k+T )Q(k+T )x(k+T )−λT (k+T )x(k+T )+H(k)+
k+T−1∑
τ=k+1

(
H(τ)− λT (τ)x(τ)

)
Stationarity:

∂J′(k)
∂λ(τ) = 0, τ = k + 1, . . . , k + T

∂J′(k)
∂x(τ) = 0, τ = k + 1, . . . , k + T

lTi
∂J′(k)
∂K(τ) lj = 0, [ED]ij 6= 0, τ = k , . . . , k + T − 1

lTi K(τ)lj = 0, [ED]ij = 0, τ = k , . . . , k + T − 1

[li ]k =

{
1, k = i

0, k 6= i

Result: Neat identities involving the partial derivatives of the Hamiltonian
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Decentralized linear quadratic control
One-step convex relaxation

Lemma

From the stationarity conditions: λ(k) = 2P(k)x(k){
P(k + T ) = Q(k + T )

P(τ) = Q(τ) + KT (τ)R(τ)K(τ) + (A(τ)− B(τ)K(τ))T P(τ + 1) (A(τ)− B(τ)K(τ))

and

x(i)TP(i)x(i) =
k+T−1∑
τ=i

xT (τ)
(
Q(τ) + KT (τ)R(τ)K(τ)

)
x(τ)

+ xT (k + T )Q(k + T )x(k + T ), i = k, . . . , k + T

I Proof by mathematical induction in [Pedroso and Batista, 2021a]

I Similar to centralized
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Decentralized linear quadratic control
One-step convex relaxation

Lemma

Necessary condition for optimal gains:{
lTi
[(

S(τ)K(τ)− BT (τ)P(τ + 1)A(τ)
)

x(τ)xT (τ)
]

lj = 0 , [ED]ij 6= 0

lTi K(τ)lj = 0 , [ED]ij 6= 0,

for τ = k , . . . , k + T − 1,

S(τ) := BT (τ)P(τ + 1)B(τ) + R(τ)

Why is x(τ)xT (τ) (of rank 1) here?
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Decentralized linear quadratic control
One-step convex relaxation

Necessary condition for optimal gains:{
lTi
[(

S(τ)K(τ)− BT (τ)P(τ + 1)A(τ)
)

xT (τ)x(τ)
]

lj = 0 , [ED]ij 6= 0

lTi K(τ)lj = 0 , [ED]ij 6= 0,

Saddle point satisfies these conditions

x(k) is not fully known by any system

Robust feedback

Relaxed one-step conditions:{
lTi
[(

S(τ)K(τ)− BT (τ)P(τ + 1)A(τ)
)]

lj = 0 , [ED]ij 6= 0

lTi K(τ)lj = 0 , [ED]ij 6= 0,
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Decentralized linear quadratic control
One-step convex relaxation

Theorem (One-step relaxed solution)

Let lj denote a column vector whose entries are all set to zero except for the j-th one,
which is set to 1, and Lj := diag(lj). Define mj ∈ Rm as{

mj(i) = 0, [E]ij = 0

mj(i) = 1, [E]ij 6= 0
, i = 1, ...,m ,

and let Mj := diag(mj). Then, the gains of the one-step relaxation are given by

K(τ) =
n∑

j=1

(I−Mj + MjS(τ)Mj)
−1 MjB

T (τ)P(τ + 1)A(τ)Lj ,

τ = k, . . . , k + T − 1
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Decentralized linear quadratic control
One-step convex relaxation

Overview:

Satisfies necessary conditions of a saddle point

Does not depend on the initial condition x(k)

I is not fully known by any system

Closed-form solution

Computational complexity of O(n3) [Pedroso and Batista, 2021b]

I same as centralized

Can we find any physical interpretation?
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Decentralized linear quadratic control
One-step convex relaxation

Can we find any physical interpretation?

Yes!

One-step relaxation is equivalent to

minimize
K(τ)∈Rm×n

tr(P(τ))

subject to K(τ) ∈ Sparse(E)

for τ = k + T − 1, . . . , k

I Decoupled in time (greedy)

I Ignores cross-correlation between states

I Proof in [Pedroso and Batista, 2021a]
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Decentralized linear quadratic control
Linear quadratic tracker

Extension from regulator to tracker

Feasible reference trajectory Unfeasible reference trajectory

Define error dynamics
Equivalent to regulator problem

Redefine cost function
Classical approaches require full state

Pedroso and Batista Decentralized linear quadratic control DCS, KTH, 2022 29 / 63



Decentralized linear quadratic control
Linear quadratic tracker

Unfeasible reference trajectory r(k) ∈ Ro

Goal:

I Track r(k) with z(k) = H(k)x(k)

Assumptions:

I o = m

I H(τ) is full-rank

I Slowly time-varying dynamics
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Decentralized linear quadratic control
Linear quadratic tracker

Define equilibrium x̄(k) and ū(k){
x̄(k) = A(k)x̄(k) + B(k)ū(k)

H(k)x̄(k) = r(k)

Define the error e(k) := x(k)− x̄(k)

e(k + 1) = A(k)e(k) + B(k)(u(k)− ū(k))− (x̄(k + 1)− x̄(k))

Define ua(k)
x̄(k + 1)− x̄(k) = B(k)ua(k) + d(k)

Pedroso and Batista Decentralized linear quadratic control DCS, KTH, 2022 31 / 63



Decentralized linear quadratic control
Linear quadratic tracker

Error dynamics:

e(k + 1) = A(k)e(k) + B(k)(u(k)− ū(k)− ua(k))− d(k)

Minimize the component of the error in the tracking space

minimize
x̄(τ),ū(τ),τ=k,...,k+T
ua(τ),τ=k,...,k+T−1

k+T−1∑
τ=k

||H(τ + 1)d(τ)||2

subject to

{
x̄(τ) = A(τ)x̄(τ) + B(τ)ū(τ)

H(τ)x̄(τ) = r(τ)
, τ = k , . . . , k + T .

Closed-form solution in [Pedroso and Batista, 2021a]
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DECENTER Toolbox

Implementations in MATLAB

Documentation

Simulations source code

http://decenter2021.github.io
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Example: Experimental quadruple-tank process
Experimental setup

MATLAB/Simulink interface

Shift between numeric/experimental

Inexpensive and fast to assemble

Open-source and reproducible

Suitable education/research

github.com/decenter2021/quadruple-

tank-setup
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Example: Experimental quadruple-tank process
Process nonlinear model

ḣ1(t) = − a1

A1

√
2gh1(t) +

a3

A1

√
2gh3(t) +

γ1k1

A1
u1(t)

ḣ2(t) = − a2

A2

√
2gh2(t) +

a4

A2

√
2gh4(t) +

γ2k2

A2
u2(t)

ḣ3(t) = − a3

A3

√
2gh3(t) +

(1− γ2)k2

A3
u2(t)

ḣ4(t) = − a4

A4

√
2gh4(t) +

(1− γ1)k1

A4
u1(t)

Goal: Track r(t) with [h1(t) h2(t)]T

Tank 3

Tank 1 Tank 2

h1

Tank 4

Pump 1 Pump 2

u1 u2

h2

h3

h4
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Example: Experimental quadruple-tank process
LTV model and decentralized framework

Dynamic coupling graph dG Communication graph G

x(k) = A(k)x(k) + B(k)u(k) ui (k) = −Ki ,i (k)xi (k) + ūi (k) + uai (k)
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Example: Experimental quadruple-tank process
Numeric comparison with centralized
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Example: Experimental quadruple-tank process
Experimental results
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Example: Signal control for urban traffic networks

Two decentralized signal control methods

I DTUC

I D2TUC

Store-and-forward macroscopic model
([Gazis and Potts, 1963, Aboudolas et al., 2009])

Match the performance of centralized TUC ([Diakaki, 1999])
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Example: Signal control for urban traffic networks
Store-and-forward model

Z links, J signalized junctions
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Example: Signal control for urban traffic networks
Store-and-forward model

Directed graph dG := (VdG , EdG):

I Each junction is a vertex

I Each link is an edge
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Example: Signal control for urban traffic networks
Store-and-forward model

Each link z is characterized by:

I Saturation flow, Sz
I Turning rates, T : [T]z,w := tw ,z
I Exit rates, t0 := [t1,0 . . . tZ ,0]T
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Example: Signal control for urban traffic networks
Store-and-forward model

Signal control strategy:

I Cycle of duration C

I For each junction j there is a set of stages s ∈ Fj

I For each stages there is a set of links that have right of way
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Example: Signal control for urban traffic networks
Store-and-forward model

Green time gs of stage s:

I Minimum constraint

gs ≥ gs,min , s ∈ {1, . . . ,S}

I Cycle duration constraint∑
s∈Fj

gs + Lj = C , j ∈ {1, . . . , J}

where Lj is the inter-green time.
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Example: Signal control for urban traffic networks
Store-and-forward model

Store-and-forward Traffic flow approximation

Models green-red switchings within a whole cycle as a continuous flow of vehicles

uz(k) = SzGz(k)/C , z ∈ {1, . . . ,Z}

Gz(k) is the total green time of link z

Gz(k) =
∑

s:[S]zs 6=0
gs(k)
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Example: Signal control for urban traffic networks
Store-and-forward model

xz(k): number of vehicles in link z

0 ≤ xz(k) ≤ xz,max

Pedroso and Batista Decentralized linear quadratic control DCS, KTH, 2022 47 / 63



Example: Signal control for urban traffic networks
Store-and-forward model

Store-and-forward system (stage green-times g(k) ∈ RS)

x(k + 1) = Ax(k) + Bgg(k) + Cd(k)

I Can be freely selected

Store-and-forward system (link green-times G(k) ∈ RZ )

x(k + 1) = Ax(k) + BGG(k) + Cd(k)

I Distributed among the stages in post-processing
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Example: Signal control for urban traffic networks
Cost function

J(k) := xT (T )Qx(T ) +
k+T−1∑
τ=k

(
xT (τ)Qx(τ) + (g(τ)− ḡ(τ))TR(g(τ)− ḡ(τ))

)

Penalize relative occupancy

Q = diag

(
1

x1,max
, . . . ,

1

xZ ,max

)
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Example: Signal control for urban traffic networks
Decentralized framework

Configuration Ψ Configuration Φ
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Example: Signal control for urban traffic networks
DTUC

Input: stage green-times g(k) ∈ RS

x(k + 1) = Ax(k) + Bgg(k) + Cd(k) (1)

Proposition (Controllability)

Consider a feasible traffic network characterized by (G,T, t0) and a minimum complete
stage strategy characterized by a stage matrix S. Let C be the controllability matrix of
the store-and-forward LTI system (2). Then, rank(C) = S ≤ Z .

It is not controllable in general!
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Example: Signal control for urban traffic networks
DTUC

Canonical Structure Theorem: z(k) = W−1x(k)

Controllable component: z1(k + 1) = z1(k) + B̂g1g(k) + C d̂1(k)

Uncontrollable component: z2(k + 1) = z2(k) + C d̂2(k) .

The uncontrollable component grows unbounded?

I No!

I Queue length constraint: 0 ≤ xz(k) ≤ xz,max

I Upstream gating
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Example: Signal control for urban traffic networks
DTUC

Regulate the controllable component

J(k) := z1
T (T )Q1z1(T ) +

k+T−1∑
τ=k

(
z1

T (τ)Q1z1(τ) + (g(τ)− ḡ(τ))TR(g(τ)− ḡ(τ))
)

Non-ideal Q1

Q1 =
[
IS 0S×(Z−S)

]
WTQW

[
IS

0(Z−S)×S

]

Sparsity constraint

K1(τ)
[
IS 0S×(Z−S)

]
W−1 ∈ Sparse(E)
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Example: Signal control for urban traffic networks
D2TUC

Input: link green-times G(k) ∈ RZ

x(k + 1) = Ax(k) + BGG(k) + Cd(k) (2)

Proposition (Controllability)

Consider a feasible traffic network characterized by (G,T, t0). Then, the
store-and-forward LTI system (48) is controllable.

Apply one-step method directly

Quadratic continuous knapsack problem in each junction
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Example: Signal control for urban traffic networks
Chania urban road network

Chania urban traffic network
I J = 16 signalized junctions
I L = 60 links
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Example: Signal control for urban traffic networks
SAFFRON

SAFFRON:

open-source tools for store-and-forward models

traffic network model of Chania, Greece

implementation source-code of signal control strategies

nice international collaboration

github.com/decenter2021/SAFFRON
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Example: Signal control for urban traffic networks
Chania urban road network

D2TUC configuration Φ
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(a) Occupancy (b) Green-times
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Example: Signal control for urban traffic networks
Chania urban road network
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(a) Controllable (b) Uncontrollable

D2TUC matches the perfomance of TUC!
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Future work

We achieved:

Well-performing convex relaxation

Decentralized gain synthesis (local feedback)

Local communication

But LTV gains require real-time synthesis:

Distributed real-time synthesis

I We can leverage these results

I My MSc thesis
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Thank you!
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