Decentralized linear quadratic control for networks with time-varying dynamics: design and applications

L. Pedroso¹ P. Batista¹

¹Institute for Systems and Robotics, Instituto Superior Técnico, Universidade de Lisboa, Portugal

Division of Decision and Control Systems, KTH Royal Institute of Technology 26th July 2022

Who's Leonardo?

Bachelor (3 years) in Aerospace Engineering in 2020

Master (2 years) expected in October 2022

DECENTER project since 2019

- ▶ 5 papers in peer-reviewed journals
- 2 papers in peer-reviewed conferences

Looking for a high-impact challenging PhD position

Outline

Introduction

- Motivation
- State-of-the-art overview
- 2 Decentralized linear quadratic control
 - Approach overview
 - Problem formulation
 - One-step convex relaxation
 - Linear quadratic tracker

3 DECENTER toolbox

- Example: Experimental quadruple-tank
- Example: Traffic networks
 - Store-and-forward model
 - Cost function
 - Decentralized framework
 - DTUC
 - D2TUC
 - Chania urban road network
- 6 Future wor

References

Introduction

Motivation

commons.wikimedia.org/w/index.php?curid=36426738

commons.wikimedia.org/w/index.php?curid=6609322

commons.wikimedia.org/w/index.php?curid=70226122

Introduction State-of-the-art overview

DCS, KTH, 2022 5/63

3

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Introduction State-of-the-art overview

DCS, KTH, 2022 5 / 63

3

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Outline

Introduction

- Motivation
- State-of-the-art overview

2 Decentralized linear quadratic control

- Approach overview
- Problem formulation
- One-step convex relaxation
- Linear quadratic tracker

3 DECENTER toolbox

- Example: Experimental quadruple-tank
- Example: Traffic networks
- Store-and-forward model
- Cost function
- Decentralized framework
- DTUC
- D2TUC
- Chania urban road network
- 5 Future wor

References

Approach overview

Control **objective**

Local dynamics and couplings

- Common/decoupled
- Quadratic cost
- Regulator

LTV

- Approx. **nonlinear** sys.
- **Sparse** couplings

Decentralized framework

- Linear feedback
- Local feedback

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Ped

Pedroso, L. and Batista, P. (2021b).

Discrete-time decentralized linear quadratic control for linear time-varying systems. International Journal of Robust and Nonlinear Control.

э

Approach overview

DCS, KTH, 2022 7 / 63

- 34

イロト イポト イヨト イヨト

Approach overview

DCS, KTH, 2022 7/63

3

イロト イポト イヨト イヨト

Approach overview

7/63

Problem formulation: Local dynamics

8 / 63

Problem formulation: Local dynamics

Directed dynamic coupling graph ${}^{d}\mathcal{G}$:

- Each system is a node
- Each directed edge is a dynamical coupling

$$\mathbf{x}_i(k+1) = \sum_{j \in {}^d \mathcal{D}_i^-} \left(\mathbf{A}_{i,j}(k) \mathbf{x}_j(k) + \mathbf{B}_{i,j}(k) \mathbf{u}_j(k) \right)$$

э

Problem formulation: Global dynamics

$$\mathbf{x}_{i}(k+1) = \sum_{j \in {}^{d}\mathcal{D}_{i}^{-}} (\mathbf{A}_{i,j}(k)\mathbf{x}_{j}(k) + \mathbf{B}_{i,j}(k)\mathbf{u}_{j}(k))$$

$$\downarrow$$

$$\mathbf{x}(k+1) = \mathbf{A}(k)\mathbf{x}(k) + \mathbf{B}(k)\mathbf{u}(k)$$

イロト 不得下 イヨト イヨト 二日

Problem formulation: Cost function

11/63

Problem formulation: Cost function

$$J(k) := \mathbf{x}^{T}(k+T)\mathbf{Q}(k+T)\mathbf{x}(k+T) + \sum_{\tau=k}^{k+T-1} \left(\mathbf{x}^{T}(\tau)\mathbf{Q}(\tau)\mathbf{x}(\tau) + \mathbf{u}^{T}(\tau)\mathbf{R}(\tau)\mathbf{u}(\tau)\right)$$

Global finite-horizon cost:

- **MPC**-like scheme to solve **infinite-horizon** problem
- Network-wise or decoupled control objectives

э

Problem formulation: Decentralized framework

13/63

Problem formulation: Decentralized framework

Directed communication graph G:

- Each system is a node
- ▶ If system *i* has access to \mathbf{x}_i is represented by edge $j \rightarrow i$

$$\mathbf{u}_i(k) = -\sum_{j\in\mathcal{D}_i^-} \mathbf{K}_{i,j}(k) \mathbf{x}_j(k)$$

э

Problem formulation: Information constraints

$$\mathbf{u}_i(k) = -\sum_{j\in\mathcal{D}_i^-} \mathbf{K}_{i,j}(k) \mathbf{x}_j(k)$$
 \downarrow
 $\mathbf{u}(k) = -\mathbf{K}(k) \mathbf{x}(k)$

But $\mathbf{K}(k)$ is sparse: $\mathbf{K}(k) \in \text{Sparse}(\mathbf{E}_{D})$ $\text{Sparse}(\mathbf{E}) := \left\{ \mathbf{K} \in \mathbb{R}^{m \times n} : [\mathbf{E}]_{ij} = 0 \implies [\mathbf{K}]_{ij} = 0; i = 1, ..., m, j = 1, ..., n \right\}$

Pedroso and Batista

DCS, KTH, 2022 15 / 63

◆□▶ ◆冊▶ ◆三▶ ◆三▶ ○□ ● ●

Problem formulation: Nonconvex optimization problem

16 / 63

Problem formulation: Nonconvex optimization problem

At each discrete-time instant k:

$$\begin{array}{ll} \underset{\boldsymbol{\mathsf{K}}(\tau)\in\mathbb{R}^{m\times n}}{\text{minimize}} & J(k) \\ \tau=k,...,k+T-1 \\ \text{subject to} & \mathbf{x}(\tau+1)=\mathbf{A}(\tau)\mathbf{x}(\tau)+\mathbf{B}(\tau)\mathbf{u}(\tau), \ \tau=k,...,k+T-1 \ , \\ & \mathbf{K}(\tau)\in \operatorname{Sparse}(\mathbf{E}), \ \tau=k,...,k+T-1 \ , \end{array}$$

Nonconvex!

3

イロト 不得下 イヨト イヨト

One-step convex relaxation

18 / 63

One-step convex relaxation

Challenges:

Physically meaningful relaxation

Separation between optimal and relaxed solutions

Approach:

Obtain necessary conditions for a constrained minimum

Analyze a convenient potential saddle point

One-step convex relaxation

Augment J(k) to write the Lagrangian

$$J'(k) = \mathbf{x}^{T}(k+T)\mathbf{Q}(k+T)\mathbf{x}(k+T) + \sum_{\tau=k}^{k+T-1} \mathbf{x}^{T}(\tau) \left(\mathbf{Q}(\tau) + \mathbf{K}^{T}(\tau)\mathbf{R}(\tau)\mathbf{K}(\tau)\right)\mathbf{x}(\tau) + \sum_{\tau=k}^{k+T-1} \boldsymbol{\lambda}^{T}(\tau+1) \left[(\mathbf{A}(\tau) - \mathbf{B}(\tau)\mathbf{K}(\tau))\mathbf{x}(\tau) - \mathbf{x}(\tau+1)\right]$$

Define the Hamiltonian

$$H(k) := \mathbf{x}^{\mathsf{T}}(k) \left(\mathbf{Q}(k) + \mathbf{K}^{\mathsf{T}}(k) \mathbf{R}(k) \mathbf{K}(k) \right) \mathbf{x}(k) + \boldsymbol{\lambda}^{\mathsf{T}}(k+1) \left(\mathbf{A}(k) - \mathbf{B}(k) \mathbf{K}(k) \right) \mathbf{x}(k)$$

- 34

イロト 不得下 イヨト イヨト

One-step convex relaxation

Rewrite the Lagrangian

$$J'(k) = \mathbf{x}^{T}(k+T)\mathbf{Q}(k+T)\mathbf{x}(k+T) - \boldsymbol{\lambda}^{T}(k+T)\mathbf{x}(k+T) + H(k) + \sum_{\tau=k+1}^{k+T-1} \left(H(\tau) - \boldsymbol{\lambda}^{T}(\tau)\mathbf{x}(\tau)\right)$$

Stationarity:

$$\begin{cases} \frac{\partial J'(k)}{\partial \lambda(\tau)} = 0, \quad \tau = k+1, \dots, k+T \\ \frac{\partial J'(k)}{\partial x(\tau)} = 0, \quad \tau = k+1, \dots, k+T \\ \mathbf{I}_{i}^{T} \frac{\partial J'(k)}{\partial \mathbf{K}(\tau)} \mathbf{I}_{j} = 0, \quad [\mathbf{E}_{\mathcal{D}}]_{ij} \neq 0, \ \tau = k, \dots, k+T-1 \\ \mathbf{I}_{i}^{T} \mathbf{K}(\tau) \mathbf{I}_{j} = 0, \quad [\mathbf{E}_{\mathcal{D}}]_{ij} = 0, \ \tau = k, \dots, k+T-1 \end{cases}$$

$$[\mathbf{I}_{i}]_{k} = \begin{cases} 1, \ k = i \\ 0, \ k \neq i \end{cases}$$

Result: Neat identities involving the partial derivatives of the Hamiltonian

Pedroso and Batista

э

イロト イヨト イヨト

One-step convex relaxation

Lemma

From the stationarity conditions: $\lambda(k) = 2\mathbf{P}(k)\mathbf{x}(k)$

and

$$\mathbf{x}(i)^{T}\mathbf{P}(i)\mathbf{x}(i) = \sum_{\tau=i}^{k+T-1} \mathbf{x}^{T}(\tau) \left(\mathbf{Q}(\tau) + \mathbf{K}^{T}(\tau)\mathbf{R}(\tau)\mathbf{K}(\tau)\right) \mathbf{x}(\tau) + \mathbf{x}^{T}(k+T)\mathbf{Q}(k+T)\mathbf{x}(k+T), \quad i = k, \dots, k+T$$

> Proof by mathematical induction in [Pedroso and Batista, 2021a]

Similar to centralized

Pedroso and Batista

イロト 不得 トイヨト イヨト 二日

One-step convex relaxation

Lemma

Necessary condition for optimal gains:

$$\begin{cases} \mathbf{I}_{i}^{T} \left[\left(\mathbf{S}(\tau) \mathbf{K}(\tau) - \mathbf{B}^{T}(\tau) \mathbf{P}(\tau+1) \mathbf{A}(\tau) \right) \mathbf{x}(\tau) \mathbf{x}^{T}(\tau) \right] \mathbf{I}_{j} = 0 &, [\mathbf{E}_{\mathcal{D}}]_{ij} \neq 0 \\ \mathbf{I}_{i}^{T} \mathbf{K}(\tau) \mathbf{I}_{j} = 0 &, [\mathbf{E}_{\mathcal{D}}]_{ij} \neq 0 \end{cases}$$

for
$$au = k, \ldots, k + T - 1$$
,

$$\mathbf{S}(\tau) := \mathbf{B}^{\mathsf{T}}(\tau) \mathbf{P}(\tau+1) \mathbf{B}(\tau) + \mathbf{R}(\tau)$$

? Why is
$$\mathbf{x}(\tau)\mathbf{x}^{T}(\tau)$$
 (of rank 1) here?

3

イロト イヨト イヨト

One-step convex relaxation

Necessary condition for **optimal gains**:

$$\begin{cases} \mathbf{I}_{i}^{T} \left[\left(\mathbf{S}(\tau) \mathbf{K}(\tau) - \mathbf{B}^{T}(\tau) \mathbf{P}(\tau+1) \mathbf{A}(\tau) \right) \mathbf{x}^{T}(\tau) \mathbf{x}(\tau) \right] \mathbf{I}_{j} = 0 &, [\mathbf{E}_{\mathcal{D}}]_{ij} \neq 0 \\ \mathbf{I}_{i}^{T} \mathbf{K}(\tau) \mathbf{I}_{j} = 0 &, [\mathbf{E}_{\mathcal{D}}]_{ij} \neq 0, \end{cases}$$

Saddle point satisfies these conditions

 $\mathbf{x}(k)$ is **not fully known** by any system

🞯 🕺 Robust feedback

Relaxed one-step conditions:

$$\begin{cases} \mathbf{I}_i^T \left[\left(\mathbf{S}(\tau) \mathbf{K}(\tau) - \mathbf{B}^T(\tau) \mathbf{P}(\tau+1) \mathbf{A}(\tau) \right) \right] \mathbf{I}_j = 0 &, [\mathbf{E}_{\mathcal{D}}]_{ij} \neq 0 \\ \mathbf{I}_i^T \mathbf{K}(\tau) \mathbf{I}_j = 0 &, [\mathbf{E}_{\mathcal{D}}]_{ij} \neq 0, \end{cases}$$

One-step convex relaxation

Theorem (One-step relaxed solution)

Let I_j denote a column vector whose entries are all set to zero except for the *j*-th one, which is set to 1, and $\mathcal{L}_j := \operatorname{diag}(I_j)$. Define $\mathbf{m}_j \in \mathbb{R}^m$ as

$$\begin{cases} \mathbf{m}_{j}(i) = 0, & [\mathbf{E}]_{ij} = 0 \\ \mathbf{m}_{j}(i) = 1, & [\mathbf{E}]_{ij} \neq 0 \end{cases}, i = 1, ..., m,$$

and let $\mathcal{M}_j := \operatorname{diag}(m_j)$. Then, the gains of the one-step relaxation are given by

$$\mathbf{K}(\tau) = \sum_{j=1}^{n} (\mathbf{I} - \mathcal{M}_{j} + \mathcal{M}_{j} \mathbf{S}(\tau) \mathcal{M}_{j})^{-1} \mathcal{M}_{j} \mathbf{B}^{T}(\tau) \mathbf{P}(\tau+1) \mathbf{A}(\tau) \mathcal{L}_{j},$$

 $\tau = k, \ldots, k + T - 1$

э

イロト イヨト イヨト

One-step convex relaxation

Overview:

Satisfies necessary conditions of a saddle point

- Does **not depend** on the initial condition $\mathbf{x}(k)$
 - ▶ is **not fully known** by any system

Closed-form solution

- **Computational complexity** of $\mathcal{O}(n^3)$ [Pedroso and Batista, 2021b]
 - same as centralized
- Can we find any physical interpretation?

One-step convex relaxation

Yes!

One-step relaxation is **equivalent** to

 $\begin{array}{ll} \underset{\mathbf{K}(\tau)\in\mathbb{R}^{m\times n}}{\text{minimize}} & \operatorname{tr}(\mathbf{P}(\tau))\\ \text{subject to} & \mathbf{K}(\tau)\in\operatorname{Sparse}(\mathbf{E}) \end{array}$

for $au = k + T - 1, \dots, k$

- Decoupled in time (greedy)
- Ignores cross-correlation between states
- Proof in [Pedroso and Batista, 2021a]

- 31

マヨト イモト イモト

One-step convex relaxation

Pedroso and Batista

Decentralized linear quadratic control

DCS, KTH, 2022 28 / 63

Linear quadratic tracker

DCS, KTH, 2022 29 / 63

Linear quadratic tracker

Unfeasible reference trajectory $\mathbf{r}(k) \in \mathbb{R}^{o}$

• Track
$$\mathbf{r}(k)$$
 with $\mathbf{z}(k) = \mathbf{H}(k)\mathbf{x}(k)$

Assumptions:

- ▶ o = m
- $H(\tau)$ is full-rank
- **Slowly** time-varying dynamics

- 34

1 E N

Linear quadratic tracker

Define **equilibrium** $\bar{\mathbf{x}}(k)$ and $\bar{\mathbf{u}}(k)$

$$\begin{cases} \bar{\mathbf{x}}(k) = \mathbf{A}(k)\bar{\mathbf{x}}(k) + \mathbf{B}(k)\bar{\mathbf{u}}(k) \\ \mathbf{H}(k)\bar{\mathbf{x}}(k) = \mathbf{r}(k) \end{cases}$$

Define the error $\mathbf{e}(k) := \mathbf{x}(k) - \bar{\mathbf{x}}(k)$

$$\mathbf{e}(k+1) = \mathbf{A}(k)\mathbf{e}(k) + \mathbf{B}(k)(\mathbf{u}(k) - \bar{\mathbf{u}}(k)) - (\bar{\mathbf{x}}(k+1) - \bar{\mathbf{x}}(k))$$

Define $\mathbf{u}_{\mathbf{a}}(k)$

$$\bar{\mathbf{x}}(k+1) - \bar{\mathbf{x}}(k) = \mathbf{B}(k)\mathbf{u}_{\mathbf{a}}(k) + \mathbf{d}(k)$$

- 34

イロト イヨト イヨト

Linear quadratic tracker

Error dynamics:

$$\mathbf{e}(k+1) = \mathbf{A}(k)\mathbf{e}(k) + \mathbf{B}(k)(\mathbf{u}(k) - \bar{\mathbf{u}}(k) - \mathbf{u}_{\mathbf{a}}(k)) - \mathbf{d}(k)$$

Minimize the component of the error in the tracking space

$$\begin{array}{l} \underset{\bar{\mathbf{x}}(\tau),\bar{\mathbf{u}}(\tau),\tau=k,\ldots,k+T}{\text{minimize}} & \sum_{\tau=k}^{k+T-1} ||\mathbf{H}(\tau+1)\mathbf{d}(\tau)||^2 \\ \underset{\mathbf{u}_{\mathbf{a}}(\tau),\tau=k,\ldots,k+T-1}{\text{subject to}} & \begin{cases} \bar{\mathbf{x}}(\tau) = \mathbf{A}(\tau)\bar{\mathbf{x}}(\tau) + \mathbf{B}(\tau)\bar{\mathbf{u}}(\tau) \\ \mathbf{H}(\tau)\bar{\mathbf{x}}(\tau) = \mathbf{r}(\tau) \end{cases} , \tau = k,\ldots,k+T \ . \end{array}$$

Closed-form solution in [Pedroso and Batista, 2021a]

Outline

Introduction

- Motivation
- State-of-the-art overview
- 2 Decentralized linear quadratic control
 - Approach overview
 - Problem formulation
 - One-step convex relaxation
 - Linear quadratic tracker

3 DECENTER toolbox

- Example: Experimental quadruple-tank
- Example: Traffic networks
- Store-and-forward model
- Cost function
- Decentralized framework
- DTUC
- D2TUC
- Chania urban road network
- 5 Future wor
- References

DECENTER Toolbox

Y Implementations in MATLAB

Documentation

Simulations source code

		il decenter20	091.github.io	¢		0 0
DECENTER		Download T	utorials Examples	Documentation	References Abo	ut Search
DECENTE Distributed control ar	R id estimation toolbox for	MATLAB				
The second secon	Lank betank bentrol entailed control ang the see-	Decentralized EKP for Ba-Constellations A 392 movel distributed desenvalued one naryatics is a shell of the sestellation.	Moving finite-horizor hutering finite-horizor hutering finite-horizon hutering finite-horizon hutering finite-horizon hutering finite-horizon hutering finite-horizon	MHE filter 25 filter spothesis 10 method.	Causal finite-horizon 1 Userial for LTV system Userial on decembre 28, 121 Advis on decembre 28, 121 Advis on decembre 28, 121	Kaiman filter 19 an filter synthesis method.
Decentralized control by engented urban road r	trategy for pectrategy for pectrategy for twenty for tw	destination of tank network	13 19 19 0 0ne-step Kalman filth LTV systems III Indexe One-step (121) Donaid an Accession 21 (121)	er tutorial for Fi	10 inite-horizon Kalman or LTV systems Updated Desenter 17, 200	filter tutorial

http://decenter2021.github.io

DCS, KTH, 2022 34 / 63

3

• • • • • • • • •

Outline

Introduction

- Motivation
- State-of-the-art overview
- 2 Decentralized linear quadratic control
 - Approach overview
 - Problem formulation
 - One-step convex relaxation
 - Linear quadratic tracker

3 DECENTER toolbox

4

Example: Experimental quadruple-tank

Example: Traffic networks

- Store-and-forward model
- Cost function
- Decentralized framework
- DTUC
- D2TUC
- Chania urban road network
- 6 Future worl
- References

MATLAB/Simulink interface

Shift between **numeric**/experimental

Inexpensive and fast to assemble

Open-source and reproducible

 $Suitable \ education/research$

github.com/decenter2021/quadrupletank-setup

Example: Experimental quadruple-tank process Process nonlinear model

$$\dot{h}_{1}(t) = -\frac{a_{1}}{A_{1}}\sqrt{2gh_{1}(t)} + \frac{a_{3}}{A_{1}}\sqrt{2gh_{3}(t)} + \frac{\gamma_{1}k_{1}}{A_{1}}u_{1}(t)$$

$$\dot{h}_{2}(t) = -\frac{a_{2}}{A_{2}}\sqrt{2gh_{2}(t)} + \frac{a_{4}}{A_{2}}\sqrt{2gh_{4}(t)} + \frac{\gamma_{2}k_{2}}{A_{2}}u_{2}(t)$$

$$\dot{h}_{3}(t) = -\frac{a_{3}}{A_{3}}\sqrt{2gh_{3}(t)} + \frac{(1-\gamma_{2})k_{2}}{A_{3}}u_{2}(t)$$

$$\dot{h}_{4}(t) = -\frac{a_{4}}{A_{4}}\sqrt{2gh_{4}(t)} + \frac{(1-\gamma_{1})k_{1}}{A_{4}}u_{1}(t)$$
Pump 1
Pump 1
 \dot{u}_{1}
Pump 1
 \dot{u}_{1}
Pump 1
 \dot{u}_{1}
Pump 2

Goal: Track $\mathbf{r}(t)$ with $[h_1(t) h_2(t)]^T$

э

LTV model and decentralized framework

Dynamic coupling graph ${}^d\mathcal{G}$

Communication graph ${\mathcal G}$

 $\mathbf{x}(k) = \mathbf{A}(k)\mathbf{x}(k) + \mathbf{B}(k)\mathbf{u}(k)$

 $u_i(k) = -\mathbf{K}_{i,i}(k)\mathbf{x}_i(k) + \bar{u}_i(k) + u_i^a(k)$

э

Numeric comparison with centralized

Centralized (d = 15) One-step (d = 1) -One-step (d = 10) Reference 300 400 500 600 t (s) Centralized (d = 1) Centralized (d = 15) One-step (d = 1) -One-step (d = 1)

400

500

600

Centralized (d = 1)

39 / 63 DCS, KTH, 2022

Experimental results

DCS, KTH, 2022 40 / 63

Outline

- Motivation
- State-of-the-art overview
- - Approach overview
 - Problem formulation
 - One-step convex relaxation
 - Linear quadratic tracker

- Example: Traffic networks
 - Store-and-forward model
 - Cost function
 - Decentralized framework
 - DTUC
 - D2TUC
 - Chania urban road network

Example: Signal control for urban traffic networks

- Two decentralized signal control methods
 - DTUC
 - D2TUC

Store-and-forward macroscopic model ([Gazis and Potts, 1963, Aboudolas et al., 2009])

Match the performance of centralized TUC ([Diakaki, 1999])

Pedroso, L. and Batista, P. (2021a).

Decentralized store-and-forward based strategies for the signal control problem in large-scale congested urban road networks. *Transportation Research Part C: Emerging Technologies*, 132:103412.

< 回 > < 三 > < 三 >

Z links, J signalized junctions

DCS, KTH, 2022 43 / 63

э

< 17 ►

Directed graph ${}^{d}\mathcal{G} := (\mathcal{V}_{{}^{d}\mathcal{G}}, \mathcal{E}_{{}^{d}\mathcal{G}})$:

- Each junction is a vertex
- Each link is an edge

Each link z is characterized by:

- ▶ Saturation flow, S_z
- Turning rates, $\mathbf{T} : [\mathbf{T}]_{z,w} := t_{w,z}$

• Exit rates,
$$\mathbf{t_0} := [t_{1,0} \ \dots \ t_{Z,0}]$$

Signal control strategy:

- **Cycle** of duration C
- For each junction *j* there is a set of stages $s \in \mathcal{F}_j$
- For each stages there is a set of links that have right of way

Green time *gs* of stage *s*:

Minimum constraint

$$g_s \geq g_{s, \mathsf{min}} \;, s \in \{1, \dots, S\}$$

Cycle duration constraint

$$\sum_{s\in\mathcal{F}_j}g_s+L_j=C\;,\quad j\in\{1,\ldots,J\}$$

where L_j is the **inter-green** time.

э

Store-and-forward Traffic flow approximation

Models green-red switchings within a whole cycle as a continuous flow of vehicles

$$u_z(k) = S_z G_z(k)/C$$
, $z \in \{1,\ldots,Z\}$

 $G_z(k)$ is the **total green time** of link z

$$G_z(k) = \sum_{s: [\mathbf{S}]_{zs} \neq 0} g_s(k)$$

 $x_z(k)$: number of **vehicles** in link z

 $0 \leq x_z(k) \leq x_{z,\max}$

< 一型

э

Store-and-forward system (stage green-times $\mathbf{g}(k) \in \mathbb{R}^{S}$)

$$\mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{B}_{\mathbf{g}}\mathbf{g}(k) + C\mathbf{d}(k)$$

Can be freely selected

Store-and-forward system (link green-times $\mathbf{G}(k) \in \mathbb{R}^Z$)

$$\mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{B}_{\mathbf{G}}\mathbf{G}(k) + C\mathbf{d}(k)$$

Distributed among the stages in post-processing

Example: Signal control for urban traffic networks Cost function

$$J(k) := \mathbf{x}^{\mathsf{T}}(\mathsf{T})\mathbf{Q}\mathbf{x}(\mathsf{T}) + \sum_{\tau=k}^{k+\mathsf{T}-1} \left(\mathbf{x}^{\mathsf{T}}(\tau)\mathbf{Q}\mathbf{x}(\tau) + (\mathbf{g}(\tau) - \bar{\mathbf{g}}(\tau))^{\mathsf{T}}\mathbf{R}(\mathbf{g}(\tau) - \bar{\mathbf{g}}(\tau)) \right)$$

Penalize relative occupancy

$$\mathbf{Q} = \operatorname{diag}\left(\frac{1}{x_{1,\max}}, \dots, \frac{1}{x_{Z,\max}}\right)$$

DCS, KTH, 2022 49 / 63

э

Image: A math a math

Example: Signal control for urban traffic networks Decentralized framework

Configuration Ψ

Configuration Φ

< /□ > < Ξ

э

Example: Signal control for urban traffic networks DTUC

Input: stage green-times $\mathbf{g}(k) \in \mathbb{R}^{S}$

$$\mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{B}_{\mathbf{g}}\mathbf{g}(k) + C\mathbf{d}(k)$$
(1)

Proposition (Controllability)

Consider a feasible traffic network characterized by $(\mathcal{G}, \mathbf{T}, \mathbf{t}_0)$ and a minimum complete stage strategy characterized by a stage matrix **S**. Let \mathcal{C} be the controllability matrix of the store-and-forward LTI system (2). Then, rank $(\mathcal{C}) = S \leq Z$.

It is not controllable in general!

Example: Signal control for urban traffic networks DTUC

Canonical Structure Theorem:
$$z(k) = W^{-1}x(k)$$

Controllable component: $z_1(k+1) = z_1(k) + \hat{B}_{g1}g(k) + C\hat{d}_1(k)$

Uncontrollable component: $\mathbf{z}_2(k+1) = \mathbf{z}_2(k) + C \hat{\mathbf{d}}_2(k)$.

The uncontrollable component grows unbounded?

► No!

- Queue length constraint: $0 \le x_z(k) \le x_{z,\max}$
- Upstream gating

Example: Signal control for urban traffic networks DTUC

@ Regulate the **controllable** component

$$J(k) := \mathbf{z_1}^T(T)\mathbf{Q_1}\mathbf{z_1}(T) + \sum_{\tau=k}^{k+T-1} \left(\mathbf{z_1}^T(\tau)\mathbf{Q_1}\mathbf{z_1}(\tau) + (\mathbf{g}(\tau) - \bar{\mathbf{g}}(\tau))^T \mathbf{R}(\mathbf{g}(\tau) - \bar{\mathbf{g}}(\tau)) \right)$$

Non-ideal
$$\mathbf{Q}_{1}$$

 $\mathbf{Q}_{1} = \begin{bmatrix} \mathbf{I}_{S} & \mathbf{0}_{S \times (Z-S)} \end{bmatrix} \mathbf{W}^{T} \mathbf{Q} \mathbf{W} \begin{bmatrix} \mathbf{I}_{S} \\ \mathbf{0}_{(Z-S) \times S} \end{bmatrix}$

$$\mathbf{K}_{1}(\tau) \begin{bmatrix} \mathbf{I}_{\mathcal{S}} & \mathbf{0}_{\mathcal{S} \times (\mathcal{Z} - \mathcal{S})} \end{bmatrix} \mathbf{W}^{-1} \in \operatorname{Sparse}(\mathbf{E})$$

э

Example: Signal control for urban traffic networks D2TUC

Input: link green-times $\mathbf{G}(k) \in \mathbb{R}^{Z}$

$$\mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{B}_{\mathbf{G}}\mathbf{G}(k) + C\mathbf{d}(k)$$
(2)

Proposition (Controllability)

Consider a feasible traffic network characterized by $(\mathcal{G}, \mathbf{T}, \mathbf{t_0})$. Then, the store-and-forward LTI system (48) is controllable.

Apply one-step method directly

Quadratic continuous knapsack problem in each junction

Example: Signal control for urban traffic networks

Chania urban road network

Chania urban traffic network

- \blacktriangleright J = 16 signalized junctions
- ► *L* = 60 links

Example: Signal control for urban traffic networks SAFFRON

SAFFRON:

open-source tools for store-and-forward models

traffic network model of Chania, Greece

implementation source-code of signal control strategies

nice international collaboration

github.com/decenter2021/SAFFRON

Pedroso, L., Batista, P., Papageorgiou, M., and Kosmatopoulos, E. (2022). Saffron: Store-and-forward model toolbox for urban road network signal control in matlab. (accepted for presentation at the 25th IEEE Intelligent Transportation Systems Conference (ITSC 2022)).

K A E K A E K

Example: Signal control for urban traffic networks Chania urban road network

D2TUC configuration Φ

DCS, KTH, 2022 57 / 63

Example: Signal control for urban traffic networks Chania urban road network

D2TUC matches the perfomance of **TUC**!

Pe	droce	a - nc	1 81	tieta.
1 5	ulusu	ланс	1 00	llista

Decentralized linear quadratic control

э

イロト 不通 ト イヨト イヨ

Outline

- Motivation
- State-of-the-art overview
- - Approach overview
 - Problem formulation
 - One-step convex relaxation
 - Linear quadratic tracker

- Store-and-forward model
- Cost function
- Decentralized framework
- DTUC
- D2TUC
- Chania urban road network

Future work

2 E

Future work

We achieved:

Well-performing **convex relaxation**

Decentralized gain synthesis (local feedback)

Local communication

But LTV gains require real-time synthesis:

Distributed real-time synthesis

- We can leverage these results
- ► My MSc thesis

Thank you!

- 32

・ロト ・四ト ・ヨト ・ヨト

Outline

Introduction

- Motivation
- State-of-the-art overview
- 2 Decentralized linear quadratic control
 - Approach overview
 - Problem formulation
 - One-step convex relaxation
 - Linear quadratic tracker

3 DECENTER toolbox

Example: Experimental quadruple-tank

- Example: Traffic networks
- Store-and-forward model
- Cost function
- Decentralized framework
- DTUC
- D2TUC
- Chania urban road network
- 6 Future w

References

< E

References I

Aboudolas, K., Papageorgiou, M., and Kosmatopoulos, E. (2009).

Store-and-forward based methods for the signal control problem in large-scale congested urban road networks. Transportation Research Part C: Emerging Technologies, 17(2):163–174.

Diakaki, C. (1999).

Integrated control of traffic flow in corridor networks.

Gazis, D. C. and Potts, R. B. (1963).

The oversaturated intersection. Technical report.

Pedroso, L. and Batista, P. (2021a).

Discrete-time decentralized linear quadratic control for linear time-varying systems. International Journal of Robust and Nonlinear Control.

Pedroso, L. and Batista, P. (2021b).

Efficient algorithm for the computation of the solution to a sparse matrix equation in distributed control theory. Mathematics, 9(13):1497.

Pedroso, L., Batista, P., Papageorgiou, M., and Kosmatopoulos, E. (2022).

Saffron: Store-and-forward model toolbox for urban road network signal control in matlab. (accepted for presentation at the 25th IEEE Intelligent Transportation Systems Conference (ITSC 2022)).

イロト 不得下 イヨト イヨト