
AcX: system, techniques, and experiments for Acronym
eXpansion [Extended Version]

João L. M. Pereira
INESC-ID, IST Universidade de Lisboa, and

University of Amsterdam
joaoplmpereira@tecnico.ulisboa.pt

João Casanova∗
Hitachi Vantara

joao.casanova@hitachivantara.com

Helena Galhardas
INESC-ID and IST, Universidade de Lisboa

helena.galhardas@tecnico.ulisboa.pt

Dennis Shasha
Courant Institute, New York University

shasha@cs.nyu.edu

Abstract

In this information-accumulating world, each of us must learn
continuously. To participate in a new field, or even a sub-field, one
must be aware of the terminology including the acronyms that
specialists know so well, but newcomers do not.

Building on state-of-the art acronym tools, our end-to-end acro-
nym expander system called AcX takes a document, identifies its
acronyms, and suggests expansions that are either found in the
document or appropriate given the subject matter of the document.
As far as we know, AcX is the first open source and extensible
system for acronym expansion that allows mixing and matching
of different inference modules. As of now, AcX works for English,
French, and Portuguese with other languages in progress.

This paper describes the design and implementation of AcX,
proposes three new acronym expansion benchmarks, compares state-
of-the-art techniques on them, and proposes ensemble techniques
that improve on any single technique. Finally, the paper evaluates
the performance of AcX in end-to-end experiments on a human-
annotated dataset of Wikipedia documents. Our experiments show
that human performance is still better than the best automated
approaches. Thus, achieving Acronym Expansion at a human level
is still a rich and open challenge.

1 Introduction

Take a great historical literary figure of any culture and put
him or her in the present. That person might barely understand a
newspaper headline partly because of the acronyms that have no
expansion. For example, a headline of the Washington Post on May
6, 2022 reads: "FDA limits use of J&J vaccine over rare blood clots".
Even Shakespeare would be at a loss.

Contemporary scholars encounter similar challenges when en-
tering a new field or a sister field. A typical document about wireless
communication is practically unintelligible to a computer scientist
with its talk of 3gPP, 5G. BS etc. Documents written for specialists
often neglect even to define the acronyms they use [6].

Further, the proper expansion of an acronym depends on context.
For example, "ISBN" can mean International Standard Book Number
in a publishing context, Integrated Satellite Business Network in
a satellite communication context, and International Society for

∗This work was performed while the author was a MSc student at IST, Universidade
de Lisboa.

Behavioral Neuroscience in a cognitive scientific context. Thus,
any system that hopes to help readers understand the intended
meaning of an undefined acronym in an document must expand
that acronym using its context.

1.1 High Level Architecture of an Acronym
Expansion System

An end-to-end acronym expander system comprises the following
two components:
(i) Extraction of each acronym and (when present) its expansion
within a text. For example, if a given text has "ISBN (Integrated
Satellite Business Network)" then "ISBN" would be the acronym and
"Integrated Satellite Business Network" would be the expansion.
We call this in-expansion because this can be done for a particular
document based solely on its own text.
(ii) In the case that an acronym is not expanded in the text of a
document, out-expansion chooses an expansion from a large parsed
corpus (training corpus) of other documents (e.g., Wikipedia).

This paper makes the following system and data contributions:

• The end-to-end Acronym eXpander (AcX) system ac-
cepts a text document as input and outputs a list of acronym-
expansion pairs for the acronyms found in the document,
whether or not the expansions are in the document. As
far as we know, AcX is the first open source and extensible
system for acronym expansion that allows both the mixing
and the combination of different inference modules.
AcX is easily extendible to other languages.We already have
versions in English, French and Portuguese. Students with
no previous background in natural language processing
or machine learning have already done so for French and
Portuguese.

• A benchmark of in-expansion techniques (in-expan-
sion benchmark).Wemake use of four biomedical datasets
previously proposed in the literature (i.e., Medstract [29],
BIOADI [29], Schwartz and Hearst [29], and Ab3p [29])
and one of the biggest sentence based datasets from the
scientific domain (i.e., SciAI [76]). Additionally, we have cre-
ated a new dataset composed of Wikipedia documents from
the Computing category. We calculate the precision, recall,
and F1-measure for the extraction of both acronyms and
acronym-expansion pairs. In addition, we measure training

João L. M. Pereira, João Casanova, Helena Galhardas, and Dennis Shasha

and execution times. Additionally, we have implemented, in-
tegrated and evaluated two rule-based (Schwartz andHearst
[63], MadDog [74]) and two machine-learning (based on
SciBERT [7] used in [68], and SciDr [68]) acronym-expansion
extraction techniques. Our experimental results show that
there is not a single best technique for every dataset. More-
over, rule-based techniques overall achieve better precision
while machine-learning techniques achieve better recall.

• A benchmark of out-expansion techniques (out-expan-
sion benchmark). We evaluate out-expansion techniques
on three datasets from different domains previously used
in related work that contain documents (i.e., MSH [58], Sci-
WISE [58], and CS Wiki [73]) and one that is constructed
from independent sentences from the scientific domain (i.e.,
SciAD [75] revised by Egan and Bohannon [21]).
Some of the out-expansion techniques we consider have
already been proposed in related work: Classic Context Vec-
tor [2, 42, 58], Surrounding Based Embedding [42], Thakker
et al. [73], and Unsupervised Abbreviation Disambiguation
[16]. Most recently, competitors of the SDU@AAAI compe-
tition [75] mainly used pre-trained language models based
on Transformer neural networks like BERT [20] and SciB-
ERT [7]. For purposes of out-expansion, we have adapted
and evaluated: (i) the out-expander of the MadDog system
[74]; (ii) SciDr [68] (which was originally hard coded to
apply to the sentences of the SDU@AAAI competition, but
we have extended it to multiple datasets of documents); (iii)
LUKE (Language Understanding with Knowledge-based
Embeddings) [81] originally for Entity Disambiguation, but
we extended it to use acronyms and expansions; and (iv)
techniques from Natural Language Processing (i.e., Term
Frequency–Inverse Document Frequency [35], Latent Dirich-
let Allocation [9], Doc2Vec [41], and Sentence Bidirectional
Encoder Representations from Transformers (SBERT) [61]).
We have also embedded the outputs of a variety of out-
expansion techniques as features for machine learning clas-
sifiers. The net result is that AcX is an extensible system
able to create a new set of out-expansion pipelines out of
combinations of user-chosen techniques.
We evaluate the techniques using out-expansion accuracy
(most common for these kind of disambiguation problems)
and the macro F1-measure (used in the SDU@AAAI compe-
tition). We also measure execution times for both technique
training and document processing. Our results show that
ensembler techniques give the best accuracies and macro
F1-measure. Cossim with SBERT and SciDr out-expander
are the indivudal techniques that score best. At a slight loss
in accuracy, Classic Context Vectors, or even Cossim or
SVMs with Doc2Vec are almost 10 times fast on average.

• A benchmark of end-to-end acronym expander sys-
tems (end-to-end benchmark). We create the first end-to-
end dataset of human-annotated documents that includes
both in- and out-expansions. We have built a human- -
generated end-to-end benchmark because previous anno-
tated datasets used automatic mechanisms to identify acro-
nyms and those automatic techniques are neither accurate
nor complete. Thus, human annotation offers a kind of gold

standard. We use this dataset to test AcX as well as the
state-of-the-art acronym expansion systems. We use all
English Wikipedia documents to train it. We compare the
MadDog system [74] against different pipelines of AcX. We
also compare AcX’s performance to that of human annota-
tors. Those systems are evaluated using the precision, recall,
and F1-measure for the acronym-expansion pairs returned
by a system for each document. We also measure execution
times. Our best system pipeline correctly expands most
acronyms (54.97% of F1-Measure, only about 27% worse
than humans) taking on average less than 2s per document.

• A link follower component within AcX system that in-
fers expansions based on the links of unexpanded acronyms
in input documents. Link following improves the F1-measure
of the best AcX pipeline identified by our end-to-end bench-
mark. Our results show that our best system pipeline slight
improves, +0.37 of F1-measure, when this component is
used.

This paper is organized as follows: Section 2 presents related
work, particularly techniques for in-expansion extraction and tech-
niques for acronym out-expansion, including references to entity
linking. Section 3 describes the AcX system and its components.
The next three sections (Sections 4, 5 6) describe the proposed
benchmarks and the corresponding analyses of the results obtained
from the experiments performed in the context of each benchmark.
Finally, Section 7 presents the main conclusions and ideas for future
work.

2 Related Work

This section describes thework that is closely relevant to acronym
expansion. Specifically, we start with in-expansion (acronym expan-
sion extraction within documents) in Section 2.1. Then, we move
on to out-expansion, which expands acronyms based on other doc-
uments and subject matter, in Section 2.2. Finally, we describe the
few known end-to-end acronym expander systems in Section 2.3.

2.1 In-expansion

Pustejovsky et al. [59] present a technique that uses a robust
parsing of the input text in order to reduce the context within
which to search for a candidate expansion. Schwartz and Hearst
[63] describe a technique that considers two possible placements of
expansions and acronyms in text (before or after), and chooses the
correct expansion by matching acronym characters with potential
expansion characters.

The MadDog [74] in-expander introduces minimal variations
of the Schwartz and Hearst technique [63] which refine the candi-
date expansions using a sequence of rules where each one yields
more precise expansions than the previous one. Nabeesath and
Nazeer [62] suggest new pattern heuristics as well as space reduc-
tion heuristics. The technique of Azimi et al. [5] uses the same
patterns as Schwartz and Hearst [63] but relaxes the heuristics for
acronym and expansion extraction: an acronym simply needs to
be a token composed of capital letters of some length 𝑛 and an
expansion shoudl be composed of 𝑛 tokens.

AcX: system, techniques, and experiments for Acronym eXpansion [Extended Version]

The technique proposed by Yarygina and Vassilieva [82] makes
use of user feedback and two decision tree classifiers in order to
filter candidate acronym-expansion pairs. Glass et al. [24] proposed
a technique that focuses on several languages other than English,
and scores candidate pairs by using word embeddings in order to
measure the similarity between candidate acronyms and expan-
sions.

In the techniques of Liu et al. [45] and Veyseh et al. [76], the task
of finding expansions for an acronym is formalized as a sequence
labeling problem solved by Conditional Random Fields (CRFs) [40]
based techniques. SciDr [68] in-expander and Zhu et al. [84] also
interpret acronym and expansion extraction as a sequence label-
ing task and make use of pre-trained BERT-based models coupled
with ensemble techniques to achieve higher model performance
than previous techniques. SciBERT is a language model based on
Transformers and pre-trained on research papers from Semantic
Scholar1. SciBERT is fine-tuned in SciDr [68] with training data
for the sequence labeling task. The SciDr [68] in-expander uses
an ensemble (blending) [67]. It splits the training data into train
and validation sets. Five different SciBERT models (e.g., number
of epochs and learning rate values) are constructed based on the
training set. Predictions on the validation set are then stored. The
expansions of the SciBERT models and the rule-based baseline
technique of the SDU@AAAI competition2 based on Schwartz and
Hearst [63], and additional syntactic features extracted from the
word-to-tag mapping are used to train five Conditional Random
Fields (CRFs) [40] in a 5-fold cross-validation setting. The ensemble
technique for these CRF models is based on hard voting.

The technique of Chopard and Spasić [14] also makes use of
word embeddings and calculates the Word Mover’s Distance [39] in
order to select the correct expansion from the candidate expansions
of an acronym. Jacobs et al. [31] propose a technique that focuses
on Modern Hebrew and makes use of a Support Vector Machine
(SVM) to select the correct expansion from several candidate ex-
pansions for an acronym. Similarly, to select the correct expansion
for biomedical documents, in the technique of Kuo et al. [38], an
SVM is implemented as well as Logistic Regression and Naïve Bayes
models.

Another line of work extracts acronyms not from text but from
Web Data like query click logs [32, 72].

Similar tasks are addressed by the fields of Named Entity Recog-
nition and Coreference Resolution. Named Entity Recognition [79]
finds entities mentioned in texts and labels them with high level cat-
egories like person and organization; or, for special applications, as
molecular biology entities covered in BioNLP tasks [18, 25] like cells
and proteins. Coreference Resolution [52] tries to match expressions
like I, my, or she to entities (e.g., names) in text.

2.2 Out-expansion

Classic Context Vector [2, 42, 58] is a typical baseline for out-
expansion. It represents the context of an acronym/expansion 𝑥

by the frequencies of the words in all documents containing 𝑥 .
Li et al. [42] propose two techniques based on word embeddings

1https://www.semanticscholar.org/
2https://github.com/amirveyseh/AAAI-21-SDU-shared-task-1-AI/blob/master/code/
character_match.py

from Word2Vec [46] to address the out-expansion problem. Their
best technique, called Surrounding Based Embedding, combines the
Word2Vec embeddings of thewords surrounding the acronym or the
expansion. Similarly to Surrounding Based Embedding, Ciosici et al.
[16] propose Unsupervised Acronym Disambiguation that replaces
each expansion occurrence in a collection of text documents by a
normalized token and retrains the Word2Vec google news model
[46] on that collection. The resulting model produces an embedding
for each normalized token, i.e., an expansion embedding.

Thakker et al. [73] creates document vector embeddings, using
Doc2Vec, for each document. For each set of documents 𝐷 contain-
ing an expansion for an acronym 𝐴, the system trains a Doc2Vec
model on 𝐷 which is used to infer the embedding for an input
document 𝑖 containing an undefined acronym 𝐴.

Charbonnier and Wartena [12] proposed an out-expansion tech-
nique based onWord2Vec embeddingsweighted by Term Frequency-
Inverse Document Frequency scores to find out-expansions for
acronyms in scientific document captions.

Recently, works in acronym disambiguation make use of neural
networks: MadDog [74] proposes a sequential model to encode
context in sentences followed by a feedforward network to clas-
sify the input sentence with an expansion. Competitors of the
SDU@AAAI competition [75] mainly use pre-trained language
models based on Transformer neural networks like BERT [20] and
SciBERT [7]. SciDr [68] formulates the out-expansion problem as
a substring prediction task. Given a list of expansions concatenated
with a sentence as input, it uses the pre-trained language model
SciBERT [7] and retrains that model in 5 cross-validations of the
sentences dataset to predict the substring, i.e., start and end word
indices corresponding to the predicted expansion. The authors also
assemble additional SciBERT models trained on external data. The
external data considered is constituted by Wikipedia pages that
contain an expansion found in the training data.

A related line of work explored the expansion of acronyms in
enterprise texts [23, 43]. For instance, in Li et al. [43], enterprise
textual documents as well as Wikipedia documents are used as
training data. Other works explored acronym out-expansion in
biomedical domains [44, 47, 48, 53, 59, 71, 77, 78, 83]. In our work,
we explore the general acronym expansion problemwhere the input
document domain or source is not previously known.

Entity Disambiguation (ED) (often referred to as Entity Link-
ing) is the task that links an entity found in text by Named Entity
Recognition (NER) to a knowledge base, usually Wikipedia pages
[50, 65, 66]. This field is analogous to out-expansion because an ex-
pansion can be seen as (and in some cases is) a Wikipedia page title.
Several techniques have been proposed to address this task. The sur-
vey [65] identifies the work of [81] that is part of the LUKE project3
as the best or one of the best on several datasets, some based on
Wikipedia. LUKE (Language Understanding with Knowledge-based
Embeddings) [80] is a pre-trained language model that learns to
predict masked words and entities. LUKE also employs a global
model that, given a set of entities in a document, assigns a ranking
among these entities based on confidence.

Moreover, Entity Disambiguation works have explored Natu-
ral Language Techniques that we also used in order to represent

3https://github.com/studio-ousia/luke

https://www.semanticscholar.org/
https://github.com/amirveyseh/AAAI-21-SDU-shared-task-1-AI/blob/master/code/character_match.py
https://github.com/amirveyseh/AAAI-21-SDU-shared-task-1-AI/blob/master/code/character_match.py
https://github.com/studio-ousia/luke

João L. M. Pereira, João Casanova, Helena Galhardas, and Dennis Shasha

documents like Term Frequency–Inverse Document Frequency (TF-
IDF) [35] in [13], Latent Dirichlet Allocation (LDA) [9] in [57], and
Doc2Vec [41] in [64, 85].

At BioNLP Open Shared Tasks 2019, Bacteria Biotope [10] con-
siders the goal of linking microbial taxa, habitats, and phenotype
to biological knowledge bases. To enrich the input, the authors
provided the in-expansions for the acronyms found in their dataset
using Ab3p [69]. The winner [36] matched the Word2Vec embed-
dings of entities in the text with the concepts in the knowledge
base. However, an acronym as an entity mention would have the
same Word2Vec embeddings regardless of the document.

Less directly related, but insightful, is the literature on Word
Sense Disambiguation (WSD) [49, 51] because that work also must
make use of the context around a token (in our case, an acronym;
in the word sense literature, a word). Raganato et al. [60] proposed
a benchmark for word sense disambiguation.

2.3 End-to-end Acronym Expanders

To our knowledge, systems that expand acronyms use a pre-
defined dictionary of acronym-expansions [1, 26] as opposed to
trying to discover the proper expansion based on context.

Only two end-to-end systems use context for out-expansion.
First, Ciosici and Assent [15] propose an end-to-end abbrevia-
tion/acronym expansion system architecture that performs out-
expansion. Unfortunately, their demo paper provides few technical
details and their code is proprietary.

Most recently, Veyseh et al. [74] proposes an end-to-end acronym
expansion system, called MadDog, which contains a rule-based in-
expander technique that improves on [63] and an out-expander
based on neural networks: a sequential model to encode context
followed by a feedforward network to classify the input with an
expansion. They also trained their models on a large corpus of
sentences.

Neither of these two systems provides a framework with easy
plug-in for different in and out-expansions techniques nor uses
other data sources. Moreover, neither was evaluated on an end-to-
end acronym expander benchmark.

3 AcX: an End-to-end Acronym eXpander
System

The AcX system (see Figure 1) consists of:
(i) A Database Creation process which generates an Expansion Data-
base4 that contains documents, acronyms and their correspond-
ing in-expansions. The Expansion Database also associates each
<acronym, in-expansion> pair with a representation of the doc-
ument where that acronym and in-expansion were found. The
representation characterizes the content of the document in some
summary form. To support other domains and languages, we pass
documents in the desired domains/languages to the Database Cre-
ation process. In Section A.2 of Annex A, we present additional
detail about data structures used in AcX database.
(ii) The Acronym Expander Server that accepts one document at a

4When benchmarking, the expansion database will provide us with both a training set
and a test set.

time from a user and outputs a list of acronyms found in the input
document and the corresponding expansions found by the system
(whether as in-expansions or as out-expansions).

For each document with in-expansions, the Database Creation
process runs the following pipeline:

(1) an Acronym and In-Expansion Extractor obtains the <acro-
nym, expansion> pairs from the document using onlywithin-
document evidence.

(2) a Representator (there are many possible representators e.g.,
Latent Dirichlet Allocation that output topics) maps the doc-
ument to a document representation that holds document
contextual information.

(3) the Expansion Database stores the in-expansions, acronyms,
and document representations on disk, currently SQLite
[28].

Given a new input document 𝑑 supplied by a user, the Acronym
Expander Server executes the following pipeline:

(1) applies the Acronym and In-Expansion Extractor used to
build the Expansion Database to extract all the acronyms
having expansions in the input document 𝑑 .

(2) when 𝑑 contains links to web pages then those page texts
are extracted and inspected to find the expansion for acronyms
whose expansions are not found in 𝑑 (Link Follower).

(3) utilizes the same Representator (say, topics from Latent
Dirichlet Allocation) used to characterize each document
in the Expansion Database to map 𝑑 to a document repre-
sentation.

(4) for each acronym𝐴 having no in-expansion in 𝑑 , the server
runs the Out-Expansion Predictor to choose a context-appro-
priate out-expansion. Formally, an expansion 𝐸 is selected
for an acronym 𝐴 in 𝑑 if the representations of the docu-
ments 𝑑𝑜𝑐 (𝐴, 𝐸) with expansion 𝐸 share more character-
istics with the representation of 𝑑 by some criteria (e.g.,
closest cosine similarities or labeled by some machine learn-
ing classifier for 𝐴) than the documents in 𝑑𝑜𝑐 (𝐴, 𝐸 ′) for
every alternative expansion 𝐸 ′. Thus, for example, if the
context of 𝑑 is publishing, then "PDF" should likely expand
to "Portable Document Format" but if the context of 𝑑 is
probability or statistics, then "PDF" should expand to "prob-
ability distribution function."

For a language other than English, the in- and out-expansion
techniques should be tuned to the new language. They may benefit
from changing preprocessing steps such as tokenization for the
new language or from adopting a language model trained on the
new language or even adopting a multilanguage model.

3.1 Acronym and In-Expansion Extraction

Acronym and in-expansion extraction can use rule-based or
machine learning technique. Currently, we have integrated the in-
expander implementations of Schwartz and Hearst [63], MadDog in-
expander [74], SciBERT [68] and SciDr in-expander [68]. In our rule-
based implementations (i.e. Schwartz and Hearst [63] and MadDog
[74]), we used roughly the following three-step process as described
in [54]:

AcX: system, techniques, and experiments for Acronym eXpansion [Extended Version]

Figure 1: Acronym eXpander (AcX) system. The top stream denotes the creation of the Expansion Database that associates each
<acronym, in-expansion> pair with some representation of the document(s) where that pair was found. The bottom stream
shows the processing of an input document 𝑑 by combining acronym in-expansion when possible and a representation of 𝑑 . For
an acronym 𝐴 with no expansion in 𝑑 , the representation of 𝑑 is compared with the representations in the Expansion Database
of documents containing 𝐴 to find the context-appropriate expansion.

(1) Acronym extraction: identifies acronyms in a document, e.g.,
PDF in Figure 1. We modified Schwartz and Hearst [63] to
find candidate acronyms even when there is no expansion
found in a given document. The technique excludes tokens
in which all alphabetic characters except the first character
are lower case. We also reject acronyms of two characters
where the first is a letter and the second is a dot "." to avoid
person names.

(2) Candidate expansion extraction: builds candidate pairs of
acronyms and possible in-expansions<acronym, expansion>
from information in the document, e.g., <PDF, formats in-
cluding the portable document format> from Document 1 in
Figure 1.

(3) Candidate refinement: evaluates each candidate pair using
a variety of heuristics (e.g., find the shortest expansion that
matches the acronym) to obtain a final in-expansion for
each acronym that has at least one candidate in-expansion
within the document, e.g., portable document format from
<PDF, formats including the portable document format>.

For the in-expanders of SciBERT and SciDr, the extraction of
acronyms and expansions is formalized as a sequence tagging prob-
lem where each token can have one of three tags: (i) a token in an
acronym (e.g., CD in CD-ROM), (ii) a tokenword in an expansion,
or (iii) other token. For example, from Document 1 in Figure 1,
PDF would be tagged as an acronym token, each token portable,
document, and format would be tagged as a token in an expansion.
The remaining tokens in Document 1 would have the "other token"
tag. AcX appropriately tags the acronym-expansion pairs and other
tokens in the training data, then builds a machine learning model
on the tagged data. The output of such machine learning models
is then converted to acronym-expansion pairs by matching the
acronym characters against expansions.

Our system supports ensemble in-expansion through SciDr. That
ensemble technique can be easily extended to include additional
in-expansion techniques.

3.1.1 Link Follower For an input document 𝑑 containing hyper-
links, the Link Follower component follows those links to try to find
the expansions from documents pointed to by 𝑑 . This module is
used after executing the acronym and in-expansion extraction algo-
rithm for the acronyms with no expansion found in text. For each𝐴
acronym having no in-expansion, the Link Follower is constituted
by the following steps, until an expansion is found:

(1) searches in the title attribute of the hyperlink an HTML
tag for the expansion. For example, given the following tag
<a href="/wiki/Leadership_in_Energy_and_Environmental_
Design" title="Leadership in Energy and Environmental De-
sign">LEED the expansion "Leadership in Energy and
Environmental Design" would be extracted for acronym
LEED.

(2) resolves relative HTML URL links to global ones. For exam-
ple, if no expansion were found in the example above with
a local URL, the resolved URLwould be https://en.wikipedia.
org/wiki/Leadership_in_Energy_and_Environmental_Design.

(3) executes the same in-expander technique used by the acronym
and in-expansion extractor.

Given a title, the acronym is placed inside parenthesis and appended
to the end. Then, the in-expander technique is executed on the title
in order to extract a possible expansion.

3.2 Representator

Representors in the AcX system summarize documents in order
to capture knowledge about their semantics. Although AcX sup-
ports sentence-level out-expansion techniques, using the whole
document is more effective than using just parts of the text because
the whole document captures the overall context better.

/wiki/Leadership_in_Energy_and_Environmental_Design
/wiki/Leadership_in_Energy_and_Environmental_Design
https://en.wikipedia.org/wiki/Leadership_in_Energy_and_Environmental_Design
https://en.wikipedia.org/wiki/Leadership_in_Energy_and_Environmental_Design

João L. M. Pereira, João Casanova, Helena Galhardas, and Dennis Shasha

Some representators assign a set of topic termsdescription to a
document. If two documents have many topicrepresentative terms
in common, then they are considered to be semantically related.

Other representators use embeddings [41] to characterize a doc-
ument. An embedding is a vector of real numbers in a high dimen-
sional space. Embedding techniques map an object encoded in a
one-hot representation, a very sparse and high dimensional vector
of binary values, into a very dense and lower dimensional vector of
real values (i.e., embedding). A small distance between embedding
vectors suggests document similarity.

AcX encloses several techniques that can semantically represent
an entire set of documents that contain the same expansion for
a given acronym. Specifically, let 𝑑𝑜𝑐𝑠 (𝐴, 𝐸) denote the set of full
document texts in which a given acronym 𝐴 is defined by a single
expansion 𝐸 (e.g., all documents in which acronym PDF is explicitly
expanded as portable document format):

Here are some representations of such a collection of documents:

• Classic Context Vector (CCV) [2], represents an expansion 𝐸

by the set of words in 𝑑𝑜𝑐𝑠 (𝐴, 𝐸) along with their counts.
• Document Context Vector (DCV) (our variation of context

vector), builds on context vector, however it represents
each document 𝑑 ∈ 𝑑𝑜𝑐𝑠 (𝐴, 𝐸) individually by the set of
word occurrences in 𝑑 . For example, the word occurrences
corresponding to Document 2 in Figure 1 would contain
among others the values {of: 3}, {the: 2}, {derive: 1}, {analytic:
1}, {form: 1}.

• Term Frequency–Inverse Document Frequency (TF-IDF) [35],
weights each term 𝑡 in each document𝑑 ∈ 𝑑𝑜𝑐𝑠 (𝐴, 𝐸) highly
if it is found frequently in 𝑑 and infrequently in the entire
document corpus, thus permitting the characterization of
each document by its highly weighted terms. For example,
the TF-IDF score for the word the in Document 2 in Fig-
ure 1 is 2

27 · 𝑙𝑜𝑔(22) = 0 because this word appears in both
documents.

• Latent Dirichlet Allocation (LDA) [9] assigns topics to doc-
uments using a Dirichlet probabilistic model. For exam-
ple, Document 2 in Figure 1 could be represented by the
following topics: topic1={{analytics: 0.7}, {series: 0.3}} and
topic2={{functional: 0.8}, {form: 0.2}}.

• Doc2Vec [41] is a document embedding technique based
on Word2Vec [46] which assigns vectors to words in such
a way that words that appear in the same context have a
high cosine similarity. For example, the words functional
and conditional would be assigned similar vectors. Thus,
using the principles of Word2Vec, Doc2Vec assigns vectors
to entire documents. For example, documents 1 and 2 in
Figure 1 would be assigned mutually distant vectors.

• Sentence Bidirectional Encoder Representations from Trans-
formers (SBERT) [61] constructs sentence embeddings that
can be compared to determine sentence similarity. AcX
splits the input document text to fit into the SBERT input
limit (e.g., 384 tokens), and then we average the resulting
embedding vectors to get a document representation.

3.3 Out-Expansion Predictor

To choose an out-expansion for an acronym 𝐴 in an input doc-
ument 𝑑 having no expansion for 𝐴, the Out-Expansion Predictor
component considers each candidate out-expansion 𝐸 for 𝐴 and
compares 𝑑 to some representation of 𝑑 ′ ∈ 𝑑𝑜𝑐𝑠 (𝐴, 𝐸).

In the case of Classic Context Vector (CCV), we compare 𝑑

with the vector representation of 𝑑𝑜𝑐𝑠 (𝐴, 𝐸). For the remaining
techniques, we compare 𝑑 with each document representation of
𝑑 ∈ 𝑑𝑜𝑐𝑠 (𝐴, 𝐸).

Using cosine similarity, the Out-Expansion Predictor will choose
an out-expansion 𝐸 over a different expansion 𝐸 ′ if any document
𝑑 ∈ 𝑑𝑜𝑐𝑠 (𝐴, 𝐸) is more similar to 𝑑 than all 𝑑 ′′′ ∈ 𝑑𝑜𝑐𝑠 (𝐴, 𝐸 ′).

A classical similarity technique is cosine similarity, but the AcX
system also supports classification-based approaches that work as
follows. Consider all the documents, denoted 𝑎𝑙𝑙𝑑𝑜𝑐𝑠 (𝐴) containing
in-expansions of acronym 𝐴. Some documents in 𝑎𝑙𝑙𝑑𝑜𝑐𝑠 (𝐴) have
an in-expansion of 𝐸1 for𝐴, some have 𝐸2 for𝐴 and so on. Given the
representations of documents in 𝑎𝑙𝑙𝑑𝑜𝑐𝑠 (𝐴) as features and the ex-
pansions (𝐸1, 𝐸2, etc) as labels, the out-expansion problem becomes
a machine learning classification problem. When a new document
𝑑 is given to AcX, the representation of 𝑑 is passed as input (i.e.,
features) to the classifier which labels 𝑑 with an expansion.

The classifiers we support so far are:

• Support Vector Machines (SVMs) [19] fit a hyper-plane that
optimally separates binary labeled data in the feature space.
Non-binary classification is performed by a "one-vs-all"
technique where a binary SVM classifier predicts with a
certain probability if an input document belongs to a par-
ticular class (where each class corresponds to a particular
expansion). The class (and therefore expansion) with the
highest probability is selected. We used the LibLinear [22]
implementation included in sckit-learn toolkit [56].

• Logistic Regression (LR) [33] fits a logistic function to classify
binary classes (again a class corresponds to an expansion).
Non binary classification is again performed by a "one-vs-
all" technique. We used the LibLinear [22] implementation
included in scikit-learn toolkit [56].

• Random Forests (RF) [11] fit a particular number of decision
trees (default 100) trained on randomly selected samples.
There will be one random forest per acronym 𝐴. The rep-
resentation of a document having no in-expansion for 𝐴
will be input to the random forest. Each tree will predict
one expansion with some probability. The random forest
selects the class whose average probability is the highest.
We used the scikit-learn [56] implementation.

In addition to these classifiers, for evaluation purposes or for any-
one who wants to try other techniques, AcX supports the following
additional techniques from related work: Surrounding Based Em-
bedding (SBE) [42], Thakker et al. [73], Unsupervised Abbreviation
Disambiguation (UAD) [16], the SciDr out-expander (SciDr-out)
[68], the MadDog out-expander (MadDog-out) [74], and LUKE
[81], a state-of-the-art technique for Entity Disambiguation. For
UAD, SciDr-out and MadDog-out, AcX performs sentence segmen-
tation and, given the results from each sentence, decides which

AcX: system, techniques, and experiments for Acronym eXpansion [Extended Version]

expansion to assign to the text. For UAD, we select the most fre-
quent predicted expansion among the sentences in the document.

We have extended SciDr-out to consider all the sentences con-
taining the acronym𝐴 instead of just one sentence as in SciDr-out’s
original implementation. SciDr-out associates an acronym with its
possible expansions concatenated together. The system then finds
the substring of that concatenated string with the highest probabil-
ity and outputs that as the expansion. For example, the concatenated
expansion of "PDF" might be "probability density function portable
document format". Depending on the contents of some input docu-
ment 𝑑 containing "PDF", SciDr-out will choose some substring of
that concatenated expansion.

We have extended MadDog-out to enable it to train in new docu-
ments, instead of using only their original machine learning models.
MadDog-out processes the last sentence of any document contain-
ing acronym 𝐴 to determine the most likely expansion.

For LUKE, we had to modify the internals to work with acronyms
and expansions. We use their pre-trained model and perform fine-
tuning in our training data using the procedure described by the
authors in [81], except that we allow the entity embeddings (now
expansion embeddings) to be updated during training. This modifi-
cation allows the generation of embeddings for expansions out of
the original model vocabulary.

4 In-expansion Benchmark, Evaluation and
Results

We describe our benchmark of in-expansion techniques in Sec-
tion 4.1 and evaluate state-of-the-art techniques on this benchmark
in Section 4.2.

4.1 A Benchmark of In-expansion Techniques

This section describes the benchmark we developed to evaluate
in-expansion techniques. Section 4.1.1 details the datasets used
in this benchmark. Section 4.1.2 lists the in-expansion techniques
that we implemented for this benchmark. Section 4.1.3 defines
the metrics that we used to evaluate the in-expansion extraction
techniques.

4.1.1 Datasets The datasets included in this in-expansion bench-
mark are:
Medstract: This dataset is composed of 199 randomly selected

MEDLINE5 abstracts from the results of a query on the term
"gene". The abstracts were manually annotated and then
the annotations were corrected and improved by Schwartz
and Hearst [63], Ao and Takagi [3], Pustejovsky et al. [59],
Yarygina and Vassilieva [82] and Doğan et al. [29]. We use
the last revised version of Doğan et al. [29] that contains
159 acronym-expansion pairs.

Schwartz and Hearst: This dataset consists of 1,000 randomly
selected MEDLINE abstracts from the results of a query on
the term "yeast". The abstracts were manually annotated
by Schwartz and Hearst [63] and revised by Doğan et al.
[29]. The revised version that we use contains 979 acronym-
expansion pairs.

5https://www.nlm.nih.gov/bsd/medline.html

BIOADI: This dataset contains 1,201 abstracts from the BioCre-
ative II gene normalization dataset. The dataset was original
annotated by Kuo et al. [38] and revised by Doğan et al.
[29]. It contains 1,720 acronym-expansion pairs.

Ab3P: This dataset results from the random selection of MEDLINE
1,250 abstracts. The dataset was manually annotated by
Sohn et al. [69]. We use the revised version of Doğan et al.
[29] that contains 1 223 acronym-expansion pairs.

SciAI: This dataset results from processing 6,786 English arXiv6
papers. Those papers were split into sentences and sent
to Amazon Mechanical Turk (MTurk) to be annotated by
humans, resulting in 9,775 acronym-expansion pairs. This
dataset was annotated for both acronyms and acronym-
expansion pairs. The final dataset has 17,506 sentences,
where 1% do not contain acronyms and 24% do not con-
tain expansions. We use the SDU@AAAI competition [75]
version7 that was initially proposed by Veyseh et al. [76].

End-to-end: We developed a dataset that consists of 163 English
Wikipedia documents randomly selected from the Com-
puting category8 in Wikipedia. It contains 1,139 acronym-
expansion pairs. Although intended to evaluate an end-
to-end acronym-expander system, for this in-expansion
benchmark in particular, we consider only the acronym-
expansion pairs with expansion in text. (Later, in Section 6.1,
we use the whole set of acronym-expansions pairs to eval-
uate end-to-end systems.) Each document was annotated
by two computer science students who volunteered for the
task. Each student annotated at least two documents. Dur-
ing the annotation process, each student identified each
acronym in the document and mapped it to an expansion.
Each acronym-expansion pair was labeled by the anno-
tators, indicating whether the expansion was present in
text. Any conflict between annotators was manually re-
solved by the authors. The Inter-Annotator Agreement
(IAA) among each annotators (excluding the third anno-
tator, the reviewer) using Krippendorff’s alpha [37] with
the MASI distance metric [55] is 0.68 for in-expansion pairs
and 0.33 for out-expansion pairs. In a hypothetical scenario,
if both annotators had given the same acronym-expansions,
then the score would be 1. In this case, the human anno-
tators disagree on out-expansions more often than on in-
expansions. This is unsurprising because out-expansion
requires consulting additional text sources other than the
document at hand, while for in-expansion the text provided
is enough. In Section A.1 of Annex A, we present additional
detail about the process used to create this dataset.

4.1.2 In-expansion techniques This benchmark includes the fol-
lowing in-expansion techniques (that are supported by our AcX
system described in Section 3):
Rule-based: Schwartz and Hearst (SH) [63] technique and the

MadDog [74] in-expansion (MadDog-in) technique which
builds on the Schwartz and Hearst algorithm.

6https://arxiv.org/
7https://github.com/amirveyseh/AAAI-21-SDU-shared-task-1-AI
8https://en.wikipedia.org/wiki/Category:Computing

https://www.nlm.nih.gov/bsd/medline.html
https://arxiv.org/
https://github.com/amirveyseh/AAAI-21-SDU-shared-task-1-AI
https://en.wikipedia.org/wiki/Category:Computing

João L. M. Pereira, João Casanova, Helena Galhardas, and Dennis Shasha

Machine Learning: SciBERT based technique used in [68] and
the SciDr [68] in-expansion (SciDr-in) technique which en-
sembles SciBERT models and a rule-based technique based
on SH with Conditional Random Fields. Moreover, we con-
sider models used by these machine learning techniques
that are trained with external data besides the individual
training sets of each dataset. The external data is composed
of Medstract, Schwartz and Hearst, BIOADI, and Ab3P train
sets if the test set is biomedical. For SciAI and End-to-end
test sets, the external data consists of all train sets (i.e.,
biomedical datasets, SciAI, and End-to-end).

4.1.3 Performance metrics Our benchmark uses the following
metrics. The metrics apply to acronyms alone as well as to acronym-
expansion pairs. The acronyms can be either in singular or plural
form to be considered equal, and the expansions are equal if their
lower case versions without dashes have an edit distance less than
3 or if the first 4 characters of each word are equal. If the same
acronym or pair appears several times in the same document, it is
counted only once:
Acronym Pair Precision: the number of correctly extracted acro-

nym pairs divided by the number of acronym pairs ex-
tracted by that technique over all documents. It will be
calculated as:
𝑜 𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑎𝑐𝑟𝑜𝑛𝑦𝑚𝑠 𝑝𝑎𝑖𝑟𝑠

𝑜 𝑓 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑎𝑐𝑟𝑜𝑛𝑦𝑚𝑠 𝑝𝑎𝑖𝑟𝑠
.

Acronym Pair Recall: the number of correctly extracted acronym
pairs divided by the number of distinct acronym pairs
present over all documents. It will be calculated as:
𝑜 𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑎𝑐𝑟𝑜𝑛𝑦𝑚 𝑝𝑎𝑖𝑟𝑠

𝑎𝑐𝑟𝑜𝑛𝑦𝑚 𝑝𝑎𝑖𝑟𝑠 𝑖𝑛 𝑡𝑒𝑥𝑡 .
Acronym Pair F1-measure: the harmonic mean of the precision

and recall of the system. It will be calculated as:
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
.

Acronym Pair Cohen’s Kappa: measures the agreement between
the acronym pairs extracted by a technique and the actual
acronym pairs present in text for a given number of docu-
ments in a dataset. The value of kappa [17] is calculated as
𝑝𝑜 − 𝑝𝑒
1 − 𝑝𝑒

, where 𝑝𝑜 is the probability of agreement between
an acronym-expansion extraction technique and the ac-
tual dataset and 𝑝𝑒 is the probability of random agreement.
This measure is particularly useful for unbalanced test sets,
because it gives greater weight to infrequent acronym-
expansions (for which the denominator will be smaller).
To avoid treating acronyms and expansions with small dif-
ferences as entirely different labels (i.e, full disagreement),
we calculate kappa with respect to the Jaccard [30] distance.

Training time: CPU or GPU time in seconds to train the machine-
learning models that are used by the in-expansion tech-
nique.

Execution time: CPU or GPU time in seconds that the in-expan-
sion technique takes to extract acronym-expansion pairs
from a document in the dataset.

By default (i.e., when not mentioned otherwise), acronym pair
Precision, Recall, and F1-Measure are calculate on the Document-
Level where every unique acronym-expansion pair (or acronym) ex-
tracted from each document is counted. Thus, an acronym-expansion
pair that appears many times across documents in the corpus will

be weighted more than one that appears less often. This is in line
with the most recent efforts in in-expansion which aim to efficiently
extract acronym-expansions from each individual document inde-
pendently.

Additionally, we calculate the Precision, Recall, and F1-Measure al-
ternative level, glossary. In theGlossary-level, an acronym-expansion
pair (or just acronym) that appears in the text or is expanded mul-
tiple times in different documents in the corpus is counted only
once. This follows the first measurements performed in-expansion
techniques which aimed to create only a global glossary (dictionary)
based on a set of documents.

To better explain the Document and Glossary levels, let us con-
sider a dataset 𝐷 that is composed of documents 𝐴 and 𝐵. In docu-
ment 𝐴 there are five instances of the acronym-expansion pair 𝑥
and in document 𝐵 two, with 𝐷 having seven instances of 𝑥 . Fur-
thermore, a system for acronym-expansion extraction is run on
dataset 𝐷 and only extracts the five instances of 𝑥 in document 𝐴.
On the Glossary level, the number of correctly extracted pairs and
the total number of extracted pairs are equal to one. Furthermore,
the number of total acronym-expansion pairs present in 𝐷 is only
counted as one, because only unique pairs are considered. This
results in a pair precision of 1

1 = 1 and a pair recall of 1
1 = 1. On

the document level, the number of correctly extracted pairs and
total number of extracted pairs is five. However, the number of
total acronym-expansion pairs present in 𝐷 is counted as seven,
due to the five instances of 𝑥 in document 𝐴 and two instances in
document 𝐵. This results in a pair precision of 5

5 = 1 and a pair
recall of 5

7 = 0.7.

4.2 In-expansion Experimental Evaluation

In this section, we evaluate the in-expansion techniques using
the benchmark presented in Section 4.1.
Setup. The in-expansion experiments were performed on a ma-
chine with an Intel® Core™ i5-4690K CPU with 4 cores, and 16
GB of RAM and an NVIDIA GeForce GTX 1070. Only SciBERT and
SciDr-in used the GPU.
Results.

We report Precision, Recall, F1-measure, and Cohen’s kappa
(K) values for the biomedical datasets (i.e., Medstract, Schwartz
and Hearst, BIOADI and Ab3P) for acronym extraction in Table 1
and for acronym-expansion pair extraction in Table 2. We report
Precision, Recall, F1-measure, and Cohen’s kappa (K) values for
both acronym and pair for SciAI dataset in Table 3 and for End-to-
end dataset in Table 4. The additional external data used to train
SciBERT and SciDr-in for the biomedical application includes the
data of all biomedical datasets excluding the test set (30%). For
SciAI and End-to-end datasets, the external data used to train
SciBERT and SciDr-in includes all documents in the other datasets
(i.e., Medstract, Schwartz and Hearst, BIOADI, Ab3p, SciAI, and
End-to-end).

For the biomedical domain, for all acronym and pair extraction
measures (precision, recall, and F1-measure), the best acronym and
in-expander technique, on average, is SH.

On SciAI, the machine-learning techniques SciDr-in and SciB-
ERT outperform the rule-based techniques, SH and MadDog-in, in
terms of recall (91.78%-94.05% for acronym and 88.24%-90.64%

AcX: system, techniques, and experiments for Acronym eXpansion [Extended Version]

Acronym and
In-expansion
Technique

Acronym
Medstract SH BIOADI Ab3P Averages

P R F1 K P R F1 K P R F1 K P R F1 K P R F1 K
SH 100.00% 89.13% 94.25% 0.97 99.56% 81.13% 89.50% 0.91 99.06% 79.58% 88.25% 0.88 98.62% 77.66% 86.89% 0.89 99.31% 81.88% 89.72% 0.91
MadDog 100.00% 63.30% 77.33% 0.77 96.64% 51.80% 67.45% 0.77 97.99% 55.19% 70.61% 0.74 99.16% 64.31% 78.02% 0.85 98.45% 58.65% 73.35% 0.78
SciBERT 81.25% 56.52% 66.67% 0.68 85.56% 70.50% 77.47% 0.77 88.06% 73.91% 80.37% 0.76 85.99% 71.93% 78.34% 0.78 85.22% 68.22% 75.71% 0.75
SciBERT with
External Data 86.84% 71.74% 78.57% 0.76 88.16% 77.70% 82.60% 0.82 90.61% 78.45% 84.09% 0.82 87.46% 76.02% 81.34% 0.81 88.27% 75.98% 81.65% 0.80

SciDr 93.33% 60.87% 73.68% 0.73 87.56% 60.79% 71.76% 0.74 92.11% 64.08% 75.58% 0.75 89.25% 67.85% 77.09% 0.79 90.56% 63.40% 74.53% 0.75
SciDr-in with
External Data 92.11% 76.09% 83.33% 0.83 93.13% 78.05% 84.93% 0.86 93.31% 79.21% 85.69% 0.84 89.08% 71.11% 79.09% 0.81 91.91% 76.12% 83.26% 0.84

Table 1: In-expansion techniques Precision, Recall, F1-measures and Cohen’s kappas (K) for acronym for each biomedical
dataset (Medstract, SH, BIOADI, and Ab3p) and the averages.

Acronym and
In-expansion
Technique

Pair
Medstract SH BIOADI Ab3P Average

P R F1 K P R F1 K P R F1 K P R F1 K P R F1 K
SH 100.00% 89.13% 94.25% 0.97 96.03% 78.42% 86.34% 0.89 94.11% 75.61% 83.86% 0.83 95.16% 74.93% 83.84% 0.86 96.33% 79.52% 87.07% 0.89
MadDog 93.10% 58.69% 72.00% 0.35 93.29% 50.00% 65.11% 0.47 87.58% 49.33% 63.12% 0.48 95.37% 61.85% 75.04% 0.64 92.34% 54.97% 68.82% 0.49
SciBERT 65.62% 45.65% 53.84% 0.27 72.37% 59.35% 65.21% 0.41 67.79% 56.90% 61.87% 0.36 74.27% 62.13% 67.66% 0.53 70.01% 56.01% 62.15% 0.39
SciBERT with
External Data 76.32% 63.04% 69.05% 0.33 76.32% 67.26% 71.51% 0.42 74.45% 64.46% 69.10% 0.44 76.80% 66.76% 71.43% 0.54 75.97% 65.38% 70.27% 0.43

SciDr 80.00% 52.17% 63.16% 0.38 74.61% 51.79% 61.14% 0.4 76.90% 53.50% 63.10% 0.41 81.00% 61.58% 69.97% 0.54 78.13% 54.76% 64.34% 0.43
SciDr-in with
External Data 92.11% 76.09% 83.33% 0.39 83.69% 70.14% 76.32% 0.49 86.19% 73.16% 79.14% 0.5 80.20% 64.03% 71.21% 0.52 85.55% 70.86% 77.50% 0.48

Table 2: In-expansion techniques Precision, Recall, F1-measures and Cohen’s kappas (K) for pair for each biomedical dataset
(Medstract, SH, BIOADI, and Ab3p) and the averages.

Acronym and
In-expansion
Technique

SciAI
Acronym Pair

P R F1 K P R F1 K
SH 96.02% 82.36% 88.67% 0.97 92.85% 79.64% 85.74% 0.88
MadDog-in 98.63% 86.72% 92.30% 0.98 96.91% 85.21% 90.68% 0.96
SciBERT 95.69% 94.05% 94.86% 0.97 92.21% 90.64% 91.42% 0.94
SciBERT with
External data 96.18% 94.05% 94.90% 0.97 92.50% 90.45% 91.46% 0.93

SciDr-in 97.47% 92.47% 95.11% 0.98 94.47% 89.63% 91.98% 0.95
SciDr-in with
External data 97.58% 91.78% 94.59% 0.98 93.81% 88.24% 90.94% 0.94

Table 3: In-expansion techniques Precision, Recall, and F1-
measures and Cohen’s kappas (K) for acronym and pair ex-
traction and for the SciAI dataset.

Acronym and
In-expansion
Technique

User Generated
Acronym Pair

P R F1 K P R F1 K
SH 91.00% 70.54% 79.47% 0.72 86.00% 66.67% 75.10% 0.14
MadDog-in 92.78% 69.76% 79.64% 0.71 88.65% 66.67% 76.10% 0.11
SciBERT 65.62% 48.83% 55.99% 0.62 58.34% 43.41% 49.77% 0.08
SciBERT with
External data 49.67% 58.91% 53.90% 0.62 45.09% 53.48% 48.93% 0.08

SciDr-in 77.08% 57.36% 65.77% 0.66 68.75% 51.16% 58.66% 0.09
SciDr-in with
External data 86.36% 58.91% 70.04% 0.69 81.81% 55.81% 66.35% 0.11

Table 4: In-expansion techniques Precision, Recall, F1-
measures and Cohen’s kappas (K) for acronym and pair ex-
traction and for the User Generated dataset.

for pair) and F1-measure (94.59%-94.05% for acronym and 90.94%-
91.98% for pair) for both acronym and pair extraction. Furthermore,
MadDog-in achieves the best precisions (98.63% for acronym and
96.91% for pair) followed by SciDr-in (97.47%-97.58% for acronym
and 93.81%-94.47% for pair).

On the End-to-end dataset, MadDog-in achieves the best overall
precision (92.78% and 88.65%) and F1-measure (79.64% and 76.10%)
for acronym and pair extraction, while SH surpasses MadDog-in
in terms of acronym recall (70.54%) and matches for pair recall
(66.67%). Furthermore, among the machine-learning techniques on
the End-to-end dataset, SciDr-in surpasses SciBERT on precision
(77.08% and 68.75%), recall (57.36% and 51.16%), and F1-measure
(57.36% and 58.66%) for both acronym and pair extraction. Increas-
ing the training dataset with External Data for SciBERT yielded an
increase in recalls (58.91% and 53.48%) but decreased precisions
(49.67% and 45.09%) and F1-measures (53.90% and 48.93%) for
both acronym and pair extraction, while for SciDr-in, we observe a
general increase in performance.
Cohen’s Kappa analyzes. In general, the Cohen’s Kappa (K) best
technique for each dataset is consistent with the F1-measure in the
biomedical datasets, i.e., SH technique is clearly the best. On the
SciAI dataset, MadDog-in scores the best K for acronyms and pairs
with 0.98 and 0.96, respectively.

On the End-to-end dataset, all techniques achieve values of Co-
hen’s Kappa higher or equal to 0.62 for acronym extraction and
lower or equal to 0.14 for pair extraction. The reason is that the
end-to-end data contains many distinct expansions with different
frequencies, leading to lower scores.
Glossary-level differences. In Annex B, we report the results
obtained using the Glossary-level metrics for each dataset. Regard-
ing the glossary-level results, they are globally very similar to the
document-level ones in terms of the differences among in-expansion
techniques. The exceptions in the best methods for each metric are
small differences: On the BIOADI dataset, the best score for acronym
extraction recall is obtained with SciDr-in trained in all biomed-
ical datasets with 79.71%, SH (which was the best on document-
level) scores 78.26%. On the SciAI dataset, acronym recall is better
for SciBERT trained on SciAI training set with 93.58%, SciBERT

João L. M. Pereira, João Casanova, Helena Galhardas, and Dennis Shasha

Acronym and
In-expansion
Technique

Train models execution times (s)
Train Dataset with External Data

Medstract SH BIOADI Ab3P SciAI User-Generated All Biomedical All
SciBERT 108 745 806 831 1 701 421 2 691 5 122
SciDR-in 1 226 7 255 8 060 8 738 52 257 2 752 28 612 99 025

Table 5: In-expansion train models execution times for each dataset and when trained with External Data.

Average execution times per document (s)
Acronym and In-expansion
Technique Medstract SH BIOADI Ab3P SciAI User

Generated Average

SH 0.00 0.02 0.01 0.01 0.05 0.00 0.02
MadDog-in 0.60 4.33 7.23 5.04 15.75 4.53 6.25
SciBERT 10.35 70.29 115.23 80.81 686.44 35.97 166.52
SciBERT with External Data 16.80 73.45 122.73 76.80 645.70 42.84 163.05
SciDr-in 165.69 1 039.45 1 831.67 1 225.03 11 105.72 470.88 2 639.74
SciDr-in with External Data 172.81 1 073.44 1 836.02 1 198.92 11 234.76 486.81 2 667.13

Table 6: In-expansion average execution times per document for each dataset.

trained on all datasets (which was the best on document-level)
scored 93.49%. On the User Generated dataset, the best technique
for acronym and the pair extraction F1-measure is SH with 79.49%
and 66.67% respectively, while Maddog-in (the best on document-
level for acronym F1 and one of the best for pair F1) scored 79.04%
for acronym F1, and 65.83% for pair F1.

Interpretation: In this in-expansion benchmark, rule-based
techniques SH andMadDog-in generally perform best for all datasets.
The one exception is on the SciAI dataset where machine learning
techniques from SciDr-in and SciBERT work better.

Rule-based systems work well for in-expansion, because acro-
nyms follow human-understood rules, viz. roughly, acronyms should
be in upper-case, each letter should represent a word, and the ex-
pansion should either precede or follow the first use. So it is natural
that a rule-based system would do well. Machine learning work
better when given more examples (SciAI dataset), however even
ensembled with a rule-based technique (SciDr) the results were
generally inferior to using the rule-based technique by itself.

While the expansions found by the rule-based techniques are not
a superset of those found by the machine learning techniques, SciDr
often fails because it adds extra words to the expansion string. On
the other hand, SciDr can find unusual cases where not all acronym
chars belong in the expansion, e.g., expansion PIN-FORMED of pin1.
Execution time analysis. We report in Table 6 the in-expansion
execution times per document. We observed from our experiments
that the rule-based techniques are much faster than the machine
learning techniques. SH is the fastest technique on every single
dataset taking less than 0.06 seconds on average to extract acronym-
expansion pairs from a document. MadDog-in is the second fastest
technique taking up to 16 seconds to process each document. The
machine-learning techniques SciDr-in and SciBERT take much
more time to extract pairs from the datasets than the rule-based
techniques. For instance, on the SciAI dataset, SciBERT takes 687
seconds. Comparing SciDr-in and SciBERT, the execution times
per document of SciDr-in are much higher than SciBERT taking
11 106 seconds on the SciAI dataset because it is an ensemble

based technique. We report in Table 5 the train execution times for
machine-learning based techniques (SciBERT and SciDr-in) for each
dataset and with External Data. Regarding training times, SciBERT
takes 1 700 seconds on SciAI training data, 2 691 seconds on the
biomedical datasets, and 5 121 seconds to train with all datasets.
SciDr-in takes longer for training: 52 257 seconds on SciAI training
data, 28 612 seconds on the biomedical datasets, and 99 024 seconds
to train with all datasets.
In summary:

• If document processing needs to be fast and there are hard-
ware limitations, the rule-based techniques SH andMadDog-
in are the best.

• If there are no time constraints and a large volume of data
from the same domain is available, the machine learning
techniques SciBert and SciDr-in are marginally better.

• If the dataset is sentence-based and a large amount of data
from the same domain is available, use SciDr-in, though, in
the medical domain, SH would likely be a strong contender.

5 Out-expansion Benchmark, Evaluation and
Results

We describe our benchmark of out-expansion techniques in Sec-
tion 5.1 and evaluate state-of-the-art techniques on this benchmark
in Section 5.2.

5.1 A Benchmark of Out-expansion Techniques

This section presents our benchmark of out-expansion tech-
niques. Section 5.1.1 describes the datasets used in this benchmark.
Section 5.1.2 explains the steps used to prepare those datasets. Sec-
tion 5.1.3 lists the out-expansion techniques included in the bench-
mark, grouped by type. Finally, Section 5.1.4 describes the metrics
to evaluate those out-expansion techniques.

5.1.1 Datasets The datasets included in our out-expansion bench-
mark are:

AcX: system, techniques, and experiments for Acronym eXpansion [Extended Version]

Statistics SciWISE MSH CS Wiki SciAD
of articles 4 677 12 053 10 220 39 815
Average # of chars per article 1 193 1 552 9 246 187
of sentences 40 300 112 456 702 387 51 340
of distinct acronyms 129 67 630 732
of distinct ambiguous acronyms 100 64 566 682
Average # of distinct expansions
per article 1.09 0.99 1.02 1

of distinct acronym/expansions 272 139 8 617 2173
Average # of expansions per
ambiguous acronym 2.43 2.13 15.11 3.11

Table 7: Statistics of the out-expansion datasets. SciAD is the
dataset with the largest number of articles, 39k. However, if
we compare the number of sentences found in each dataset,
CS Wiki has the largest total with 70K, 11k for MSH, 5k for
SciAD and 4k for ScienceWISE. The reason is that SciAD
contains the smallest articles in terms of characters (mostly
just sentences having fewer than 200 characters), while oth-
ers have 1k or more. CS Wiki has the biggest set of distinct
acronym-expansions pairs (8k). In terms of distinct expan-
sions per ambiguous acronym, CS Wiki has around 15, while
the remaining dataset have maximum around 3.

MSH dataset [34] contains biomedical document abstracts from
the MEDLINE (Medical Literature Analysis and Retrieval
System Online) corpus used in Li et al. [42], Prokofyev
et al. [58]. This dataset was automatically annotated using
citations from MEDLINE and the ambiguous terms with
MeSH headings identified in the Metathesaurus9. We use
the original texts and the revised labels from Li et al. [42];

SciWISE dataset consists on the Physics dataset used in Li et al.
[42] and Prokofyev et al. [58] that consists of document
abstracts. This dataset was annotated by human experts,
and it includes expansions either containing at least 2 words
or a single word with at least 14 characters.

CS Wiki (Computer ScienceWikipedia) dataset created in Thakker
et al. [73] contains documents from different fields that con-
tain acronyms used in computer science. Expansions were
extracted by parsing the content of English Wikipedia dis-
ambiguation pages of acronyms used in computer science
(e.g., https://en.wikipedia.org/wiki/PDF_(disambiguation)).

SciAD This dataset was prepared for the out-expansion SDU@
AAAI-21 competition [75]. It is based on the SciAI in-expan-
sion dataset, described in Section 4.1.1. We use the revised
version10 created by Egan and Bohannon [21] who removed
duplicate sentences from the original trainning and valida-
tion sets.

Table 7 presents relevant statistics about each dataset. An am-
biguous acronym is an acronym having more than one expansion
available in the dataset.

5.1.2 Data Preparation The data preparation steps are roughly
the same for each out-expansion technique:

9https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus
10https://github.com/PrimerAI/sdu-data

(1) Dataset Splitting: We split each dataset into train and
test sets (respectively 70% and 30% of the documents of the
original dataset). We then apply 5-fold cross validation on
the train dataset in order to tune the hyperparameters of
each out-expansion technique. The hyperparameter-tuned
technique is then tested on the yet unseen 30% of the data.

(2) ExpansionConsolidation: For the expansions of acronym
𝐴 in each dataset, we apply an approximate duplicate detec-
tion process that groups expansion strings that correspond
to the same expansion meaning. For example, portable doc-
ument format and Portable-Document-Formats are two dis-
tinct strings that refer to the same real expansion. As crite-
ria, we consider two expansions to be equal if their lower
case versions without dashes have an edit-distance less than
3 or if the first 4 characters of each word are equal. Equal
expansions are consolidated by replacing in text all expan-
sion strings with the same meaning by the most frequent
expansion.

(3) Expansion Removal:When testing the accuracy of out-
expansion techniques on some document 𝑑 , we associate
any acronym 𝐴 in the document with its in-expansion
𝐼𝑛(𝐴), if present. Then, we replace all occurrences of the
in-expansion 𝐼𝑛(𝐴) in text by 𝐴 alone.

(4) Tokenization:We apply the word tokenization from the
Natural Language Toolkit (NLTK) [8] to obtain only al-
phanumeric tokens. Additionally, we remove stop words
using NLTK and numeric tokens;

(5) Token Normalization: We transform each token into its
stem, e.g., probable, probability, and probabilities all map to
probabl. We use the Porter Stemmer algorithm from NLTK.

The preparation of the MSH and SciWISE datasets follows the
preprocessing reported in Li et al. [42], so we apply all the prepa-
ration steps above except token normalization. The five steps are
consistent with the pre-processing steps used in Thakker et al. [73]
for the CS Wiki dataset. For SciDr-out and MadDog-out, we apply
only the first three steps, because these techniques replace the last
two steps with steps that depend on the language models of the
neural networks they use.

5.1.3 Out-expansion Techniques This benchmark includes the
following groups of out-expansion techniques:

Classical Techniques: We use two baselines: Random which
randomly assigns a possible expansion to an acronym; and
Most Frequent which always selects the most frequent
expansion found in our training data as measured by the
number of occurrences in distinct documents. We use the
Cosine similarity (Cossim) with the Classic Context Vector
(CCV) [42], Document Context Vector (DCV) - variant of
Classic for each document, Surrounding Based Embedding
(SBE) [42], and Thakker et al. [73].

Sentence-oriented Techniques: We include related work tech-
niques that expect a sentence as input (instead of a docu-
ment) and adapt them as described in the AcX overview
(Section 3.3). These include Unsupervised Abbreviation
Disambiguation (UAD) [16], MadDog [74] out-expander
(MadDog-out), and SciDr [68] out-expander (SciDr-out).

https://en.wikipedia.org/wiki/PDF_(disambiguation)
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus

João L. M. Pereira, João Casanova, Helena Galhardas, and Dennis Shasha

We also use SciDr-out with External Data consisting of
the Wikipedia pages that contain an expansion found in
the training data.

Representator Techniques: We include Cossim with the doc-
ument representation techniques described in Section 3.2,
that we have adapted from natural language processing:
Term Frequency-Inverse Document Frequency (TF-IDF),
Latent Dirchlet Allocation (LDA), Doc2Vec, and Sentence
Bidirectional Encoder Representations from Transform-
ers (SBERT). We used SBERT model all-mpnet-base-v2,
the top performing model in Sentence Similarity tasks (14
datasets)11. all-pnet-base-v212 is based on MPNet model
[70] that outperforms BERT and RoBERTA in both quality
and speed. all-mpnet-base-v2 was trained on one billion
sentences pairs from a diverse set of data sources.

Classification Techniques: We created a complete new class of
out-expansion techniques that use the outputs of a rep-
resentator as features for a Machine Learning classifier,
specifically, Random Forests (RF), Logistic Regression (LR),
and Support Vector Machines (SVM). Each acronym has its
own classifier trained with the features of the documents
that contain an expansion for the acronym (e.g., acronym
PDF will have a random forest RandFor(PDF) based on doc-
uments that contain an in-expansion for PDF). Based on the
features of a target document d, the classifier will choose
the appropriate expansion as explained in Section 3.3.

Combination of Representator Techniques: The final type of
out-expansion techniques that we assembled consists of
combining two representators’ outputs, namely theDoc2Vec
with a Context Vector (either Classic or Document), as in-
put to predictors: CCV + Doc2Vec and DCV + Doc2Vec.
Combinations are constructed by concatenating the outputs
together into a single feature vector.

Ensembler Techniques: We support two ensembler techniques:
Hard voting where each technique votes for its preferred
expansion regardless of its confidence; and Soft voting that
takes the averages of confidences per expansion. The confi-
dences are normalized at the individual technique level in
such a way that their sum is 1. For the experiments, we as-
sembled the following 7 out-expansion techniques: Cossim
with CCV, Cossim with TF-IDF, Cossim with Do2Vec, SVM
with Doc2Vec, Cossim with SBERT, SVM with SBERT, and
SciDr-out.

5.1.4 Performance Metrics Our benchmark uses the following
metrics:
Out-expansion accuracy: is the accuracy of predicting the right

expansion for a given acronym in a textual document. Intu-
itively, this is the fraction of acronym-expansions that are
correctly predicted. This corresponds to a micro-average of
Precision and Recall, but, since we always predict an expan-
sion for some acronym in the out-expansion task, those two
metrics are equal. Accuracy is also used in previous out-
expansion works [16, 42, 73] and analogous benchmarks,

11https://www.sbert.net/docs/pretrained_models.html#model-overview
12https://huggingface.co/sentence-transformers/all-mpnet-base-v2

e.g., for Word-Sense-Disambiguation [60]. Note that an
acronym may appear many times in the same document
and many times across documents. In our measure, if 𝐴 is
in 𝑘 documents, it is counted 𝑘 times, but if 𝐴 is present 𝑗
times in the same document, it is counted only once in that
document.
Thus, for a test set of documents 𝐷 , the out-expansion
accuracy is:

∑
𝑑∈𝐷 |correct distinct expansions for d |∑

𝑑∈𝐷 |distinct acronyms inside d | .
Out-Expansion macro averages: Recently, Veyseh et al. [74][76]

started using a different set of metrics that we have im-
plemented and measured for completeness. Those metrics
are macro-averages of Precision, Recall and F1-measures
for acronym-expansions pairs. So, we calculate precision,
recall, and F1-measure independently for each acronym-
expansion in the training data. Then, averages of those
measures are performed in order to obtain the final macro
averages. Note that, when using these measures, very rare
acronyms and expansions in the dataset will have the same
impact as more frequent expansions and acronyms.

Representator execution time: is the execution time to create
representations of training documents.

Average execution time per document: is the average execu-
tion time to predict expansions for acronyms in a docu-
ment.

5.2 Out-expansion Experimental Results

Setup. For out-expansion on the benchmark presented in Sec-
tion 5.1, we ran the experiments on a GoogleCloud platform13

machine with the following specifications: Intel Broadwell CPU
platform with 8 cores, 30GB to 80GB of RAM (Random Access Mem-
ory). For SBERT, MadDog-out, SciDr-out, and LUKE half of a Tesla
K80 GPU board was used. The code ran in Python 3.7.

To reduce the duration of experiments, we first find the repre-
sentator’s hyperparameters with the cosine similarity because it
involves no learning nor hyperparameters of its own, then save the
best representator model on disk. Next, given the best representator
hyperparmeters, we find the best out-expansion predictor model
hyperparameters.
Results. For each dataset, in Table 8, we report the out-expansion
accuracy andmacro F1-measure to predict the expansions of acronyms
in a document. In Table 9, we present the average execution times
that out-expansion techniques that to process a document for each
dataset. The Technique Group column identifies the out-expansion
group that the technique belongs to, as organized in Section 5.1.3
(e.g., Classical). The Predictors column identifies the out-expansion
predictor technique (e.g., Cossim or an ML classifier) that takes a
given document representation to predict an expansion (e.g., Cos-
sim). The Representators column indicates the technique used to
generate a document representation (e.g., Doc2Vec). We did not
run SciDr-out with External Data on CSWiki dataset because the
external data (i.e., Wikipedia data) would overlap with CSWiki
itself. The execution time of each ensemble technique is just the
additional time required to decide on an expansion given the input
predictions and confidence measures.

13https://cloud.google.com/

https://www.sbert.net/docs/pretrained_models.html#model-overview
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://cloud.google.com/

AcX: system, techniques, and experiments for Acronym eXpansion [Extended Version]

Out-expansion Technique ScienceWISE MSH CSWiki SciAD Average
Technique
Group Predictors Repre-

sentators Acc MaF1 Acc MaF1 Acc MaF1 Acc MaF1 Acc MaF1

Classical

Random 47.72% 46.10% 47.04% 45.49% 14.54% 14.21% 33.06% 32.22% 35.59% 34.51%
Most Frequent 70.52% 49.31% 50.30% 32.32% 47.76% 20.37% 69.08% 37.64% 59.41% 34.91%

Cossim
CCV 91.34% 80.72% 97.62% 97.65% 77.96% 65.01% 92.28% 89.03% 89.80% 83.10%
DCV 89.51% 78.69% 96.18% 96.07% 78.59% 65.86% 93.67% 87.08% 89.49% 81.92%
SBE 88.07% 75.89% 95.84% 95.24% 74.60% 63.30% 86.50% 80.76% 86.25% 78.80%

Thakker 87.77% 77.38% 92.53% 91.68% 73.16% 63.86% 84.36% 73.21% 84.46% 76.53%
Entity Disam. LUKE 83.42% 57.33% 67.47% 58.95% 52.65% 46.60% 50.68% 42.53% 63.55% 51.35%

Sentence-
-Oriented

UAD 43.69% 46.73% 93.92% 92.55% 12.94% 11.60% 34.98% 45.75% 46.38% 49.16%
MadDog-out 89.13% 68.84% 94.09% 93.16% 57.03% 47.71% 87.38% 73.23% 81.91% 70.73%
SciDr-out 88.22% 77.45% 97.23% 96.76% 84.19% 72.67% 94.48% 88.94% 91.03% 83.96%
SciDr-out with
External Data 89.89% 77.86% 97.58% 97.22% N/A N/A 94.71% 89.42% N/A N/A

Repre-
sentator Cossim

TF-IDF 91.26% 81.82% 97.62% 97.57% 77.80% 65.36% 91.79% 83.48% 89.62% 82.06%
LDA 85.56% 73.94% 93.81% 93.28% 71.89% 60.49% 84.56% 73.39% 83.95% 75.28%
Doc2Vec 92.86% 83.14% 98.33% 98.07% 77.16% 65.25% 92.05% 82.96% 90.10% 82.35%
SBERT 94.83% 85.32% 98.78% 98.80% 81.47% 67.67% 94.19% 89.76% 92.32% 85.39%

Classi-
fication

RF
TFIDF 70.82% 52.03% 84.53% 76.78% 32.11% 23.14% 87.64% 68.90% 68.77% 55.21%
LDA 70.75% 54.13% 95.64% 92.84% 67.57% 50.78% 82.32% 61.33% 79.07% 64.77%
Doc2Vec 79.18% 61.34% 96.58% 95.37% 66.29% 41.55% 84.39% 62.43% 81.61% 65.17%

LR
TFIDF 71.05% 54.47% 93.41% 88.29% 71.89% 45.59% 80.63% 55.06% 79.24% 60.85%
LDA 71.13% 51.49% 88.66% 80.02% 71.73% 48.77% 80.08% 55.16% 77.90% 58.86%
Doc2Vec 88.83% 78.35% 98.87% 98.72% 76.68% 57.97% 90.75% 77.95% 88.78% 78.25%

SVM

TFIDF 81.84% 62.13% 94.71% 91.27% 77.16% 53.54% 91.01% 78.24% 86.18% 71.29%
LDA 78.88% 59.80% 93.64% 91.16% 71.89% 51.11% 85.59% 70.63% 82.50% 68.18%
Doc2Vec 89.67% 79.31% 98.93% 98.79% 77.00% 58.70% 91.56% 80.88% 89.29% 79.42%
SBERT 93.01% 83.91% 98.87% 98.84% 82.43% 64.44% 92.34% 86.53% 91.66% 83.43%

Combi-
nation
of

Repre-
sentators

Cossim
CCV +
Doc2Vec 90.27% 79.04% 98.19% 97.95% 77.16% 65.25% 86.92% 82.82% 88.14% 81.27%

DCV +
Doc2Vec 90.27% 79.01% 98.33% 98.10% 77.16% 65.19% 92.05% 82.96% 89.45% 81.32%

SVM
CCV +
Doc2Vec 89.97% 80.44% 98.95% 98.84% 77.00% 58.70% 80.73% 76.06% 86.66% 78.51%

DCV +
Doc2Vec 89.67% 79.35% 98.95% 98.83% 77.00% 58.70% 90.20% 75.90% 88.95% 78.20%

Ensemblers Hard 94.15% 86.95% 99.60% 99.58% 84.19% 78.32% 96.59% 91.88% 93.63% 89.18%
Soft 93.62% 85.00% 99.38% 99.41% 86.26% 79.33% 95.94% 91.04% 93.80% 88.70%

Table 8: Out-expansion accuracy (Acc) and macro F1-measure (MaF1). Values marked as bold indicate the best Acc obtained by
an individual technique and by an ensembler, respectively in that dataset. A technique T1 is considered better than T2 if a
non-parametric significance test (based on shuffling[27]) indicates that the difference in their means has a p-value < 0.05. Thus,
even though each column has a highest mean value for some technique 𝐻 which will be bolded, the value of a technique 𝑇 will
also be bolded if 𝐻 is no better than 𝑇 based on the p-value criterion. We apply the same p-value criteria to bold ensemblers
on all datasets, except on ScienceWISE where we apply the statistical test to each ensembler against Cossim SBERT (the best
technique on ScienceWISE).

In these out-expansion experiments, we measure the accuracy
andmacro F1 only on the acronym-expansions pairs whose acronym
is ambiguous (i.e., have at least two expansions in the training data)
and whose in-expansions are in the training data.

The best individual techniques (average above 89% of accuracy)
in descending order are: Cossim with SBERT, SVM with SBERT,
SciDr-out, Cossim with CCV, Cossim with TF-IDF, Cossim with
DCV, Cossim with Doc2Vec alone or with DCV, and SVM with
Doc2Vec. Regarding statistical significance, Cossim with SBERT

is the best for SciWISE. For MSH, SVM with Doc2vec combined
with either CCV or DCV score higher accuracy. However, they are
not statistically significantly better than: SVM with either Doc2Vec
or SBERT, Cossim with SBERT, and LR with Doc2Vec. SciDr-out
achieves higher accuracy for CSWiki, but is not statistically better
than SVM with SBERT. Finally, for SciAD, SciDr-out with external
data scores higher accuracy but not statistically significantly better
than: SciDr-out and Cossim with SBERT.

João L. M. Pereira, João Casanova, Helena Galhardas, and Dennis Shasha

Out-expansion Technique Execution Times per Document (s)
Technique Group Predictors Representators SciWISE MSH CSWiki SciAD Average

Classical

Random 0.00 0.00 0.00 0.00 0.00
Most Frequent 0.00 0.00 0.00 0.00 0.00

Cossim
CCV 0.01 0.06 0.07 0.12 0.07
DCV 0.02 0.18 0.08 0.34 0.15
SBE 0.02 0.07 0.06 0.06 0.05

Thakker 2.19 7.56 2.62 2.78 3.79
Entity Disam. LUKE 0.88 3.38 63.74 0.31 17.07

Sentence-Oriented

UAD 0.00 0.01 0.01 0.00 0.01
MadDog-out 0.07 0.22 1.15 0.04 0.37
SciDr-out 0.72 1.19 2.51 0.70 1.28
SciDr-out with External Data 2.15 3.37 N/A 1.28 N/A

Representator Cossim

TF-IDF 0.06 5.02 4.20 0.87 2.53
LDA 0.01 0.02 0.03 0.02 0.02
Doc2Vec 0.01 0.01 0.36 0.02 0.10
SBERT 0.19 0.39 0.50 0.13 0.30

Classification

RF
TFIDF 1.03 17.77 72.85 3.52 23.79
LDA 1.01 1.45 1.02 1.32 1.20
Doc2Vec 0.12 1.44 2.14 1.75 1.36

LR
TFIDF 0.06 5.03 41.36 0.92 11.84
LDA 0.01 0.02 0.03 0.02 0.02
Doc2Vec 0.01 0.02 0.36 0.04 0.11

SVM

TFIDF 0.04 4.77 7.05 1.05 3.23
LDA 0.01 0.03 0.03 0.02 0.02
Doc2Vec 0.01 0.01 0.37 0.02 0.10
SBERT 0.14 0.26 0.59 0.17 0.29

Combination of
Representators

Cossim CCV + Doc2Vec 0.03 0.23 0.65 0.41 0.33
DCV + Doc2Vec 0.44 2.32 1.29 2.54 1.65

SVM CCV + Doc2Vec 0.04 0.29 0.78 0.46 0.39
DCV + Doc2Vec 0.47 2.36 1.37 2.51 1.68

Ensemblers Hard 0.00 0.00 0.00 0.00 0.00
Soft 0.00 0.00 0.00 0.00 0.00

Table 9: Overall out-expansion techniques average execution times per document.

Representators SciWISE MSH CSWiki SciAD Average
CCV 0 1 5 1 2
DCV 0 1 5 1 2
SBE 6 23 115 9 38
LUKE 1 917 9 448 29 319 9 435 12 529
UAD 43 93 331 54 130
TF-IDF 2 10 58 1 18
LDA 155 7 766 8 830 4 247 5 250
Doc2Vec 13 32 212 108 91
SBERT 111 437 1 860 280 672
SciDr-in 11 227 42 716 147 454 50 282 62 920
SciDr-in
External Data 14 299 46 651 N/A 66 441 42 464

MadDog-out 566 728 10 008 1 198 3 125
Table 10: Representator execution times in seconds for each
dataset.

Interpretation: An important question in interpreting these
numerical results is to understand why some techniques are better
than others.

For out-expansion, the best approaches SciDr-out and Cossim/
SVM with SBERT are based on language models trained on large
data collections, but that does not tell the whole story. SciDr-out
uses the particularly effective strategy of predicting the expan-
sion span from the list of possible expansions passed as input.
Further, SciDr-out is an ensemble of models trained in a 5-fold
cross-validation setting. SBERT augments transformer language
models to sentence similarity tasks using a siamese architecture
that generates embeddings for each sentence and is trained to max-
imize similarity. Those embeddings turn out to be very informative
regarding the context for documents: both Cossim or SVM com-
bined with SBERT obtained on average the highest accuracy among
individual techniques.

While LUKE’s transformer language model enables the creation
of entity embeddings (in LUKE’s case, fine-tuned for expansion
embeddings), the results are not the best for acronyms, even with
fine-tuning. One reason is that each entity is referenced frequently
(over 600 times on the average [81]). Acronym/expansion pairs are
referenced less than twice on the average. For example, Wikipedia

AcX: system, techniques, and experiments for Acronym eXpansion [Extended Version]

Out-expansion Technique

Predictors Repre-
sentators

Sci
WISE MSH CS

Wiki
Sci
AD

Aver-
age

CCV 0.35 0.25 0.38 0.34 0.33
TF-IDF 0.37 0.33 0.48 0.30 0.37
Doc2Vec 0.27 0.14 0.32 0.19 0.23Cossim

SBERT 0.24 0.15 0.32 0.24 0.24
Doc2Vec 0.10 0.03 0.36 0.19 0.17SVM SBERT 0.07 0.06 0.34 0.23 0.18

Table 11: Pearson correlation coefficient values of confidence
with correct acronym expansion for each dataset and each
technique. Accuracy is correlated with confidence, but only
modestly.

has 11 million entity occurrences and 18 thousand distinct entities
[81], an average of 611 mentions per entity. By contrast, examples
of sentences whose acronyms are expanded by links are limited,
because some acronyms may be defined in a single document. On
CSWiki, for example, we have 10,400 acronym expansion occur-
rences (without counting repeated occurrences in the same docu-
ment) and 8,600 distinct acronym/expansion pairs, an average of
only 1.2 occurrences per acronym expansion.

Independently of which technique is best, we should note that
each of the top techniques, except SciDr-out, gives a confidence
score. For some of the best techniques SBERT, Doc2Vec, TFIDF, and
CCV, the confidence score has a positive correlation with accuracy,
though the correlation is modest (under 0.5). as indicated in Table 11.
This low positive correlation is reflected in our results for ensemble
techniques. The soft ensemble technique (in which each underlying
technique’s weight is monotonic with its confidence) does well
thanks to the positive correlation. On the other hand, hard voting
ensemble techniques (in which each underlying technique votes
for its preferred expansion regardless of confidence) perform even
better, suggesting that the "wisdom of crowds" effect is stronger
than using confidences. A deeper look at ensemble techniques for
acronym expansion is a subject for future work.
Analysis of Classical techniques. The baselines Random and
Most frequent out-expanders have better accuracies on SciWISE
(48% and 71%) followed by SciAD (33% and 69%) and MSH (47%
and 50%). The worst scores are obtained on CSWiki (15% and 48%),
because that dataset has far more ambiguity.

MadDog-out achieves near the best performance on SciWISE
and MSH, is also good on SciAD, and is worst on CSWiki. MadDog-
out’s input is a sentence at a time like SBE and UAD, so context is
also limited to a few words. In contrast, the best techniques, except
SciDr-out, process all words in a document.
Analysis of remainingRepresentators andClassification tech-
niques. LDA works well in many Natural Language Processing
tasks, but less well for our out-expansion task, probably because
measuring document similarity by comparing topics is not the best
use of LDA.

Techniques with TF-IDF as a representator are surprisingly com-
petitive in SciWISE and MSH, but they achieve inferior accuracy
in CSWiki. Pre-processing steps (Section 5.1.2) play an important
role in CCV performance, for instance, in the Tokenization step, we

remove stop-words which TF-IDF takes into account thus automat-
ically giving them less relevance due to the IDF score.

Predictors using RF are slower and slightly less accurate than
Cossim and SVMs. RFs struggle with the fact that, in this acronym
expansion, there are many features but only a small number of
samples, e.g., 300 dimensions from Doc2Vec and a few documents
per acronym. By contrast, Cossim and SVM are usually the best pre-
dictors closely followed by LR. The representator hyperparameter
search was performed for TF-IDF, LDA, and Doc2Vec using Cossim
as a predictor, hence they are fitted for this predictor. SVMs and
LRs are similar classifiers, the first fits a separating hyper-plane,
the other a logistic function.
Execution times of representators. The training execution times
depend only on the representators and are reported in Table 10.
The Doc2Vec models used by Thakker et al. are created during the
input document processing hence are not reported in Table 10.

The CCV and DCV representators take the least time (average
2s) closely followed by TF-IDF (average 18s) (Table 10). By con-
trast, Word2Vec (SBE and UAD) and Doc2Vec models take more
time depending on the hyperparameters and dataset size (6-331s).
LDA takes on average 5ks. The most expensive models are SciDr-
out (14ks-66ks) followed by LUKE (1Ks-13ks) and MadDog-out
(566s-10ks) which use either language models or neural networks.
Thakker et al. [73] does not report execution time to produce the
representator model, because the system builds a Doc2Vec per
acronym during the input document processing time.
Document processing execution times. As observed in Table9,
among these best techniques, Cossim with CCV is the fastest for all
datasets, able to process input documents in less than 0.07 seconds
on dataset average. However, SVM with Doc2Vec is the fastest for
MSH and SciWISE. The slowest among the best is Cossim with
TF-IDF (average 2.5s), followed by SciDr-out (1.3s for base and 2.3s
with external data). These differences are statistically significant.
External data analysis. SciDr-out with External Data improves
over the SciDr-out base (Table 8), indicating that adding additional
models trained on external data usually helps at roughly double the
time cost. The downside is that training time more than doubles
(we have to sum the SciDr-out External data in Table 10). Average
execution times (Table 8) to process a document almost doubles as
well (from 1.3s to 2.3s).
In summary:

• If neither training time nor document processing time is of
major concern and especially if GPU processing is available,
then use either aHard ensembler (best but slowest), SciDr-
out (best with more domain data) or Cossim/SVM with
SBERT (fastest and close to best).

• Apipeline that balances time and accuracy is to useDoc2vec
as feature inputs for either Cossim or SVMs.

• If training and test time is limited, use Cossim with CCV,
which requires almost no training time (less than 5s) and is
the fastest in testing time among the best set of techniques.

6 End-to-end Benchmark and Evaluation

The end-to-end benchmark described in Section 6.1 uses input
documents containing acronyms, where some of those acronyms
contain expansions and others do not. The evaluation in Section 6.2

João L. M. Pereira, João Casanova, Helena Galhardas, and Dennis Shasha

will measure the recall and precision of acronym expansion for
both student annotators and AcX pipelines.

6.1 A Benchmark of End-to-End Acronym
Expansion

Section 6.1.1 describes the train and test datasets used in this
benchmark. Section 6.1.2 lists the end-to-end acronym expander
systems included in the benchmark. Finally, Section 6.1.3 presents
the metrics that our benchmark uses to evaluate the systems.

6.1.1 Datasets The end-to-end benchmark uses two different
datasets: (i) for testing, the end-to-end dataset of Section 4.1.1. (ii)
The train dataset consists of documents from Wikipedia that do
not belong to the annotated test set. Those documents came from
the Wikipedia dump of March 1, 202014. These were converted to
pure text using WikiExtractor [4].

We preprocessed all the documents using all the steps described
in Section 5.1.2 for all out-expansion techniques exceptMadDog-out
which uses its own preprocessing techniques.

6.1.2 End-to-end systems We use: (i) the end-to-end MadDog
System (MadDog-sys) and (ii) various pipelines of AcX consist-
ing of an in-expansion technique along with possibly the Link
Follower (LF) technique followed by an out-expansion technique
possibly with machine learning (see Figure 1). An example of a
pipeline would be the SH in-expander, followed by the LF compo-
nent, Doc2Vec, and SVMs. The pipelines we test consist of com-
binations of the most practical (accurate and fastest) techniques
for in-expansion and out-expansion as determined by the bench-
marks in Sections 4.2 and 5.2. Specifically, AcX pipelines use either
theMadDog-in or the SH technique as in-expanders to identify
acronyms and expansions in input documents. For out-expansion,
AcX pipelines include one of the following combinations of out-
expansion techniques, i.e., a predictor (Section 3.3) with a represen-
tator (Section 3.2): (i) Cossim with SBERT; (ii) SVM with SBERT;
(iii) Cossim with CCV; (iv) Cossim with Doc2vec; and (v) SVM
with Doc2vec.

Finally, we compare the accuracies of MadDog-sys, the various
pipelines of AcX, and the student annotators (before the reviewer,
the third annotator, resolved conflicts to decide on the final annota-
tions).

6.1.3 Performance Metrics Similarly to Section 4.1.3, we eval-
uate MadDog-sys, different pipelines of AcX, and human anno-
tators listed in Section 6.1.2 in terms of Precision (P), Recall (R)
and F1-Measure (F1). Precision is the number of correct system-
found acronym-expansion pairs divided by the total number of
system-identified pairs. Recall is the number of correct system-
found acronym-expansion pairs divided by the total number of
human-found pairs. F1-measure is the harmonic mean of Preci-
sion and Recall. We also measure training and per test document
execution times.

14https://dumps.wikimedia.org/enwiki

6.2 Results on End-to-end Experiments

Setup. For these experiments, we used a virtual machine with the
following specifications: AMD EPYC Processor with 16 cores and
256GB of RAM (Random Access Memory). For SBERT, the virtual
machine specifications were: five cores of an Intel Xeon Gold 6126
Processor, 40GB of RAM and a NVIDIA GeForce RTX 2080 Ti. The
code ran in Python 3.7.
Results. Table 12 presents the results for the AcX system running
each one of the different pipelines mentioned in Section 6.1.2, the
MadDog-sys15, and the results for the student annotators. Moreover,
apart from the end-to-end quality metrics in Table 12, we also report
the quality metrics for out-expansion (i.e., acronyms left to expand
after in-expansion and LF component).

The AcX pipeline composed by MadDog-in, SVM with SBERT
without Link Following (LF) obtains the best results with preci-
sion (61.32%) and F1-measure (54.97%). However, based on the F1-
measure, this is not statistically significantly better (i.e., P-value
above 0.05) than the following system pipelines: (i) with the same
out-expander but with LF, or (ii) with SH and SVM with SBERT,
without LF. The best system pipeline takes 2s on average to process
a document. Our best AcX pipeline obtains better results for all
measures than the MadDog-sys (+20% of F1) and is faster (2s to
1084s).
Best AcX pipeline analysis. The reason why the precision is
low is that our best AcX pipeline considers certain strings to be
acronyms even though they are not (245 in total). Some are small
words like "and" and "not". Others are codes like ZAB and ZAU that
refer to airports. Conversely, the acronym and in-expansion extrac-
tion component fails to identify lower case acronyms as acronyms,
common measurement units (e.g., m for meter, g for gram, kbit
for kilobit) and some common language abbreviations (e.g., Micro,
"etc", email) which usually everyone knows. By contrast, AcX pro-
vides the correct expansion for the acronyms that newcomers to
a field may not know, e.g., CAS - Computer Algebra System; SLS -
SoftLanding Linux system; and ILM - Industrial Light & Magic.
In and out expansion analysis. We report independently the
performance of in-expansion in Table 13 and out-expansion in Ta-
ble 12. When evaluating just the acronym and in-expander extrac-
tion component of AcX pipelines, using SH scored an in-expansion
F1-measure of 68.88% and using MadDog-in scored 69.92%. If we
evaluate out-expansion (acronyms left to expand after in-expansion
and LF component), our best AcX pipeline (SVM as predictor with
SBERT as representator) obtains an F1-measure of 47.76%.
LF analysis. Overall, the Link Following component improves
the quality metrics marginally if at all for these link-poor datasets.
Unsurprisingly, the better the out-expander, the less LF helps.

We report Precision for only the LF predictions in Table 13:
77.66% when running with SH and 73.19% when running with
MadDog-in.When combinedwith the best out-expander techniques
(i.e., SVM as predictor with SBERT as representator), following links
reduces the score by -0.52%, however when we consider the second-
best set of out-expander techniques (i.e., SVM as predictor with
Doc2Vec as representator), LF improves the F1-score by +0.37%

15https://archive.org/details/MadDog-models

https://dumps.wikimedia.org/enwiki
https://archive.org/details/MadDog-models

AcX: system, techniques, and experiments for Acronym eXpansion [Extended Version]

AcX (pipelines) Out-expansion End-to-end Execution
Time per
Document (s)In-expander Out-expander

Predictor Representator LF P R F1 P R F1

SH

Cossim
CCV No 44.00% 37.40% 40.44% 51.43% 45.62% 48.35% 21.31

Yes 34.66% 22.68% 27.42% 52.16% 46.30% 49.05% 18.51

SBERT No 46.03% 39.12% 42.30% 53.10% 47.10% 49.92% 0.15
Yes 36.70% 23.99% 29.01% 53.34% 47.35% 50.16% 1.16

SVM
Doc2Vec Yes 40.86% 26.74% 32.33% 56.05% 49.75% 52.71% 3.26

SBERT No 51.10% 43.43% 46.95% 57.27% 50.80% 53.84% 2.37
Yes 42.02% 27.46% 33.22% 56.68% 50.31% 53.30% 2.91

MadDog-in

Cossim

CCV No 44.77% 34.62% 39.05% 53.12% 43.15% 47.62% 17.45
Yes 37.36% 21.85% 27.57% 54.46% 44.44% 48.95% 19.51

Doc2Vec Yes 40.20% 23.50% 29.66% 56.20% 45.86% 50.51% 7.73

SBERT No 57.27% 36.55% 41.23% 55.17% 44.81% 49.46% 0.33
Yes 40.02% 23.29% 29.44% 56.28% 45.93% 50.58% 7.76

SVM
Doc2Vec No 52.08% 40.27% 45.42% 59.12% 48.02% 53.00% 1.12

Yes 45.38% 26.53% 33.49% 59.38% 48.46% 53.37% 7.63

SBERT No 54.76% 42.35% 47.76% 61.32% 49.81% 54.97% 2.29
Yes 47.09% 27.40% 34.64% 60.59% 49.44% 54.45% 9.12

MadDog-sys 25.40% 18.38% 21.33% 37.85% 29.14% 32.93% 1084.92
Student annotators N/A N/A N/A 88.36% 76.41% 81.95% N/A

Table 12: Out-expansion and end-to-end system quality metrics and average execution times to process a document in seconds.
The in-expander technique and the Link Follower (LF) component provide the input for out-expansion techniques, so when
those two components are not fixed, we cannot compare out-expansion techniques directly using the out-expansion quality
metrics. End-to-end values marked as bold indicate the best obtained in that metric. A method M1 is considered better than M2
if a non-parametric significance test (based on shuffling[27]) indicates that the difference in their means has a p-value < 0.05.
Thus, even though each column has a highest mean value for some method 𝐻 , the value of a method𝑀 will be bolded if 𝐻 is no
better than𝑀 based on the p-value criterion.

In-expander
Technique

In-expansion LF
P R F1 P

SH 86.17% 57.37% 68.88% 77.66%
MadDog-in 91.49% 56.58% 69.92% 73.19%

Table 13: In-expansion prediction, recall, and F1-measure
and Link Follower (LF) prediction when each in-expander
technique is used.

Out-Expansion
Representator

In-expansion Technique
SH MadDog-in Average

CCV 389 332 361
Doc2Vec 15,985 13,341 14,663
SBERT 42,769 33,724 38,247

Table 14: Representator execution times in seconds for each
in-expander technique used to process the train dataset.

(Table 12). Thus, the better the out-expander, the less link following
helps.

For the link follower, execution times were not measured for the
time to download a linked document. When we predict an acronym
with LF then it is an acronym less to out-expand. For SVM with
SBERT or Doc2Vec we have increments of 6-7s by following links
with MadDog-in, however for Cossim with CCV with MadDog-in0
and follow links with SH we observe a small difference. If the out-
expansion technique is slow, then following links may also improve
execution times.

Execution times of representators. We report in Table 14, the
execution times to create the out-expansion representators for each
system pipeline. We observe that CCV executes in less time (389s
with SH and 332s with MadDog-in) than Doc2Vec (15,985s with
SH and ,13 341s with MadDog-in). SBERT representator takes the
longest time (42,769 with SH and 33,724s with MadDog-in)
Comparisonwith human performance. Compared with human
annotators, our best AcX pipeline (MadDog-in and SVMs with
SBERT) is around 27% lower in Precision, Recall, and F1-Measure.
So, there is a lot of room for improvement. On the other hand,
automatic Acronym Expansion is rapid (2s per document) and can
give at least a good first guess.
An example application of AcX. Consider one of the docu-
ments out of the 163 at random whose original page is here https:
//en.wikipedia.org/wiki/CC_(complexity). Our best AcX pipeline
identified the following acronym-expansion pairs: CC - comparator
circuits; CCVP - comparator circuit value problem; AC - alternating
current; NC - nick’s class; and NL - national league. However, it
failed to identify CC-complete, and P. We can see that CC, CCVP,
NC, andAL are correct andNL is incorrect. With a different Pipeline
consisting of Doc2Vec instead of SBERT, AL is incorrect, but NL is
correct.
In summary:

• The best AcX pipeline consists of MadDog-in, with SVM
and SBERT.

• The Link Following component has high precision but
does not improve AcX performance compared with the
best pipeline, though that could change depending on the
density of acronym-related links.

https://en.wikipedia.org/wiki/CC_(complexity)
https://en.wikipedia.org/wiki/CC_(complexity)

João L. M. Pereira, João Casanova, Helena Galhardas, and Dennis Shasha

7 Conclusions and Future Work

The AcX system synthesizes and extends the best of previous
work on acronym expansion. In the process, our major technical
findings are:

• In-expansion rule-based techniques (SH and MadDog-in)
usually work best and require little execution time.

• For out-expansion, SciDr-out and Cossim or SVMs with
SBERT usually work best , followed by Cossim and SVMs
with either CCV or Doc2Vec.

• There is still a significant gap between the best AcX pipelines
and human-level performance.

There are five data and software products of our work that future
researchers can either extend or use as a basis of comparison.

(1) The first human-annotated dataset for end-to-end acronym
expander systems.

(2) Three benchmarks to evaluate: (i) in-expansion techniques,
(ii) out-expansion techniques, (iii) the combination in an
end-to-end setting.

(3) The end-to-end AcX system is available publicly and can
be applied to arbitrary languages, follows hyperlinks, and
can incorporate new in- and out-expansion techniques.

Future Work
Because the automated techniques in the state-of-the-art fall

well below human-level accuracy levels, there is a large margin
for improvement. We see the need for improvements in both in-
expansion (especially acronym identification) and out-expansion.
Some promising avenues for improvements include: (i) more accu-
rate in-expansion (e.g., additional acronym-expansion extraction
patterns), (ii) new context representation techniques, and (iii) an
extensive study of ensemble techniques.

With respect to the AcX system, we will add an Application
Programming Interface (API) so text analytics systems (e.g., entity
disambiguation or sentiment analysis) can benefit from acronym
expansion. Finally, because our platform easily extends to other
languages (e.g., our Portuguese extension was done by a high school
student), we plan to create AcX pipelines for a variety of natural
languages.

Acknowledgments

Pereira’s work was supported by national funds through FCT
(Fundação para a Ciência e a Tecnologia), under the PhD Scholarship
SFRH/BD/135719/2018. Furthermore, Pereira and Galhardas’ work
was supported by national funds through FCT under the project
UIDB/50021/2020.

Shasha’s work has been partly supported by (i) the New York Uni-
versity Abu Dhabi Center for Interacting Urban Networks (CITIES),
funded by Tamkeen under the NYUAD Research Institute Award
CG001 and by the Swiss Re Institute under the Quantum Cities ini-
tiative, (ii) NYU WIRELESS, (iii) U.S. National Science Foundation
grants 1934388, 1840761, and 1339362, and (iv) INRIA.

The server virtual machine used to run the experiments was
supported by BioData.pt – Infraestrutura Portuguesa de Dados Bi-
ológicos, project 22231/01/SAICT/2016, funded by Portugal 2020.
This material is based upon work supported by Google Cloud. This

work was carried out on the Dutch national e-infrastructure with
the support of SURF Cooperative.

Finally, we would like to thank the reviewers for several excellent
suggestions.

References

[1] ABBREX. 2011. ABBREX - The Abbreviation Expander. http://abbrex.com/
[2] Khaled Abdalgader and Andrew Skabar. 2012. Unsupervised Similarity-based

Word Sense Disambiguation Using Context Vectors and Sentential Word Im-
portance. ACM Transactions on Speech and Language Processing 9, 1 (2012),
2–21.

[3] Hiroko Ao and Toshihisa Takagi. 2005. ALICE: an algorithm to extract abbrevia-
tions from MEDLINE. Journal of the American Medical Informatics Association
12, 5 (2005), 576–586.

[4] Giusepppe Attardi. 2015. WikiExtractor. https://github.com/attardi/
wikiextractor.

[5] S Azimi, H Veisi, and R Amouie. 2019. A method for automatic detection of
acronyms in texts and building a dataset for acronym disambiguation. In Iranian
Conference on Signal Processing and Intelligent Systems. 1–4.

[6] Adrian Barnett and Zoe Doubleday. 2020. Meta-Research: The growth of
acronyms in the scientific literature. eLife 9 (jul 2020), e60080. https://doi.
org/10.7554/eLife.60080

[7] Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciBERT: Pretrained Language
Model for Scientific Text. In Empirical Methods in Natural Language Processing.

[8] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural Language Processing
with Python (1st ed.). O’Reilly Media, Inc.

[9] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet
Allocation. Journal of Machine Learning Research 3 (March 2003), 993–1022.

[10] Robert Bossy, Louise Deléger, Estelle Chaix,Mouhamadou Ba, and Claire Nédellec.
2019. Bacteria Biotope at BioNLP Open Shared Tasks 2019. In Workshop on
Biomedical Natural Language Processing Open Shared Tasks. Association for
Computational Linguistics, Hong Kong, China, 121–131. https://doi.org/10.
18653/v1/D19-5719

[11] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001), 5–32.
[12] Jean Charbonnier and Christian Wartena. 2018. Using Word Embeddings for

Unsupervised Acronym Disambiguation. In International Conference on Compu-
tational Linguistics. Association for Computational Linguistics, Santa Fe, New
Mexico, USA, 2610–2619. https://www.aclweb.org/anthology/C18-1221

[13] Zheng Chen, Suzanne R Tamang, Adam Lee, Xiang Li, Wen-Pin Lin, Matthew G
Snover, Javier Artiles, Marissa Passantino, and Heng Ji. 2010. CUNY-BLENDER
TAC-KBP2010 Entity Linking and Slot Filling System Description. Theory and
Applications of Categories (2010).

[14] Daphné Chopard and Irena Spasić. 2019. A Deep Learning Approach to Self-
expansion of Abbreviations Based on Morphology and Context Distance. In
Statistical Language and Speech Processing. 71–82. https://doi.org/10.1007/978-
3-030-31372-2_6

[15] Manuel R. Ciosici and Ira Assent. 2018. Abbreviation Expander - a Web-based
System for Easy Reading of Technical Documents. In Computational Linguistics:
System Demonstrations. Association for Computational Linguistics, Santa Fe,
New Mexico, USA, 1–4. https://www.aclweb.org/anthology/C18-2001

[16] Manuel R. Ciosici, Tobias Sommer, and Ira Assent. 2019. Unsupervised Abbre-
viation Disambiguation Contextual disambiguation using word embeddings.
Computing Research Repository arXiv:1904.00929 (2019). arXiv:1904.00929
http://arxiv.org/abs/1904.00929 version 2.

[17] Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational
and psychological measurement 20, 1 (1960), 37–46.

[18] Nigel Collier and Jin-Dong Kim. 2004. Introduction to the Bio-entity Recog-
nition Task at JNLPBA. In International Joint Workshop on Natural Language
Processing in Biomedicine and its Applications. Geneva, Switzerland, 73–78.
https://aclanthology.org/W04-1213

[19] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine
learning 20, 3 (1995), 273–297.

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
Computing Research Repository arXiv:1810.04805 (2018). https://arxiv.org/abs/
1810.04805

[21] Nicholas Egan and John Bohannon. 2021. Primer AI’s Systems for Acronym Iden-
tification and Disambiguation. InWorkshop on Scientific Document Understanding
co-located with 35th AAAI Conference on Artificial Inteligence. CEUR-WS.org.
http://ceur-ws.org/Vol-2831/paper30.pdf

[22] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
2008. LIBLINEAR: A Library for Large Linear Classification. Journal of Machine
Learning Research 9 (jun 2008), 1871–1874.

[23] Shicong Feng, Yuhong Xiong, Conglei Yao, Liwei Zheng, and Wei Liu. 2009.
Acronym Extraction and Disambiguation in Large-Scale Organizational Web

http://abbrex.com/
https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor
https://doi.org/10.7554/eLife.60080
https://doi.org/10.7554/eLife.60080
https://doi.org/10.18653/v1/D19-5719
https://doi.org/10.18653/v1/D19-5719
https://www.aclweb.org/anthology/C18-1221
https://doi.org/10.1007/978-3-030-31372-2_6
https://doi.org/10.1007/978-3-030-31372-2_6
https://www.aclweb.org/anthology/C18-2001
https://arxiv.org/abs/1904.00929
http://arxiv.org/abs/1904.00929
https://aclanthology.org/W04-1213
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
http://ceur-ws.org/Vol-2831/paper30.pdf

AcX: system, techniques, and experiments for Acronym eXpansion [Extended Version]

Pages. In Conference on Information and Knowledge Management (Hong Kong,
China). Association for Computing Machinery, New York, NY, USA, 1693–1696.
https://doi.org/10.1145/1645953.1646206

[24] Michael R. Glass, Md. Faisal Mahbub Chowdhury, and AlfioMassimiliano Gliozzo.
2017. Language Independent Acquisition of Abbreviations. Computing Research
Repository arXiv:1709.08074 (2017). arXiv:1709.08074 http://arxiv.org/abs/1709.
08074 version 1.

[25] Aitor Gonzalez-Agirre, Montserrat Marimon, Ander Intxaurrondo, Obdulia
Rabal, Marta Villegas, and Martin Kralligner. 2019. PharmaCoNER: Phar-
macological Substances, Compounds and proteins Named Entity Recognition
track. In Workshop on Biomedical Natural Language Processing Open Shared
Tasks. Association for Computational Linguistics, Hong Kong, China, 1–10.
https://doi.org/10.18653/v1/d19-5701

[26] Phil Gooch. 2012. BADREX: In situ expansion and coreference of biomedical
abbreviations using dynamic regular expressions. Computing Research Repository
arXiv:1206.4522 (2012). arXiv:1206.4522 http://arxiv.org/abs/1206.4522 version
1.

[27] Phillip I Good. 2006. Resampling Methods: A Practical Guide to Data Analysis.
Birkhäuser Basel. https://doi.org/10.1007/0-8176-4444-X

[28] Richard D Hipp. 2020. SQLite. https://www.sqlite.org/
[29] Rezarta Islamaj Doğan, Donald C Comeau, Lana Yeganova, and W John Wilbur.

2014. Finding abbreviations in biomedical literature: three BioC-compatible
modules and four BioC-formatted corpora. Database: the journal of biological
databases and curation 2014 (2014).

[30] Paul Jaccard. 1912. The distribution of the flora in the alpine zone. 1. New
phytologist 11, 2 (1912), 37–50.

[31] Kayla Jacobs, Alon Itai, and Shuly Wintner. 2020. Acronyms: identification,
expansion and disambiguation. Annals of Mathematics and Artificial Intelligence
88, 5 (2020), 517–532.

[32] A Jain, S Cucerzan, and Saliha Azzam. 2007. Acronym-Expansion Recognition
and Ranking on the Web. IEEE International Conference on Information Reuse
and Integration (2007), 209–214.

[33] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2014. An
Introduction to Statistical Learning: With Applications in R. Springer Publishing
Company, Incorporated.

[34] Antonio J Jimeno-Yepes, Bridget TMcInnes, andAlan RAronson. 2011. Exploiting
MeSH indexing inMEDLINE to generate a data set for word sense disambiguation.
BMC Bioinformatics 12, 1 (2011), 1–14.

[35] Karen Spärck Jones. 1972. A statistical interpretation of term specificity and its
application in retrieval. Journal of Documentation 28 (1972), 11–21.

[36] İlknur Karadeniz, Ömer Faruk Tuna, and Arzucan Özgür. 2019. BOUN-ISIK Par-
ticipation: An Unsupervised Approach for the Named Entity Normalization and
Relation Extraction of Bacteria Biotopes. InWorkshop on Biomedical Natural Lan-
guage Processing Open Shared Tasks. Association for Computational Linguistics,
Hong Kong, China, 150–157. https://doi.org/10.18653/v1/D19-5722

[37] Klaus Krippendorff. 2018. Content analysis: An introduction to its methodology.
Sage publications.

[38] Cheng-Ju Kuo, Maurice HT Ling, Woody Lin, and Chun-Nan Hsu. 2009. BIOADI:
A machine learning approach to identifying abbreviations and definitions in
biological literature. BMC bioinformatics 10 Suppl 15 (12 2009), S7.

[39] Matt J Kusner, Yu Sun, Nicholas I Kolkin, and Kilian Q Weinberger. 2015. From
Word Embeddings to Document Distances. In International Conference on Inter-
national Conference on Machine Learning. JMLR.org, 957–966.

[40] John D Lafferty, AndrewMcCallum, and Fernando C N Pereira. 2001. Conditional
Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data.
In International Conference on Machine Learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 282–289. http://dl.acm.org/citation.cfm?id=645530.
655813

[41] Quoc V. Le and Tomas Mikolov. 2014. Distributed Representations of Sentences
and Documents. In International Conference on Machine Learning (Beijing, China),
Vol. 32. 1188–1196.

[42] Chao Li, Lei Ji, and Jun Yan. 2015. Acronym Disambiguation Using Word Embed-
ding. In AAAI Conference on Artificial Intelligence (Austin, Texas). 4178–4179.

[43] Yang Li, Bo Zhao, Ariel Fuxman, and Fangbo Tao. 2018. Guess Me if You Can:
Acronym Disambiguation for Enterprises. In Annual Meeting of the Association
for Computational Linguistics, Vol. 1: Long Papers. Association for Computational
Linguistics, Melbourne, Australia, 1308–1317. https://doi.org/10.18653/v1/P18-
1121

[44] Nicholas B Link, Sicong Huang, Tianrun Cai, Jiehuan Sun, Kumar Dahal, Lauren
Costa, Kelly Cho, Katherine Liao, Tianxi Cai, and Chuan Hong. 2022. Binary
acronym disambiguation in clinical notes from electronic health records with
an application in computational phenotyping. International Journal of Medical
Informatics 162 (2022), 104753. https://doi.org/10.1016/j.ijmedinf.2022.104753

[45] Jie Liu, Caihua Liu, and Yalou Huang. 2017. Multi-granularity sequence labeling
model for acronym expansion identification. Information Sciences 378 (2017), 462
– 474.

[46] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Esti-
mation of Word Representations in Vector Space. Computing Research Repository
arXiv:1301.3781 (2013). https://arxiv.org/abs/1301.3781 version 3.

[47] Sungrim Moon, Bridget McInnes, and Genevieve B Melton. 2015. Challenges
and practical approaches with word sense disambiguation of acronyms and
abbreviations in the clinical domain. Healthcare Informatics Research 21, 1 (jan
2015), 35–42. https://doi.org/10.4258/hir.2015.21.1.35

[48] Sungrim Moon, Serguei Pakhomov, and Genevieve B Melton. 2012. Automated
disambiguation of acronyms and abbreviations in clinical texts: window and
training size considerations. AMIA Annual Symposium proceedings 2012 (2012),
1310–1319.

[49] Andrea Moro and Roberto Navigli. 2015. SemEval-2015 Task 13: Multilingual
All-Words Sense Disambiguation and Entity Linking. In International Work-
shop on Semantic Evaluation. Association for Computational Linguistics, Denver,
Colorado, 288–297. https://doi.org/10.18653/v1/S15-2049

[50] Andrea Moro, Alessandro Raganato, and Roberto Navigli. 2014. Entity Linking
meets Word Sense Disambiguation: a Unified Approach. Transactions of the
Association for Computational Linguistics 2 (2014), 231–244. https://doi.org/10.
1162/tacl_a_00179

[51] Roberto Navigli. 2009. Word Sense Disambiguation: A Survey. Comput. Surveys
41, 2, Article 10 (Feb. 2009), 69 pages. https://doi.org/10.1145/1459352.1459355

[52] Vincent Ng. 2017. Machine Learning for Entity Coreference Resolution: A
Retrospective Look at Two Decades of Research. In AAAI Conference on Artificial
Intelligence, Vol. 31. https://ojs.aaai.org/index.php/AAAI/article/view/11149

[53] Sergeui Pakhomov, Ted Pedersen, and Christopher G Chute. 2005. Abbreviation
and acronym disambiguation in clinical discourse. AMIA Annual Symposium
proceedings 2005 (2005), 589–593.

[54] Youngja Park and Roy J. Byrd. 2001. Hybrid Text Mining for Finding Abbrevia-
tions and their Definitions. In Empirical Methods in Natural Language Processing.
https://www.aclweb.org/anthology/W01-0516

[55] Rebecca Passonneau. 2006. Measuring Agreement on Set-valued Items (MASI)
for Semantic and Pragmatic Annotation. In International Conference on Language
Resources and Evaluation. European Language Resources Association (ELRA),
Genoa, Italy.

[56] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[57] Anja Pilz and Gerhard Paaß. 2011. From Names to Entities Using Thematic
Context Distance. In Conference on Information and Knowledge Management.
Association for Computing Machinery, New York, NY, USA, 857–866. https:
//doi.org/10.1145/2063576.2063700

[58] Roman Prokofyev, Gianluca Demartini, Alexey Boyarsky, Oleg Ruchayskiy, and
Philippe Cudré-Mauroux. 2013. Ontology-Based Word Sense Disambiguation
for Scientific Literature. In European Conference on Advances in Information
Retrieval (Moscow, Russia). Springer-Verlag, Berlin, Heidelberg, 594–605. https:
//doi.org/10.1007/978-3-642-36973-5_50

[59] J Pustejovsky, J Castaño, B Cochran, M Kotecki, and M Morrell. 2001. Automatic
extraction of acronym-meaning pairs fromMEDLINE databases. Studies in Health
Technology and Informatics 84, Pt 1 (2001), 371–375.

[60] Alessandro Raganato, Jose Camacho-Collados, and Roberto Navigli. 2017. Word
Sense Disambiguation: A Unified Evaluation Framework and Empirical Compar-
ison. In Conference of the European Chapter of the Association for Computational
Linguistics s. Association for Computational Linguistics, Valencia, Spain, 99–110.
https://www.aclweb.org/anthology/E17-1010

[61] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In EmpiricalMethods in Natural Language Process-
ing. Association for Computational Linguistics, Hong Kong, China, 3982–3992.
https://doi.org/10.18653/v1/D19-1410

[62] Saneesh Mohammed N and K A Abdul Nazeer. 2013. An improved method for
extracting acronym-definition pairs from biomedical Literature. In 2013 Interna-
tional Conference on Control Communication and Computing (ICCC). 194–197.

[63] Ariel S Schwartz and Marti A Hearst. 2003. A simple algorithm for identifying
abbreviation definitions in biomedical text. In Pacific Symposium on Biocomputing.
451–462.

[64] Özge Sevgili, Alexander Panchenko, and Chris Biemann. 2019. Improving
Neural Entity Disambiguation with Graph Embeddings. In Annual Meeting
of the Association for Computational Linguistics: Student Research Workshop.
Association for Computational Linguistics, Florence, Italy, 315–322. https:
//doi.org/10.18653/v1/P19-2044

[65] Wei Shen, Yuhan Li, Yinan Liu, Jiawei Han, Jianyong Wang, and Xiaojie Yuan.
2021. Entity Linking Meets Deep Learning: Techniques and Solutions. IEEE
Transactions on Knowledge and Data Engineering (2021). https://doi.org/10.1109/
TKDE.2021.3117715

[66] Wei Shen, Jianyong Wang, and Jiawei Han. 2015. Entity Linking with a Knowl-
edge Base: Issues, Techniques, and Solutions. IEEE Transactions on Knowledge
and Data Engineering 27, 2 (2015), 443–460. https://doi.org/10.1109/TKDE.2014.
2327028

https://doi.org/10.1145/1645953.1646206
https://arxiv.org/abs/1709.08074
http://arxiv.org/abs/1709.08074
http://arxiv.org/abs/1709.08074
https://doi.org/10.18653/v1/d19-5701
https://arxiv.org/abs/1206.4522
http://arxiv.org/abs/1206.4522
https://doi.org/10.1007/0-8176-4444-X
https://www.sqlite.org/
https://doi.org/10.18653/v1/D19-5722
http://dl.acm.org/citation.cfm?id=645530.655813
http://dl.acm.org/citation.cfm?id=645530.655813
https://doi.org/10.18653/v1/P18-1121
https://doi.org/10.18653/v1/P18-1121
https://doi.org/10.1016/j.ijmedinf.2022.104753
https://arxiv.org/abs/1301.3781
https://doi.org/10.4258/hir.2015.21.1.35
https://doi.org/10.18653/v1/S15-2049
https://doi.org/10.1162/tacl_a_00179
https://doi.org/10.1162/tacl_a_00179
https://doi.org/10.1145/1459352.1459355
https://ojs.aaai.org/index.php/AAAI/article/view/11149
https://www.aclweb.org/anthology/W01-0516
https://doi.org/10.1145/2063576.2063700
https://doi.org/10.1145/2063576.2063700
https://doi.org/10.1007/978-3-642-36973-5_50
https://doi.org/10.1007/978-3-642-36973-5_50
https://www.aclweb.org/anthology/E17-1010
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/P19-2044
https://doi.org/10.18653/v1/P19-2044
https://doi.org/10.1109/TKDE.2021.3117715
https://doi.org/10.1109/TKDE.2021.3117715
https://doi.org/10.1109/TKDE.2014.2327028
https://doi.org/10.1109/TKDE.2014.2327028

João L. M. Pereira, João Casanova, Helena Galhardas, and Dennis Shasha

[67] Utpal Kumar Sikdar and Björn Gambäck. 2017. A Feature-based Ensemble Ap-
proach to Recognition of Emerging and Rare Named Entities. In Workshop on
Noisy User-generated Text. Association for Computational Linguistics, Copen-
hagen, Denmark, 177–181. https://doi.org/10.18653/v1/W17-4424

[68] Aadarsh Singh and Priyanshu Kumar. 2021. SciDr at SDU-2020: IDEAS–
Identifying and Disambiguating Everyday Acronyms for Scientific Domain.
In Workshop on Scientific Document Understanding co-located with 35th AAAI
Conference on Artificial Inteligence. CEUR-WS.org. http://ceur-ws.org/Vol-
2831/paper31.pdf

[69] Sunghwan Sohn, Donald C Comeau, Won Kim, and W John Wilbur. 2008. Abbre-
viation definition identification based on automatic precision estimates. BMC
bioinformatics 9, 1 (2008), 402.

[70] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. 2020. MPNet: Masked
and Permuted Pre-training for Language Understanding. Advances in Neural
Information Processing Systems 33 (2020), 16857–16867.

[71] Mark Stevenson, Yikun Guo, Abdulaziz Al Amri, and Robert Gaizauskas. 2009.
Disambiguation of Biomedical Abbreviations. In Workshop on Current Trends in
Biomedical Natural Language Processing. Association for Computational Linguis-
tics, USA, 71–79.

[72] Bilyana Taneva, Tao Cheng, Kaushik Chakrabarti, and Yeye He. 2013. Mining
AcronymExpansions and TheirMeanings UsingQuery Click Log. In International
Conference on World Wide Web. Association for Computing Machinery, New
York, NY, USA, 1261–1272. https://doi.org/10.1145/2488388.2488498

[73] Aditya Thakker, Suhail Barot, and Sudhir Bagul. 2017. Acronym Disam-
biguation: A Domain Independent Approach. Computing Research Repository
arXiv:1711.09271 (2017). https://arxiv.org/abs/1711.09271 version 3.

[74] Amir Pouran Ben Veyseh, Franck Dernoncourt, Walter Chang, and Thien Huu
Nguyen. 2021. MadDog: A Web-based System for Acronym Identification and
Disambiguation. In European Chapter of the Association for Computational Lin-
guistics.

[75] Amir Pouran Ben Veyseh, Franck Dernoncourt, Thien Huu Nguyen, Walter
Chang, and Leo Anthony Celi. 2021. Acronym Identification and Disambiguation
Shared Tasks for Scientific Document Understanding. In Workshop on Scien-
tific Document Understanding co-located with 35th AAAI Conference on Artificial
Inteligence. CEUR-WS.org. http://ceur-ws.org/Vol-2831/paper33.pdf

[76] Amir Pouran Ben Veyseh, Franck Dernoncourt, Quan Hung Tran, and Thien Huu
Nguyen. 2020. What Does This Acronym Mean? Introducing a New Dataset
for Acronym Identification and Disambiguation. In International Conference on
Computational Linguistics.

[77] Yonghui Wu, Joshua C Denny, S Trent Rosenbloom, Randolph A Miller, Dario A
Giuse, Lulu Wang, Carmelo Blanquicett, Ergin Soysal, Jun Xu, and Hua Xu. 2017.
A long journey to short abbreviations: developing an open-source framework
for clinical abbreviation recognition and disambiguation (CARD). Journal of the
American Medical Informatics Association 24 (2017), 79–86. https://doi.org/10.
1093/jamia/ocw109

[78] Yonghui Wu, Jun Xu, Yaoyun Zhang, and Hua Xu. 2015. Clinical Abbreviation
Disambiguation Using Neural Word Embeddings. In Workshop on Biomedical
Natural Language Processing. Association for Computational Linguistics, Beijing,
China, 171–176. https://doi.org/10.18653/v1/W15-3822

[79] Vikas Yadav and Steven Bethard. 2018. A Survey on Recent Advances in Named
Entity Recognition from Deep Learning models. In International Conference on
Computational Linguistics. Association for Computational Linguistics, Santa Fe,
New Mexico, USA, 2145–2158. https://aclanthology.org/C18-1182

[80] Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, and Yuji Matsumoto.
2020. LUKE: Deep Contextualized Entity Representations with Entity-aware
Self-attention. In Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, Online, 6442–6454. https://doi.org/10.18653/v1/
2020.emnlp-main.523

[81] Ikuya Yamada, Koki Washio, Hiroyuki Shindo, and Yuji Matsumoto. 2019.
Global Entity Disambiguation with BERT. Computing Research Repository
arXiv:1909.00426 (2019). https://arxiv.org/abs/1909.00426 version 3.

[82] Anna Yarygina and Natalia Vassilieva. 2012. High-recall Extraction of Acronym-
definition Pairs with Relevance Feedback. In Joint Extending Database Technology
and International Conference on Database Theory Workshops. ACM, New York,
NY, USA, 21–28. https://doi.org/10.1145/2320765.2320781

[83] Hong Yu, Won Kim, Vasileios Hatzivassiloglou, and John Wilbur. 2006. A Large
Scale, Corpus-Based Approach for Automatically Disambiguating Biomedical
Abbreviations. ACM Transactions on Information Systems 24, 3 (jul 2006), 380–404.
https://doi.org/10.1145/1165774.1165778

[84] Danqing Zhu, Wangli Lin, Yang Zhang, Qiwei Zhong, Guanxiong Zeng, Weilin
Wu, and Jiayu Tang. 2021. AT-BERT: Adversarial Training BERT for Acronym
Identification Winning Solution for SDU@ AAAI-21. InWorkshop on Scientific
Document Understanding co-located with 35th AAAI Conference on Artificial In-
teligence. CEUR-WS.org. http://ceur-ws.org/Vol-2831/paper28.pdf

[85] Stefan Zwicklbauer, Christin Seifert, and Michael Granitzer. 2016. Robust and
collective entity disambiguation through semantic embeddings. In Special Interest
Group in Information Retrieval. Association for Computing Machinery, New York,
NY, USA, 425–434. https://doi.org/10.1145/2911451.2911535

A Dataset creation and structures details

A.1 End-to-end dataset creation process

To further the annotation process, we created two forms: one
that promoted the annotation task and allowed for volunteers to
register16 and another one for the annotation process itself17. The
first form explained the overall annotation task and stated the prize
each participant could win. After filling in the first form, each partic-
ipant automatically received an e-mail message with the Wikipedia
documents to annotate and a link to the second form. Furthermore,
in the second form additional details, instructions, and examples of
the annotation process were given to each participant explaining
the annotation process and how to fill in the form correctly.

A.2 Data structures used in AcX

Each dataset referenced in Section 4.1.1 and Section 5.1.1 were in
different formats and used a different annotation notation for the
acronym-expansion pairs in the dataset documents. To facilitate
access to each dataset by the benchmark we created three main
data structures from the original dataset:

• A dictionary that maps each document id to the correspond-
ing raw text and for out-expansion an additional dictionary
is provided with the preprocessed text.

• A dictionary that maps each document id to the acronym-
expansion pairs whose acronyms are present in text.

• A dictionary that maps each acronym in the corpus to the
corresponding in- and/or out- expansions with the docu-
ment ids where they appear.

B In-expansion Glossary-level results

We report Glossary-level Precision, Recall, and F1-measure val-
ues for the biomedical datasets (i.e., Medstract, Schwartz and Hearst,
BIOADI and Ab3P) for acronym extraction in Table B1 and for
acronym-expansion pair extraction in Table B2. We report Glossary-
level Precision, Recall, and F1-measure values for botch acronym
and pair for SciAI dataset in Table B3 and for End-to-end dataset in
Table B4.

16https://forms.gle/hWJR2K64XzjpYrYY9
17https://forms.gle/VH1SCf2nr1PBAZK18

https://doi.org/10.18653/v1/W17-4424
http://ceur-ws.org/Vol-2831/paper31.pdf
http://ceur-ws.org/Vol-2831/paper31.pdf
https://doi.org/10.1145/2488388.2488498
https://arxiv.org/abs/1711.09271
http://ceur-ws.org/Vol-2831/paper33.pdf
https://doi.org/10.1093/jamia/ocw109
https://doi.org/10.1093/jamia/ocw109
https://doi.org/10.18653/v1/W15-3822
https://aclanthology.org/C18-1182
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://arxiv.org/abs/1909.00426
https://doi.org/10.1145/2320765.2320781
https://doi.org/10.1145/1165774.1165778
http://ceur-ws.org/Vol-2831/paper28.pdf
https://doi.org/10.1145/2911451.2911535
https://forms.gle/hWJR2K64XzjpYrYY9
https://forms.gle/VH1SCf2nr1PBAZK18

AcX: system, techniques, and experiments for Acronym eXpansion [Extended Version]

Acronym and
In-expansion
Technique

Acronym
Medstract SH BIOADI Ab3P Average

P R F1 P R F1 P R F1 P R F1 P R F1
SH 100.00% 88.63% 93.97% 99.48% 79.83% 88.58% 98.69% 78.26% 87.29% 98.20% 77.84% 86.84% 99.09% 81.14% 89.17%
MadDog 100.00% 63.63% 77.78% 95.96% 48.97% 64.85% 97.76% 54.24% 69.77% 99.13% 64.77% 78.35% 98.21% 57.90% 72.69%
SciBERT 80.64% 56.81% 66.67% 81.46% 68.72% 74.55% 85.51% 74.53% 79.64% 85.18% 71.87% 77.96% 83.20% 67.98% 74.71%
SciBERT with
External Data 86.48% 72.72% 79.01% 84.47% 76.13% 80.08% 88.78% 78.67% 83.42% 87.01% 76.13% 81.21% 86.69% 75.91% 80.93%

SciDr 93.10% 61.36% 73.97% 84.30% 59.67% 69.87% 90.40% 64.38% 75.21% 88.56% 68.18% 77.04% 89.09% 63.40% 74.02%
SciDr-in with
External Data 91.89% 77.27% 83.95% 91.74% 77.77% 84.18% 92.10% 79.71% 85.46% 88.11% 71.59% 78.99% 90.96% 76.59% 83.15%

Table B1: In-expansion techniques Glossary-level Precision, Recall and F1-measures for acronym for each biomedical dataset
(Medstract, SH, BIOADI, and Ab3p) and the averages.

Acronym and
In-expansion
Technique

Pair
Medstract SH BIOADI Ab3P Average

P R F1 P R F1 P R F1 P R F1 P R F1
SH 100.00% 88.63% 93.97% 95.38% 76.54% 84.93% 93.99% 74.53% 83.14% 94.98% 75.28% 83.99% 96.09% 78.75% 86.51%
MadDog 92.85% 59.09% 72.22% 91.93% 46.91% 62.12% 87.31% 48.44% 62.31% 95.21% 62.21% 75.25% 91.83% 54.16% 67.98%
SciBERT 64.51% 45.45% 53.33% 69.26% 58.43% 63.39% 66.27% 57.76% 61.72% 74.41% 62.78% 68.10% 68.61% 56.11% 61.64%
SciBERT with
External Data 75.67% 63.63% 69.13% 74.42% 67.07% 70.56% 72.89% 64.59% 68.49% 76.29% 66.76% 71.21% 74.82% 65.51% 69.85%

SciDr 79.31% 52.27% 63.01% 71.51% 50.61% 59.27% 75.29% 53.62% 62.63% 80.81% 62.21% 70.30% 76.73% 54.68% 63.80%
SciDr-in with
External Data 91.89% 77.27% 83.95% 81.55% 69.13% 74.83% 85.16% 73.70% 79.02% 79.72% 64.77% 71.47% 84.58% 71.22% 77.32%

Table B2: In-expansion techniques Glossary-level Precision, Recall and F1-measures for pair for each biomedical dataset
(Medstract, SH, BIOADI, and Ab3p) and the averages.

Acronym and
In-expansion
Technique

SciAI
Acronym Pair

P R F1 P R F1
SH 94.79% 82.63% 88.29% 91.06% 79.38% 84.82%
MadDog-in 98.43% 85.97% 91.78% 96.37% 84.17% 89.86%
SciBERT 94.63% 93.58% 94.10% 90.57% 89.56% 90.06%
SciBERT with
External data 95.29% 93.49% 94.38% 91.10% 89.39% 90.24%

SciDr-in 96.75% 91.78% 94.20% 93.41% 88.62% 90.95%
SciDr-in with
External data 96.91% 91.36% 94.05% 92.46% 87.16% 89.74%

Table B3: In-expansion techniques Glossary-level Precision,
Recall and F1-measures for acronym and pair extraction and
for the SciAI dataset.

Acronym and
In-expansion
Technique

User-Generated
Acronym Pair

P R F1 P R F1
SH 90.42% 70.83% 79.43% 85.10% 66.67% 74.76%
MadDog-in 92.22% 69.17% 79.04% 87.78% 65.83% 75.23%
SciBERT 64.13% 49.16% 55.66% 56.52% 43.33% 49.05%
SciBERT with
External data 48.63% 59.17% 53.38% 44.52% 54.17% 48.87%

SciDr-in 76.67% 57.50% 65.71% 67.78% 50.83% 58.09%
SciDr-in with
External data 85.54% 59.17% 69.95% 80.72% 55.83% 66.01%

Table B4: In-expansion techniques Glossary-level Precision,
Recall and F1-measures for acronym and pair extraction for
the User Generated dataset.

	Abstract
	1 Introduction
	1.1 High Level Architecture of an Acronym Expansion System

	2 Related Work
	2.1 In-expansion
	2.2 Out-expansion
	2.3 End-to-end Acronym Expanders

	3 AcX: an End-to-end Acronym eXpander System
	3.1 Acronym and In-Expansion Extraction
	3.2 Representator
	3.3 Out-Expansion Predictor

	4 In-expansion Benchmark, Evaluation and Results
	4.1 A Benchmark of In-expansion Techniques
	4.2 In-expansion Experimental Evaluation

	5 Out-expansion Benchmark, Evaluation and Results
	5.1 A Benchmark of Out-expansion Techniques
	5.2 Out-expansion Experimental Results

	6 End-to-end Benchmark and Evaluation
	6.1 A Benchmark of End-to-End Acronym Expansion
	6.2 Results on End-to-end Experiments

	7 Conclusions and Future Work
	Acknowledgments
	References
	A Dataset creation and structures details
	A.1 End-to-end dataset creation process
	A.2 Data structures used in AcX

	B In-expansion Glossary-level results

