WORKSHOP ON SENSING AND CONTROL FOR AUTONOMOUS VEHICLES Ålesund, Norway, 20–22 June 2017

New Design Techniques for Globally Convergent SLAM

ANALYSIS AND IMPLEMENTATION

Pedro Lourenço, Bruno Guerreiro, Pedro Batista, Paulo Oliveira, and Carlos Silvestre

- Institute for Systems and Robotics, LARSyS, Lisboa, Portugal
- Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau

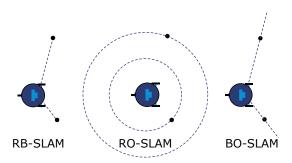
PRESENTATION OUTLINE

- Introduction
- 2 Sensor-based SLAM
- 3 Observability

- 4 Earth-fixed Trajectory and Map
- 6 Practical examples
- **6** Conclusions

INTRODUCTION

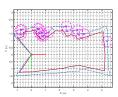
- Motivation
- SLAM Formulations
- Sensor suite
- Main challenges


What is SLAM?

- Obtain a detailed map of the environment.
- Maintain an accurate estimate of the pose of the vehicle.

Why is it important?

- Missions with autonomous vehicles with no absolute positioning available
 - Surveillance, critical infrastructure inspection, among others
- Mission scenarios:
 - Indoors or outdoors, close to buildings or other infrastructure with (visual) marks


- ► Measurements with lower dimension than the mapped space:
 - Range-only SLAM

- Bearing-only SLAM
- Measurements with fully observed space:
 - Range-and-bearing SLAM

INTRODUCTION > Sensor suite

INTRODUCTION > Main challenges

The challenges

Undelayed initialization

INTRODUCTION > Main challenges

The challenges

- Undelayed initialization.
- ► Filter with convergence ✓ guarantees
- Filter with consistent estimates

The challenges

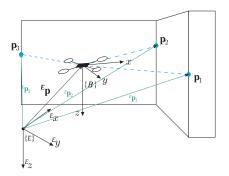
- Undelayed initialization.
- ► Filter with convergence guarantees
- Filter with consistent estimates
 - ⊳ How? <

The challenges

- Undelayed initialization.
- Filter with convergence guarantees
- Filter with consistent estimates

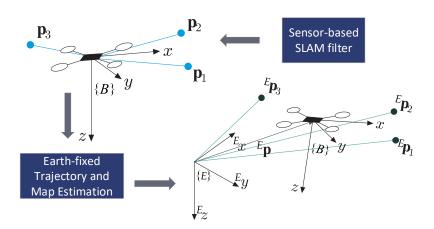
⊳ How? <

Proposed solutions


- Relative vs absolute filter
- State augmentation & output transformation
- Avoid linearizations

SENSOR-BASED SLAM

- Overview
- System design
- Challenges
- Summary


SENSOR-BASED SLAM > Overview

- Make landmark association, loop closing, control, and decision procedures in the sensor-based frame
- Minimize the effects of nonlinearities in the consistency

System dynamics

$$\begin{cases} \dot{\mathbf{p}}_{i}(t) = -\mathbf{S} \left[\boldsymbol{\omega}(t) \right] \mathbf{p}_{i}(t) - \mathbf{v}(t) & i \in \mathcal{L} \\ \mathbf{y}_{j}(t) = \mathbf{f}(\mathbf{p}_{j}(t)) & j \in \mathcal{L}_{O} \end{cases}$$

Available measurements

$$\mathbf{f}(\mathbf{p}_i(t)) = \mathbf{p}_i(t)$$

$$\mathbf{f}(\mathbf{p}_i(t)) = \|\mathbf{p}_i(t)\|$$

$$\mathbf{f}(\mathbf{p}_j(t)) = \frac{\mathbf{p}_j(t)}{\|\mathbf{p}_j(t)\|}$$

SENSOR-BASED SLAM > Challenges

- Nonlinear dynamics
- Nonlinear output

- Rewrite dynamics and use measured quantities
- Augment state and/or transform the output depending on specific nonlinearities

	RB-SLAM	RO-SLAM	BO-SLAM
States	▶ map▶ linear velocity▶ bias estimation	> map > ranges	▶ map▶ ranges
Inputs/ Outputs	biased angularvelocitylandmarks	▷ angular velocity▷ linear velocity▷ ranges	▷ angular velocity▷ linear velocity▷ bearings
Details		⊳ new state	$b_i = \frac{\mathbf{p}_i}{\ \mathbf{p}_i\ }$ $b_i \ \mathbf{p}_i\ - \mathbf{p}_i = 0$ $ \text{new state}$

	RB-SLAM	RO-SLAM	BO-SLAM
States	maplinear velocitybias estimation	▶ map▶ ranges	▶ map▶ ranges
Inputs/ Outputs	biased angular velocity landmarks	▷ angular velocity▷ linear velocity▷ ranges	angular velocitylinear velocitybearings
Details	$\triangleright S[\omega] p_i$ $\triangleright \omega = \omega_m - b_\omega$ $\triangleright S[y_i] b_\omega$	▷ new state	$b_i = \frac{p_i}{\ p_i\ }$ $b_i \ p_i\ - p_i = 0$ $b_i \text{ new state}$
States			

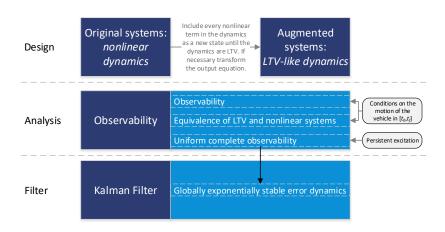
	RB-SLAM	RO-SLAM	BO-SLAM
States	maplinear velocitybias estimation	▶ map▶ ranges	▶ map▶ ranges
Inputs/ Outputs	biased angular velocity landmarks	▷ angular velocity▷ linear velocity▷ ranges	▷ angular velocity▷ linear velocity▷ bearings
Details	$\triangleright \mathbf{S}[\omega] \mathbf{p}_{i}$ $\triangleright \omega = (\omega_{m}) - (\mathbf{b}_{\omega})$ $\triangleright \mathbf{S}[\mathbf{y}_{i}] \mathbf{b}_{\omega}$	▶ new state	$b_i = \frac{p_i}{\ p_i\ }$ $b_i \ p_i\ - p_i = 0$ $b_i \ p_i\ $ new state
States ■ States ■			

	RB-SLAM	RO-SLAM	BO-SLAM
States	maplinear velocitybias estimation	▶ map▶ ranges	⊳ map ⊳ ranges
Inputs/ Outputs	biased angularvelocitylandmarks	▷ angular velocity▷ linear velocity▷ ranges	▷ angular velocity▷ linear velocity▷ bearings
Details	$\triangleright S[\omega] p_i$ $\triangleright \omega = \omega_m - b_\omega$ $\triangleright S[y_i] b_\omega$		$b_i = \frac{\mathbf{p}_i}{\ \mathbf{p}_i\ }$ $b_i \ \mathbf{p}_i\ - \mathbf{p}_i = 0$ new state

	RB-SLAM	RO-SLAM	BO-SLAM
States	maplinear velocitybias estimation	> map ranges	▶ map▶ ranges
Inputs/ Outputs	biased angularvelocitylandmarks	▷ angular velocity▷ linear velocity▷ (ranges)	▷ angular velocity▷ linear velocity▷ bearings
Details	$\triangleright S[\omega] p_i$ $\triangleright \omega = \omega_m - b_\omega$ $\triangleright S[y_i] b_\omega$	⊳ new state	$b_i = \frac{\mathbf{p}_i}{\ \mathbf{p}_i\ }$ $b_i \ \mathbf{p}_i\ - \mathbf{p}_i = 0$ $ new state $
States			

	RB-SLAM	RO-SLAM	BO-SLAM
States	maplinear velocitybias estimation	▶ map▶ ranges	▶ map▶ ranges
Inputs/ Outputs	biased angularvelocitylandmarks	▷ angular velocity▷ linear velocity▷ ranges	▷ angular velocity▷ linear velocity▷ bearings
Details	$\triangleright S[\omega] p_i$ $\triangleright \omega = \omega_m - b_\omega$ $\triangleright S[y_i] b_\omega$	▶ new state	$b_i = \frac{p_i}{\ p_i\ }$ $b_i \ p_i\ - p_i = 0$ $b_i \ \mathbf{p}_i\ $ $\mathbf{p}_i = \mathbf{p}_i$

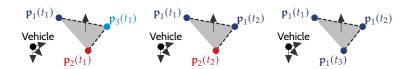
	RB-SLAM	RO-SLAM	BO-SLAM
States	maplinear velocitybias estimation	▶ map▶ ranges	▶ map▶ ranges
Inputs/ Outputs	biased angularvelocitylandmarks	▷ angular velocity▷ linear velocity▷ ranges	▷ angular velocity▷ linear velocity▷ (bearings)
Details	$\triangleright \mathbf{S}[\omega] \mathbf{p}_{i}$ $\triangleright \omega = \omega_{m} - \mathbf{b}_{\omega}$ $\triangleright \mathbf{S}[\mathbf{y}_{i}] \mathbf{b}_{\omega}$	▶ new state	$ \mathbf{b}_{i} = \frac{\mathbf{p}_{i}}{\ \mathbf{p}_{i}\ } \\ \mathbf{b}_{i} \ \mathbf{p}_{i} \ - \mathbf{p}_{i} = 0 $ $ \text{new state} $
States			



	RB-SLAM	RO-SLAM	BO-SLAM
States	maplinear velocitybias estimation	▶ map▶ ranges	▶ map ▶ ranges
Inputs/ Outputs	biased angularvelocitylandmarks	▷ angular velocity▷ linear velocity▷ ranges	▷ angular velocity▷ linear velocity▷ (bearings)
Details	$\triangleright S[\omega] p_i$ $\triangleright \omega = \omega_m - b_\omega$ $\triangleright S[y_i] b_\omega$	⊳ new state	$ \triangleright \mathbf{b}_{i} = \frac{\mathbf{p}_{i}}{\ \mathbf{p}_{i}\ } $ $ \triangleright \mathbf{b}_{i}(\ \mathbf{p}_{i}\) - \mathbf{p}_{i} = 0 $ $ \triangleright \text{ new state} $
States			

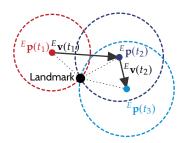
OBSERVABILITY

- Overview
- Results

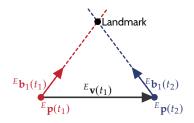


Observability	Two landmarks are visible or one landmark
and	is visible and there is an instant when its
Equivalence	derivative is nonzero.
UCO	Two landmarks are visible or one landmark is visible and its derivative is sufficiently away from zero, uniformly in time.

Observability and	Three landmarks form a plane in one observation, two observations of two landmarks
Equivalence	form a plane or three observations of one landmark form a plane.
UCO	The vectors defined by the three landmarks that form a plane (regardless of the observation moment) are sufficiently away from collinearity, uniformly in time.

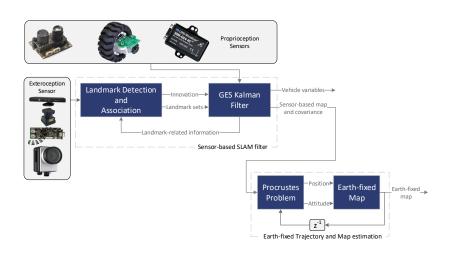

OBSERVABILITY > Results: 3-D Range-only SLAM

Observability	The linear velocity in three observation mo-
and	ments spans \mathbb{R}^3 .
Equivalence	


UCO

The vectors defined by the three velocity measurements are sufficiently away from co-planarity so that the spanned space does not degenerate in time.

Observability and Equivalence	Two different absolute bearings to one land- mark are measured.
UCO	The variation in the bearing measurement is sufficiently away from zero to not degenerate in time.



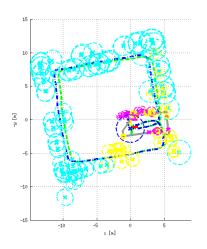
EARTH-FIXED TRAJECTORY AND MAP

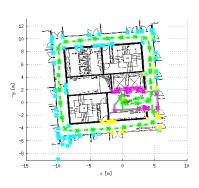
Overview

EARTH-FIXED TRAJECTORY AND MAP > Overview

PRACTICAL EXAMPLES

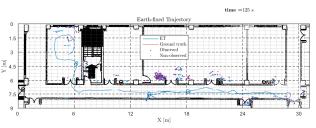
- Overview
- Range-and-bearing SLAM
- Range-only SLAM
- Bearing-only SLAM

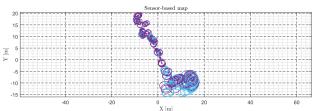



Table: Measurements and their respective sensors

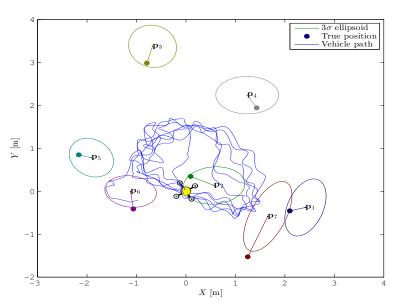
Quantities	Sensors
Landmark position	LiDAR (RB-2D) / RGB-D camera (RB-3D) /
	Stereo or trinocular camera
Landmark range	Radio/acoustic transceivers (RO)
Landmark bearing	Radio/acoustic transceivers / Single camera (BO)
Linear velocity	Odometry (BO) / Optical flow (RO)
Angular velocity	IMU (RB-2/3D,RO,BO)

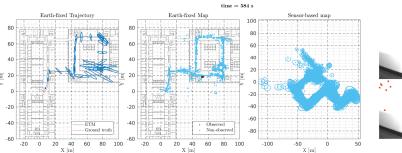
PRACTICAL EXAMPLES > Range-and-bearing SLAM: 2-D

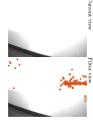


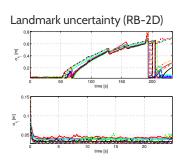


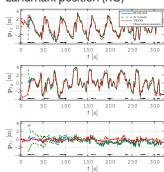
PRACTICAL EXAMPLES > Range-and-bearing SLAM: 3-D

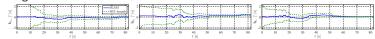



PRACTICAL EXAMPLES > Range-only SLAM




PRACTICAL EXAMPLES > Bearing-only SLAM





Landmark position (RO)

Angular rate bias (RB-3D)

CONCLUSIONS

- ► Tools to tackle the nonlinearities of the main SLAM formulations were presented.
- A class of sensor-based simultaneous localization and mapping filters with global convergence guarantees was introduced.
- Constructive and physically intuitive necessary and sufficient conditions for observability, and thus convergence were provided.
- Experimental examples of practical implementations were illustrated.