

LARSYS ANNUAL MEETING 2018

June 14, 2018

SLAM IN THE QUEST FOR AUTONOMY

FROM THEORY TO PRACTICE

Pedro Lourenço, Pedro Batista, Paulo Oliveira[†], and Carlos Silvestre[‡]

- Dynamical Systems and Ocean Robotics (DSOR) Group, ISR/IST
- † LAETA, IDMEC, IST
- ‡ Faculty of Science and Technology, University of Macau

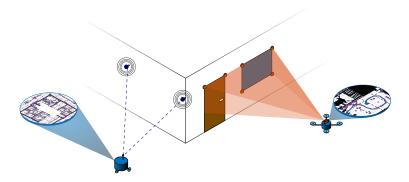
PRESENTATION OUTLINE

Introduction

4 Practical examples

2 Sensor-based SLAM

- **5** Conclusions
- 3 Earth-fixed Trajectory and Map

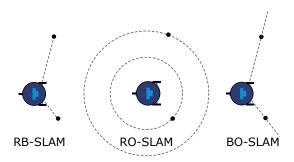

INTRODUCTION

- **■** MOTIVATION
- **SLAM FORMULATIONS**
- MAIN CHALLENGES
- PROPOSED SOLUTION

What is SLAM?

- Obtain a detailed map of the environment.
- Maintain an accurate estimate of the pose of the vehicle.

INTRODUCTION > Motivation



Why is it important?

- Missions with autonomous vehicles with no absolute positioning available
 - Surveillance, critical infrastructure inspection, among others
- Mission scenarios:
 - Indoors or outdoors, close to buildings or other infrastructure with (visual) marks

INTRODUCTION > SLAM Formulations

- Measurements with lower dimension than the mapped space:
 - Range-only SLAM

- Bearing-only SLAM
- Measurements with fully observed space:
 - Range-and-bearing SLAM

INTRODUCTION > Main challenges

On the technical side

- Computational efficiency
- Long range mapping
- Data association
- Loop closing

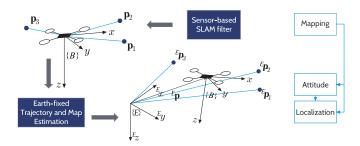
On the theoretical side

- Consistency
- Convergence
- Optimality
- Undelayed initialization

INTRODUCTION > Main challenges

On the technical side

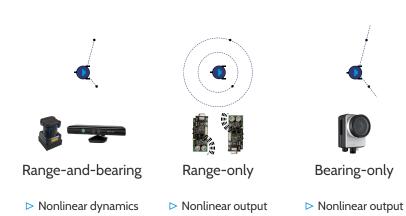
- Computational efficiency
- Long range mapping
- Data association
- Loop closing


On the theoretical side

- Consistency
- Convergence
- Optimality
- Undelayed initialization.

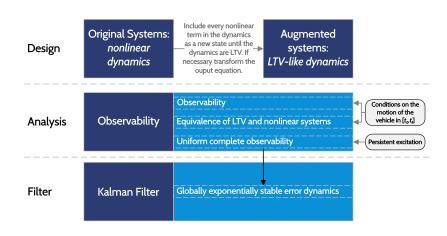
Separate SLAM in two problems:

- Mapping in a **relative** frame
- Attitude and position determination

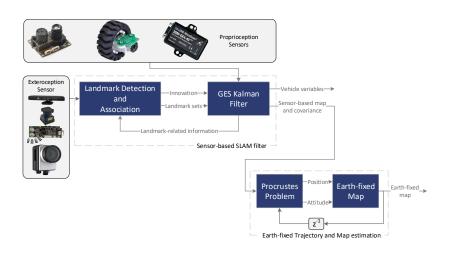


SENSOR-BASED SLAM

- OVERVIEW
- OBSERVABILITY & CONVERGENCE


SENSOR-BASED SLAM > Overview

SENSOR-BASED SLAM > Observability & Convergence



EARTH-FIXED TRAJECTORY AND MAP

■ OVERVIEW

E-F. TRAJECTORY & MAP > Overview

PRACTICAL EXAMPLES

- **■** OVERVIEW
- RANGE-AND-BEARING SLAM
- RANGE-ONLY SLAM
- BEARING-ONLY SLAM

PRACTICAL EXAMPLES > Overview

Quantities Sensors

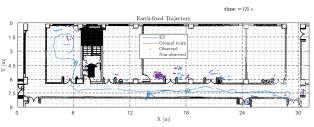
Landmark position RGB-D camera (RB)

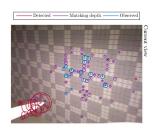
Landmark range Radio/acoustic transceivers (RO)

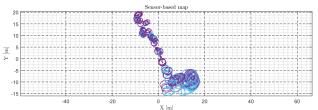
Landmark bearing Monocular camera (BO)

Linear velocity Odometry (BO) / Optical flow (RO)

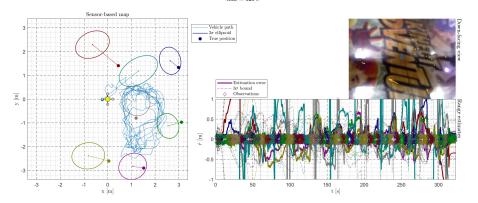
Angular velocity IMU (RB,RO,BO)



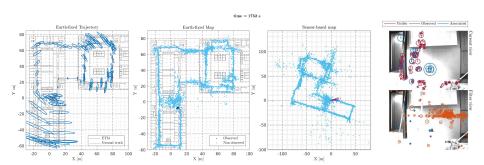




PRACTICAL EXAMPLES > Range-and-bearing SLAM



PRACTICAL EXAMPLES > Range-and-bearing SLAM



PRACTICAL EXAMPLES > Range-only SLAM

PRACTICAL EXAMPLES > Bearing-only SLAM

PRACTICAL EXAMPLES > Bearing-only SLAM

CONCLUSIONS

- CONCLUSIONS
- **■** FUTURE WORK

CONCLUSIONS

- Tools to tackle the nonlinearities of the main SLAM formulations were presented.
- A class of sensor-based simultaneous localization and mapping filters with global convergence guarantees was introduced.
- Experimental examples of practical implementations were illustrated.

FUTURE WORK

- Online operation:
 - Prepare the algorithms for **real time** operation;
 - Refinement of associated algorithms: feature detection/data association, loop closing, etc.
- More sensors:
 - Altimeters, accelerometers, magnetometers.
 - Better estimates, new challenges (such as automatic calibration).

CONCLUSIONS > Future Work

- The idea behind SLAM is: move to gain knowledge.
- The problem is: how to move?

CONCLUSIONS > Future Work

- The idea behind SLAM is: move to gain knowledge.
- The problem is: how to move?

▶ Solution: Active SLAM

Complementary objectives

Exploration	Exploitation
Visit new terrain	Revisit areas
Increase overall knowledge	Increase information gain.
Maximize explored areas	Minimize uncertainty

Thank you. • Questions?

