
J. Fluid Mech. (2018), vol. 851, pp. 479–506. c© Cambridge University Press 2018
doi:10.1017/jfm.2018.520

479

Wall pressure and vorticity in the intermittently
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In this paper we study the wall pressure and vorticity fields of the Stokes boundary
layer in the intermittently turbulent regime through direct numerical simulation (DNS).
The DNS results are compared to experimental measurements and a good agreement
is found for the mean and fluctuating velocity fields. We observe maxima of the
turbulent kinetic energy and wall shear stress in the early deceleration stage and
minima in the late acceleration stage. The wall pressure field is characterized by
large fluctuations with respect to the root mean square level, while the skewness and
kurtosis of the wall pressure show significant deviations from their Gaussian values.
The wall vorticity components show different behaviours during the cycle: for the
streamwise component, positive and negative fluctuations have the same probability
of occurrence throughout the cycle while the spanwise fluctuations favour negative
extrema in the acceleration stage and positive extrema in the deceleration stage. The
wall vorticity flux is a function of the wall pressure gradients. Vorticity creation at the
wall reaches a maximum at the beginning of the deceleration stage due to the increase
of uncorrelated wall pressure signals. The spanwise vorticity component is the most
affected by the oscillations of the outer flow. These findings have consequences for
the design of wave energy converters. In extreme seas, wave induced fluid velocities
can be very high and extreme wall pressure fluctuations may occur. Moreover, the
spanwise vortical fields oscillate violently in a wave cycle, inducing strong interactions
between vortices and the device that can enhance the device motion.

Key words: boundary layer structure, turbulent boundary layers, turbulence simulation

1. Introduction
Oscillatory flows are found in nature and in technological applications, especially in

ocean engineering which deals primarily with wave phenomena. In marine renewable
energy, this type of flows is important for wave energy extraction devices. Other
applications include offshore structures and ships. The Reynolds number (Re) of these
flows is high, justifying the use of the potential flow approximation for the bulk of

† Email address for correspondence: jhbettencourt@protonmail.com
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the fluid, where viscosity effects are of higher order. However, at small distances from
solid boundaries or at fluid–fluid interfaces in the presence of boundary layers, the
assumption of inviscid behaviour ceases to be valid. Moreover, when such boundary
layers separate and vortex shedding occurs, viscous effects can become non-negligible
at larger distances in the interior of the fluid. This is characteristic of wave energy
devices operating in extreme conditions with large amplitudes of oscillation, when
the effects of boundary layer separation on the performance of the device become
significant. As the oscillatory flow evolves, the shed vorticity sheet can be in distinct
phases of its evolution and its effect on the forces on the device will vary with time.

For the oscillating wave surge converter (Dias et al. 2017), viscous effects were
previously studied in Wei et al. (2015) and others for normal operating conditions. It
was found that for small Keulegan–Carpenter (KC) numbers, the shed vorticity layer
rolls-up into vortices that do not travel far from the body. This shed vorticity layer
and its dissipative effects were later modelled in an inviscid setting as a pressure drop
across the device’s edges (Cummins & Dias 2017).

A model for the viscous oscillatory flow near a solid wall is an infinite plate
oscillating in its own plane with velocity U0 in an otherwise quiescent fluid. This
set-up is known as Stokes’ second problem (Schlichting & Gersten 2003). The laminar
steady case provides one of the few known analytical solutions of the Navier–Stokes
equations, characterized by alternating layers of motion that diffuses from the wall
into the fluid. The thickness δ of the layer where the motion of the wall is diffused is
(2ν/ω)1/2, where ν is the kinematic viscosity of the fluid and ω the angular frequency
of the oscillations. For prototypical applications of this problem however, the ratio
Reδ =U0δ/ν can be �1, invalidating the laminar model of the Stokes boundary layer.

The Stokes boundary layer can exhibit distinct regimes, depending on the value of
Reδ: laminar; disturbed laminar; intermittently turbulent (IT); fully turbulent (FT). The
laminar regime can be observed for Reδ up to 257 (Jensen, Sumer & Fredsøe 1989)
and the flow consists of the classical solution by Stokes where layers of fluid 2π/δ

apart oscillate in phase (Schlichting & Gersten 2003).
In the disturbed laminar regime, from Reδ ∼ 100 up to a critical value of

approximately 550 (Hino et al. 1983), depending on the dimensions of the channel
or pipe, disturbances appear superimposed on the base laminar flow, initially small,
they grow at the end of the decelerating stage and reach considerable magnitude at
the beginning of the accelerating stage of the cycle (Vittori & Verzicco 1998).

The intermittently turbulent regime has been detected experimentally for Reδ >
385 (Jensen et al. 1989) and is characterized by turbulent bursts in the decelerating
stage and by relaminarization of the flow in the accelerating stage (Hino, Sawamoto
& Takasu 1976; Eckmann & Grotberg 1991). The fully turbulent regime has been
recorded throughout the cycle for Reδ = 3460 (Jensen et al. 1989).

Concerning the stability of the Stokes boundary layer, Von Kerczek & Davis (1974)
showed that it is absolutely stable for infinitesimal perturbations for Reδ up to 800 and
proposed that it may be stable for all Reδ for that type of perturbations. Transition may
nonetheless be explained by a secondary instability mechanism of two-dimensional
(2-D) finite amplitude waves to 3-D infinitesimal perturbations (Akhavan, Kamm &
Shapiro 1991b) or by wall imperfections (Vittori & Verzicco 1998). After the inception
of turbulence in the IT regime, during the accelerating stage, turbulence is initiated by
shear instabilities located not far from the wall but these are suppressed and unable
to develop. When the flow begins to accelerate, turbulence grows explosively and is
maintained by the bursting type of motion (Hino et al. 1983).
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Wall pressure and vorticity in the Stokes layer 481

A well-known aspect of canonical turbulent boundary layers is the existence
of coherent structures, i.e. spatio-temporal patterns that repeatedly appear in the
flow, giving turbulence a degree of deterministic organization, in the sense of a
correlated and concentrated dynamic quality. Vorticity has been most extensively
used (Jeong & Hussain 1995; Jeong et al. 1997), but any flow quantity that exhibits
this correlation, including Lagrangian quantities, can be used to identify coherent
structures in turbulent boundary layers (Robinson 1991; Green, Rowley & Haller
2007; Bettencourt, Lopez & Hernandez-Garcia 2013).

It is well known that coherent structures determine mixing, heat transfer and other
phenomena in turbulent boundary layers. In the Stokes layer, however, the role played
by coherent structures is less clear. The transitional and turbulent states are populated
by vortical motions that appear most intensely in the final stages of the deceleration
stages. At Reδ∼ 400, low-speed streaks emerge at the end of this stage, while the flow
reversal causes the destruction of coherent structures (Sarpkaya 1993). In numerical
simulations of a pulsating turbulent channel flow, Scotti & Piomelli (2001) observed
the appearance of long and smooth streaks during the acceleration stage that eventually
transition into turbulence and break up in later stages of the cycle. The Q-criterion
(Dubief & Delcayre 2000) showed greater organization during the late turbulent stage
of the cycle.

The number of coherent structures present in the turbulent boundary layer is
a function of the Reynolds number and also the level of residual turbulence in
the acceleration stage. At Reδ = 800, streamwise streaks appear at the end of the
acceleration stage and are present during the deceleration stage (Costamagna, Vittori
& Blondeaux 2003). At Reδ = 1790, Salon, Armenio & Crise (2007) observed the
same sequence of events, but with a half-cycle phase deviation to earlier stages of
the cycle, a fact attributed to the different Reynolds number.

Although there are similarities between the canonical turbulent boundary layer and
the Stokes boundary layer, in the latter the sequence of events that generate turbulence
does not occur randomly but with a time scale of T/2, where T is the period of the
oscillation. In these turbulent states, the flow does not exhibit a sufficient number of
symmetric hairpin vortices to generate the low-speed streaks as in the canonical case
(Sarpkaya 1993) and no evidence was found of vortices spawning from parent vortical
structures. A more recent result is the appearance of turbulent spots in the Stokes
boundary layer (Carstensen, Sumer & Fredsøe 2010; Mazzuoli, Vittori & Blondeaux
2011).

The purpose of this paper is to study the connection between wall pressure
fluctuations, wall vorticity and coherent structures in the Stokes boundary layer (for
the canonical boundary layer case see Andreopoulos & Agui (1996) and references
therein), and to attempt to identify the major features of wall pressure and vorticity
distributions in the intermittently turbulent regime of the Stokes boundary layer.

In the next section we recall the connection between wall pressure, viscosity and
wall vorticity. Section 3 describes the set-up of the direct numerical simulations (DNS).
The results are presented and discussed in § 4. Conclusions are drawn in § 5.

2. Boundary vorticity flux

The central role played by vorticity Ω = ∇ × u in fluid motions results from the
fact that it is a measure of the transverse shearing process, one of the two dynamical
processes in the flow of a viscous fluid, the other being the compressive process. To
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see this, we recall Cauchy’s equation for the mechanical equilibrium of a material
element of a continuum with density ρ:

Du
Dt
= a= f +

1
ρ
(∇ · T ), (2.1)

where a is the acceleration, f is the body force, T is the stress tensor and its
divergence the surface force vector, whose Stokes–Helmholtz decomposition gives

∇ · T =−∇φ +∇×A, ∇ ·A= 0. (2.2)

In (2.2), the scalar and vector potentials φ and A represent the compressing/expanding
process and the shearing process, respectively. The role of vorticity can be made clear
if we consider (2.2) for a Newtonian fluid with constant viscosity µ:

∇ · T =−∇Π −µ∇×Ω. (2.3)

Vorticity then plays the role of the shear variable A, while Π =p under the assumption
of incompressibility. For a more general form of (2.3) and a discussion of the coupling
between the two processes, the reader is referred to Wu & Wu (1996).

In a Lagrangian frame of reference, the rate of change of the vorticity of an
infinitesimal fluid particle is found by taking the curl of (2.1) and using the continuity
equation:

DΩ

Dt
=Ω · ∇u+∇× f −∇× (ν∇×Ω), (2.4)

where ν=µ/ρ is the kinematic viscosity. Since the curl of (2.1) is the specific torque
of the fluid particle, the total specific torque of the fluid is given by

D
Dt

∫
V

Ω dV =
∫
V

Ω · ∇u dV +
∫
V
∇× f dV − ν

∫
D

n× (∇×Ω) dS. (2.5)

Here, the total torque has contributions from vortex stretching, non-conservative body
forces and a third term that contains the contributions of the boundary D (Wu &
Wu 1996), whose outward normal is n. According to (2.5) any boundary that exerts
a torque on the neighbouring fluid will change its vorticity and this change occurs
through the mediation of viscosity, as a flux of vorticity into the fluid from the
boundary. This relationship was first recognized by Lighthill (1963) when introducing
the concept of boundary vorticity flux from a two-dimensional solid wall due to the
no-slip boundary condition. The boundary vorticity flux σ was defined then as the
normal gradient of vorticity at the wall:

σ = ν
∂Ω

∂n
. (2.6)

The strong coupling between σ , the vorticity source strength and the processes
occurring in the interior of the fluid becomes clear when the tangential component
of the momentum balance equations is written at the wall (here located along the
x-axis):

ν
∂Ω

∂n
=−

1
ρ

∂p
∂x
. (2.7)
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This coupling mechanism was depicted in Lighthill (1963) by an irrotational small
fluid sphere located at the wall that acquires vorticity by the action of a pressure
gradient. The pressure gradient is parallel to the boundary, forcing the fluid sphere
to roll along the wall due to the no-slip condition.

The boundary vorticity flux σ produced by a three-dimensional solid stationary wall
W where the no-slip condition is enforced, that is u0 = 0 is of special interest. (The
subscript 0 refers to quantities evaluated at the wall.)

The mechanisms that create vorticity at the wall are pressure gradient, wall
acceleration and viscous stresses (with wall normal and tangential components)
(Wu & Wu 1996):

σp = n×∇(p0/ρ), (2.8a)
σa = n× a0, (2.8b)

σπ =−(n× τ0) ·K, (2.8c)
σn =−n{n · (∇× τ0)}. (2.8d)

In (2.8a) the gravitational effect is discarded. The two inviscid components σp
and σa produce vorticity tangent to the wall. In (2.8c) and (2.8d) the contributions
of viscosity to the boundary vorticity appear as a tangential component due to wall
curvature K and skin friction τ0 and a normal component due to a rotational skin
friction distribution. At large Re, the inviscid components are much larger than
the viscous components. It is worth noting that while there are components of the
boundary vorticity flux that are independent of the fluid viscosity, the vorticity flux
at a solid wall is a product of the fluid viscosity through the no-slip condition.

The pressure component is perhaps the most basic source of vorticity creation at a
solid wall and was the first to be explained (Lighthill 1963). It is also the only source
in a two-dimensional, stationary wall. The wall acceleration component (2.8b) will
vanish if the acceleration is normal to the wall orientation. Regarding the viscous
components, they can only be present in three-dimensional cases. The tangential
component exists in the presence of wall curvature while the normal component is
related to the configuration of the τ0 field. While for large Re, the viscous components
are much smaller than their inviscid counterparts, the normal viscous component can
attain large values near separation lines and in the inner wall region of turbulent
boundary layers (Wu & Wu 1996).

In turbulent flows, Andreopoulos & Agui (1996) measured strong fluctuations of σp
in a zero pressure gradient two-dimensional boundary layer. The boundary vorticity
flux showed very strong fluctuations associated with small-scale turbulent structures.
Uncorrelated pressure signals were responsible for the major contributions to the
turbulent vorticity fluxes. Furthermore, Andreopoulos & Agui (1996) indicated that
these uncorrelated pressure signals contain an extended range of eddy sizes, allowing
for an influence of large-scale vortex structures in the near-wall vorticity production.

3. DNS set-up
The direct numerical simulations of the Stokes boundary layer were set-up in a

rectangular box with dimensions (L1, L2, L3) = (16πδ, 8πδ, 8πδ). Here x1 is the
streamwise direction, along which the oscillating free-stream motion is imposed, x2
is the cross-stream direction (x2 = 0 is the no-slip solid boundary) and x3 is the
spanwise direction that forms a right handed coordinate system with x1 and x2 (see
figure 1).
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Umsin(øt)

x2

x1

x3

FIGURE 1. Domain of the direct numerical simulation of the Stokes boundary layer. Flow
directions are named as follows: streamwise is x1; cross-stream is x2; spanwise is x3; the
no-slip wall is located at x2 = 0 (light grey surface). Oscillatory mean flow is in the
longitudinal direction.

The domain was discretized in (n1, n2, n3) = (64, 96, 64) cells. The cell size
distribution is regular in the streamwise and spanwise directions and stretched in the
cross-stream direction according to the following law that gives the x2 value of the
centre of cell j:

x2( j)=
1− rj

1− rn2
L2, (3.1)

where r = ((1x2(n2))/(1x2(1)))1/(1−n2) is the expansion ratio. The dimensions of the
domain and the number of discrete elements correspond to those of the coarse DNS
of Salon et al. (2007). The main requirements on the domain size and numerical grid
are (i) that the domain is large enough to hold the largest energy containing eddies
and (ii) that the near-wall spacing is fine enough to resolve the turbulent structures
that occur in that region.

The direct numerical simulation of the Stokes boundary layer was carried out using
a finite-volume implementation. The governing equations are the mass and momentum
conservation equations:

∇ · u= 0, (3.2)
∂u
∂t
+∇ · (uu)−∇ · ν∇u=−

1
ρ
∇p+Umω cos(ωt)i1. (3.3)

The momentum source in (3.3) produces an oscillatory flow in the streamwise
direction given by Um sin(ωt) that drives the Stokes boundary layer. The parameters
Um, ω and ν are chosen to give Reδ = 1000.

At x2= 0 a no slip condition is imposed on the velocity and at x2=L2 the boundary
is defined as free-slip wall. Periodicity is defined at the vertical boundaries.

The numerical method stores the primitives variables p and u at the centres of
the control volumes. To compute fluxes across control volume faces, the primitive
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0 1 2 3 4 5 6 7 8

0 0.5 1.0
r/π∂

1.5 2.0 2.5 3.0 3.5 4.0

1.0
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0

-0.2
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-0.6
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(b)

0.8
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0
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-0.4

-0.6

FIGURE 2. Two-point auto-correlations of the velocity field for φ = 170◦ at x2/δ = 0.5.
(a) Streamwise; (b) spanwise: streamwise velocity (solid); spanwise velocity (dashed); wall
normal velocity (dash–dotted). r is the spatial lag.

variables are interpolated with a cubic formula to centres of the control volume
faces. Spatial derivatives are approximated by standard second-order centred finite
differences and the time advancement uses the Crank–Nicolson method. The
pressure-implicit with splitting of operators (PISO) algorithm (Issa 1986) is used
to solve the pressure–velocity coupling.

The solution was started with p = 0 and u = 0 and ran for two cycles. Then a
streamwise three-dimensional perturbation up was added to the laminar velocity field:

up = εU0[a cos(αx1)+ b cos(βx3)]e−γ x2
2, (3.4)

with α = 0.5 and β = 1, corresponding to the most unstable combination of finite
amplitude two-dimensional streamwise and spanwise perturbation of Akhavan et al.
(1991b). The perturbation amplitudes were set to a = 5 × 10−3 and b = 10−7. The
exponential modulation coefficient is γ = 5.5× 10−4 and ε� 1 is a random number
uniformly distributed.

After the perturbation of the base laminar flow at t∗= t/T = 2, the flow reached the
intermittently turbulent state within the following cycle. The simulation was then run
for an additional eighteen cycles to build up a database for statistical analysis.

Checks on the grid spacings and domain size were performed to ensure that
the results were not compromised by insufficient grid resolution or a too small
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FIGURE 3. Grid convergence check. (a) Average wall shear stress in the first half-cycle of
the Stokes boundary layer. Averaged over 5 cycles; (b) mean streamwise velocity in wall
units at φ = 129◦. Lines as in (a). Circles: experimental data from Jensen et al. (1989)
Test 6 with Re= 990.

17 18
t*

19 20
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FIGURE 4. Time series of velocity components at (x1, x2, x3) = (0.025132, 0.0005,
0.012566) during three cycles of oscillations. (a) streamwise component u1; (b)
cross-stream component u2; (c) spanwise component u3.
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FIGURE 5. Time series of (a) volume averaged turbulent kinetic energy and (b) wall
friction. Dotted line shows the mean velocity cycle.

domain size. To check requirement (i) the two-point velocity auto-correlations of the
velocity field were computed for the streamwise and spanwise directions. All velocity
components are decorrelated at lags lower than half of the domain lengths (figure 2).

Requirement (ii) was checked by computing the grid spacings. The spacings in wall
units 1x+1 , 1x+2 and 1x+3 are 36, 0.4 and 18, respectively, using the maximum value
of the wall stress τ0 to compute the wall scale ν/uτ = ν(τ0/ρ)

−1/2. These values are
adequate to resolve the elongated near-wall low-speed streaks (Salon et al. 2007).

In addition, a grid convergence check was performed to verify the grid independence
of the results by running additional simulations with increased grid node count in
the streamwise and spanwise directions to 128 and in the wall normal direction to
192 nodes (table 1). The simulations were run on the Fionn supercomputer of the
Irish Centre for High-End Computing (ICHEC) using 96 cores. Due to the high
computational cost, only partial computations were performed with the highly refined
meshes C2 and C3.

The evolution of the wall shear stress (figure 3a) does not show appreciable
variations during the turbulent phase of the cycle. Although grid C1 shows higher wall
shear during the middle acceleration stage, the maximum level of non-dimensional
wall shear stress has converged to the values of 1.04, 1.01 and 1.08 for the C1, C2
and C3 simulations. The profile of the streamwise mean velocity (figure 3b) also
shows a convergence between all three grids, with C2 closer to the experimental
results. The results of the grid spacing and domain size checks, together with the
grid convergence test, show that the grid C1 is capable of capturing the dynamics of
the Stokes boundary layer at Reδ = 1000.
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FIGURE 6. Profile of the averaged longitudinal velocity 〈u〉 in inner variables, for several
phase angles. Full line: DNS; circles: experimental data from Jensen et al. (1989) Test 6
with Re= 990. (a) 11◦; (b) 28◦; (c) 45◦; (d) 62◦; (e) 96◦; ( f ) 113◦; (g) 129◦; (h) 146◦.

Run Grid size Grid resolution
(n1, n2, n3) (1x+1 , 1x+2 , 1x+3 )

C1 (64, 96, 64) (36, 0.4, 18)
C2 (128, 96, 128) (19, 0.4, 10)
C3 (128, 192, 128) (18, 0.2, 9)

TABLE 1. Grid size and resolution of the simulations. Wall units (+) are based on the
minimum value of the wall scale ν/uτ (maximum value of the shear velocity uτ ).

4. Results

Given the oscillatory nature of the flow a simple ensemble averaging is not
meaningful. Instead, an ensemble phase averaging is used to produce meaningful
average properties. For quantity f , the ensemble phase average is

〈 f (x2, φ)〉 =
1
N

N∑
i=1

{
1

L1L3

∫∫
f (x1, x2, x3, t+ (i− 1)T) dx1 dx3

}
, (4.1)

where φ = ωt is the phase, T is the period and N is the number of cycles. The
fluctuating (turbulent) part of f is then f ′= f −〈 f 〉. For quantities defined on the solid
wall, the spatial average is done for x2 = 0 only.
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FIGURE 7. Profile of longitudinal velocity fluctuations root-mean-sqaure (r.m.s.)
(u′1)rms/U0, for several phase angles. Full line: DNS; circles: experimental data from
Jensen et al. (1989) Test 6 with Re = 990. (a) 5◦; (b) 40◦; (c) 73◦; (d) 107◦; (e) 140◦;
( f ) 175◦. Note that first value is taken at x2/δ = 9× 10−3.

Magnitudes of quantities that fluctuate in space and time were measured by the root
mean square (r.m.s.) value that is defined as

f̂ =

√
1

L1L3

∫∫
( f ′)2 dx1 dx3 (4.2)

for scalar quantities defined only on the solid wall; the vector norm is used for vector
quantities. For quantities defined in the whole domain the spatial averaging changes
accordingly. The change in r.m.s. intensity along the cycle is computed by performing
an additional phase averaging on f̂ (t).

The phase averaged probability density function (p.d.f.) B( f̃ ) of the normalized
fluctuations f̃ = f ′/f̂ , was calculated by phase averaging the instantaneous pdf b( f̃ ).
The shape parameters skewness (γ1) and kurtosis (γ2) were computed from B( f̃ ) as:

γ1 =
1
σ 3

∫
f̃ 3B(f̃ ) df̃ ; (4.3)

γ2 =
1
σ 4

∫
f̃ 4B(f̃ ) df̃ . (4.4)

In (4.3) and (4.4), σ is the standard deviation of B( f̃ ).
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FIGURE 8. Profile of wall normal velocity fluctuations r.m.s. (u′2)rms/U0, for several phase
angles. Full line: DNS; circles: experimental data from Jensen et al. (1989) Test 6 with
Re= 990. (a) 5◦; (b) 40◦; (c) 73◦; (d) 107◦; (e) 140◦; ( f ) 175◦. Note that first value is
taken at x2/δ = 9× 10−3.

4.1. Turbulence characteristics
The numerical simulations produced flow fields that exhibit the characteristics
observed in experimental studies of the Stokes boundary layer at Reδ ∼ 1000, in
the IT regime. The velocity components exhibit sudden high amplitude random
three-dimensional fluctuations at the beginning of the deceleration stage (figure 4),
indicating the transition to turbulence that is known to occur at this stage of the
cycle. Towards the end of the deceleration stage, the intensity of these fluctuations
decreases and the flow reaches a quasi-laminar state during the accelerating stage.

The volume integrated turbulent kinetic energy:

E =
1
V

∫
(u′21 + u′22 + u′23 ) dV (4.5)

rises rapidly in the late acceleration stage and reaches a maximum in the early
deceleration stage (figure 5a). The rise in E coincides with the sudden appearance
of large velocity fluctuations and is thought to be associated with the mechanism of
near-wall shear instability at the start of the deceleration stage that is sustained by
the burst mechanism (Hino et al. 1983).

The wall shear stress τ0 (figure 5b), slowly increases from φ = 0◦, reaching a
first plateau at the phase of maximum velocity and then rapidly increases up to an
absolute maximum at the phase of maximum turbulent motion. At this point it is
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FIGURE 9. Profile of Reynolds stress (u′1u′2)rms, for several phase angles. Full line: DNS;
circles: experimental data from Jensen et al. (1989) Test 6 with Re= 990. (a) 5◦; (b) 40◦;
(c) 73◦; (d) 107◦; (e) 140◦; ( f ) 175◦. Note that first value is taken at x2/δ = 9× 10−3.

worth mentioning that as Reδ increases from the laminar range, the phase profile
of τ0 changes accordingly: in the laminar regime, it follows the cos(ωt − π/4)
solution of (Batchelor 2000); as Reδ increases into the IT regime, the onset of
turbulence at the early phases of the deceleration stage creates the profile observed
in figure 5(b); further increase of Re causes the maximum to appear earlier, aided by
the adverse pressure gradient and when the phase of maximum τ0 falls below π/2 in
to the acceleration stage, the change of the τ0 is deterred by the favourable pressure
gradient (Jensen et al. 1989).

A logarithmic layer develops in the mean velocity profile (figure 6), as reported in
earlier experimental studies (Hino et al. 1983; Jensen et al. 1989; Akhavan, Kamm
& Shapiro 1991a). The mean profiles for the deceleration stage conform to a 3-layer
structure of a viscous sublayer, a log layer, whose thickness increases as φ advances
and an outer wake.

The rapid increase of
(
u′1
)

rms /U0 in the near-wall region at the end of the
acceleration stage and through the deceleration stage of the cycle (figure 7), signals
the onset of turbulence in the near-wall region. The wall normal r.m.s. fluctuations
(figure 8) increase during the turbulent phases of the cycle (between 70◦ and 140◦).
Comparing to the experimental results of Jensen et al. (1989), the DNS results
overestimate the wall normal turbulence intensity, except in the initial phases of the
turbulence, where they underestimate the r.m.s. of u′2 (figure 8c).
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FIGURE 10. (Colour online) Iso-surfaces of 〈Q〉 at φ = 85◦. The threshold is
Qmδ

2/U2
m = 8.0× 10−4.

Profiles of the Reynolds stress u′1u′2 are shown in figure 9. The simulated turbulent
stresses are compared to the ones from Test 6 of Jensen et al. (1989) and the
agreement is quite reasonable. It can be seen that turbulence reaches its highest
intensities around φ = 107◦, in agreement with the data on turbulent kinetic energy
and wall shear stress of figure 5.

In general the experimental results support the numerical simulations but some
discrepancies between the numerical results and the experimental data can be observed
at φ = 73◦ and φ = 107◦ (panels c and d of figures 7–9), in the central part of the
half-cycle. Costamagna et al. (2003) also found similar discrepancies and attributed
them to the small size of the domain, but later Salon et al. (2007) also found similar
deviations in the streamwise turbulence intensity for the central part of the cycle but
for a larger domain and discarded that the cause could be domain size. The reason
for these discrepancies remains unclear and further research is necessary to clarify
the source of these errors.

4.2. Coherent structures
In the IT regime of the Stokes boundary layer, coherent structures appear at particular
phases of the cycle, unlike the steady boundary layer case, where these appear
randomly in time. To identify them we use the Q-criterion (Dubief & Delcayre
2000):

Q= 1
2(R : R − S : S), (4.6)

where R and S are the antisymmetric and symmetric parts of ∇u. The scalar Q is the
difference between the rotation rate and strain rate and gives a measure of the local
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FIGURE 11. (Colour online) Iso-surfaces of 〈Q〉 at φ = 135◦. The threshold is
Qmδ

2/U2
m = 7.4× 10−3.

dominance of rotation over strain (Q> 0) or vice versa (Q< 0). Large positive values
of Q are related to vortical coherent structures (regions of coherent vorticity) and large
negative values of Q indicate shear coherent structures. To delineate the boundaries of
the structures, a threshold of Q must be chosen. This choice of threshold has a degree
of subjectivity: a too high threshold will result only in partial structures while a too
low threshold will produce too many small-scale, weak features with no real impact
on the dynamics (Dubief & Delcayre 2000). The threshold used in this paper, Qm, is
the value of Q at the ninth decile level, based on the phase-mean Q fields, 〈Q〉. At
this level, the 10 % highest values of 〈Q〉 are inside the iso-surfaces of Qm.

The coherent structures for φ=85◦ show an organization of the Stokes layer in long
vortical cores located close to the wall (figure 10). This organization corresponds to
that described by Scotti & Piomelli (2001) for the pulsating turbulent channel flow,
where at T/4 the near-wall flow is organized in long and smooth streaks; and to the
findings of Costamagna et al. (2003), that for the late acceleration stage found low-
speed streaks, associated with high values of Ω3. The streaks appear as a consequence
of the alignment of spanwise vortices of the same sign, as the flow decelerates, and
originate the long vortex structures educed by the 〈Q〉 field (Costamagna et al. 2003).

In the later stages of the cycle, the vortical coherent structures loose their elongated
shape. At φ= 135◦ (figure 11), the strong vortical regions appear as short and slightly
upward tilted, with an orientation that is still clearly streamwise. At the end of the
deceleration stage (φ = 180◦, figure 12), the coherent structures have lost their
streamwise orientation and are tilted away from the wall. This occurs simultaneously
with an upward progression of the vortical structures that move away from the wall,
as noticed also by Costamagna et al. (2003) using tracer trajectories.
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FIGURE 12. (Colour online) Iso-surfaces of 〈Q〉 at φ = 180◦. The threshold is
Qmδ

2/U2
m = 1.6× 10−3.

The absolute value of the wall normal profile of 〈Q〉 reaches a minimum at
φ = 45◦ and φ = 225◦, half-way through the acceleration stage (figure 13). It then
increases until reaching the maximum shortly after the beginning of the deceleration
stage. Throughout the cycle, the profile of 〈Q〉 remains unaltered: close to the
wall (x2/πδ < 0.2), straining dominates rotation and the high vorticity found at the
wall is due to the straining of the fluid, probably by the large-scale flow; between
0.2 < x2/πδ < 1, rotation dominates and above x2/πδ = 1, there appears to be a
balance between strain and rotation.

4.3. Wall pressure
The evolution of the skewness of the normalized wall pressure fluctuations p̃0= p′0/p̂0
along the cycle (figure 14a) can be divided in two zones: γ1 grows from 0 (the
value for a Gaussian distribution) up to a value of 0.2∼ 0.4 during the acceleration
stage and then starts to decline to the Gaussian value at the end of the acceleration
stage and during the deceleration stage, where large excursions between positive and
negative γ1 are present. The positive γ1 of the accelerating stage indicates that high
negative values of p̃0 are more likely to occur than high positive values. During the
late acceleration and early deceleration stages, when turbulence appears and reaches
its maximum intensity, γ1 apparently decreases to a Gaussian value on average
while attaining large negative and positive values from phase to phase. This is in
disagreement with the experimental studies in permanent turbulent boundary layers
of Schewe (1983) and Andreopoulos & Agui (1996) and the numerical study of Kim
(1989), who found that γ1 of pressure fluctuations at the wall was ∼− 0.2.
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FIGURE 13. Profile of 〈Q〉 during the cycle. Note the nonlinear scale of the vertical axis.
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FIGURE 14. Statistics of wall pressure fluctuations p̃0. (a) Skewness; (b) kurtosis; γ1 and
γ2 for normal distribution ——; · · · · · · as in figure 5.
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FIGURE 15. Wall pressure field. (a) φ = 85◦; contours drawn for [−6, 6] Pa at 1 Pa
intervals. (b) φ = 135◦; contours drawn for [−4, 4] Pa at 0.5 Pa intervals. (c) φ = 180◦;
contours drawn for [−10, 10] Pa at 1 Pa intervals. Dashed line: negative values; solid line:
positive values.

The kurtosis of p̃0 (figure 14b) shows maxima of 4∼5 at the inception of turbulence
in the cycle. During the acceleration stage γ2 rises from ∼2.5 in the early phases
of this stage and after the peak, γ2 decreases during the deceleration stage. During
the late deceleration stage and the early acceleration stage, γ2 is lower than that of a
Gaussian distribution (γ2=3), while the inverse is true during the late acceleration and
early deceleration stages. The maximum values of γ2 are in line with the experimental
and numerical results reported in the literature, e.g. γ2= 4.19 by Schewe (1983). This
high value of γ2 means that extremely high or low amplitudes occur more often than
in a Gaussian distribution.

In the late acceleration stage (φ = 85◦), the wall pressure distribution (figure 15a),
is predominantly negative, although positive pressure peaks are also visible. Large
spanwise pressure gradients can be observed next to the positive pressure peaks
(e.g. at x3 ∼ 2πδ and 10πδ < x1 < 14πδ). At φ = 135◦ (deceleration stage), the wall
pressure distribution has changed considerably (figure 15b). Positive and negative
pressures are more evenly distributed but the negative pressure peaks become more
frequent. However, these characteristics can change rapidly between successive phases
as suggested by the highly fluctuating behaviour of the skewness in this region of
the cycle. At the end of the deceleration stage (φ = 180◦), the pressure distribution
largely exhibits negative values on the wall with isolated regions of positive pressure
(figure 15c). The similarities with the distribution at φ = 85◦ are evident and looking
at the evolution of the skewness during the acceleration stage of cycle the main
change to expect is the increase in the number of negative pressure peaks.
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FIGURE 16. Statistics of wall vorticity fluctuations Ω ′/Ωrms. (a) Skewness; (b) kurtosis;
Dashed line Ω1; full line Ω3; —— γ1 and γ2 for normal distribution; · · · · · · as in figure 5.

Observing the wall pressure distributions, the behaviour of the kurtosis may be
explained by noting that while for the late acceleration stage the extreme values
occupy a small fraction of the wall, for the remainder of the cycle the extremes of
the distribution occupy a much larger fraction of the total wall region.

4.4. Wall vorticity
Due to the no-slip condition, velocity gradients in the x1 and x3 direction are zero and
the normal component of vorticity Ω2 is therefore also zero.

The skewness of the Ω1 and Ω3 components (figure 16a) show very distinct
behaviours. The γ1 for Ω1 is very close to the Gaussian value and is much lower
than γ1 for Ω3. This last component has positive γ1 during the first half-cycle and
negative during the second half-cycle. The Ω3 skewness starts with a positive value
∼0.3 rising up to ∼0.5 before φ = 15◦ and then starts to decline until φ = 60◦,
when it experiences a sharp increase, reaching a maximum of O(1) slightly before
the end of the acceleration phase; after this peak, it slowly declines during the
turbulent phase of the cycle until approximately φ = 165◦, when it experiences a
rapid transition to the subsequent half-cycle where its sign is reversed. This indicates
a strong influence of the driving flow on the spanwise wall vorticity distribution and
has direct consequences on the shedding of positive or negative vorticity.

In the late acceleration stage (φ = 85◦, figure 17a) the Ω1 field shows elongated
vortex structures in the streamwise direction, while in the spanwise direction we
observe alternating zones of positive and negative Ω1. Since u3 = Ω1dx2, the field
is strongly related to the spanwise velocity field at short distances above the wall.
The elongated and alternating Ω1 features thus seem to be the result of near-wall
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FIGURE 17. Wall streamwise vorticity field. (a) φ = 85◦; contours drawn for
[−300, 300] s−1 at 50 s−1 intervals. (b) φ = 135◦; contours drawn for [−1800, 1800] s−1

at 300 s−1 intervals. (c) φ=180◦; contours drawn for [−600,600] s−1 at 100 s−1 intervals.
Dashed line: negative values; solid line: positive values.

counter-rotating vortices aligned in the streamwise direction. These streamwise
vortices result from the stretching of patches of streamwise vorticity by the large
wall normal gradients of streamwise velocity (Costamagna et al. 2003). The small
γ1 indicates that the field of counter-rotating streamwise vortices has with the same
likelihood positive and negative signs, while the high γ2 is a result of the elongated
nature of the structures.

In the deceleration stage (φ = 135◦, figure 17b) the stream wise vorticity field has
lost the streamwise organization of the late acceleration stage, thereby exhibiting a
lower γ2, while the number of high positive and negative peaks remains similar (γ1

maintains a Gaussian magnitude).
In the late acceleration stage the spanwise vorticity field exhibits alternating regions

of low and high vorticity (figure 18b). At the wall we have Ω3=−∂u1/∂x2 so the wall
distribution of Ω3 signals that the near-wall streamwise velocity field is organized in
alternating low and high speed regions, the so called streaks, already observed for the
steady turbulent boundary layer and oscillating boundary layer (see Costamagna et al.
(2003) and references there in).

To estimate the spacing of the low-speed streaks, the spanwise two-point auto-
correlation function of the velocity field was computed for the phase φ = 85◦ at the
distance of 0.5δ from the wall. The streamwise low-speed streak spacing is estimated
as the decorrelation length of the streamwise velocity, about 1.5πδ (figure 19). In
the subsequent evolution of the spanwise wall vorticity field, we observe the loss of
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FIGURE 18. Wall spanwise vorticity field. (a) φ=85◦; contours drawn for [0,3000] s−1 at
250 s−1 intervals. (b) φ= 135◦; contours drawn for [0, 3000] s−1 at 250 s−1 intervals. (c)
φ = 180◦; contours drawn for [−1200, 0] s−1 at 100 s−1 intervals. Dashed line: negative
values; solid line: positive values.

the streamwise homogeneity with the appearance of a wavy pattern and after that the
breakdown into small patches of streamwise vorticity, as described by Costamagna
et al. (2003). Note that contrary to the Ω1 component, the kurtosis of the Ω1

component remains close to Gaussian.

4.5. Dynamics of the boundary vorticity flux
In the case of a flat, stationary wall σa and σπ vanish. Moreover, the dot product
in (2.8d) is between orthogonal vectors so σn vanishes equally and only the pressure
component σp is non-zero. The r.m.s. of the pressure component (figure 20) reaches
its maximum values at the peak of the turbulent motions (the maxima of E), in the
beginning of the deceleration phase. Outside of this range of phases, σ̂p rapidly drops
and remains low during the acceleration stage of the cycle.

The streamwise and spanwise components of σ are due to the wall pressure
gradients:

σ =

(
∂p
∂x3

)
i1 −

(
∂p
∂x1

)
i3. (4.7)

The skewness and kurtosis of the wall vorticity flux components were computed
using the p.d.f. of σ̃ (figure 21). Instantaneous maps of σ1 and σ3 are shown in
figures 22–24.
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FIGURE 19. Two point auto-correlation function at x2 = 0.5δ (x+2 = 10) in the spanwise
directions for streamwise velocity component (solid line); spanwise velocity component
(dashed line); wall normal velocity component (dash-dotted line). The spanwise lag is r.
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FIGURE 20. Time series of wall vorticity flux σ̂ . Dotted line as in figure 5.

In the late acceleration stage, the vorticity flux in the streamwise direction is
organized in elongated regions with sharp variations in the spanwise direction
(figure 22a). The strongest σ1 occurs in the region of the sharp spanwise pressure
gradient identified above (figure 15a). In this phase the skewness is positive indicating
the more likely occurrence of high negative values of σ1, but in general the σ1
skewness oscillates heavily between positive and negative values (figure 21a) during
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FIGURE 21. Statistics of boundary vorticity flux fluctuations σ ′/σrms. (a) Skewness; (b)
kurtosis; Dashed line σ1; full line σ3; —— γ1 and γ2 for normal distribution; · · · · · · as
in figure 5.

the cycle. Kurtosis is high in this stage of the cycle due to the elongated configuration
of σ1. The spanwise component of σ shows a different distribution at the end of the
acceleration stage (figure 22b). The extremes are concentrated in small regions of the
wall but the field does not possess the elongated character of σ1, hence the lower
kurtosis. Again the wall vorticity flux is clearly connected to the pressure gradient
(streamwise in this case), as the peaks in the σ3 field match the sharp variations in
the pressure signal in the streamwise direction figure 15(a).

In the deceleration stage (figure 23a), the σ1 field has lost streamwise coherence and
exhibits much greater variations in this direction. This is due to the similar number
of positive and negative wall pressure peaks and so sharp wall pressure gradients
are more evenly distributed throughout the wall. Indeed, the streamwise decorrelation
length scale r/πδ of the wall pressure field decreases to 1–3, from 4–6 during the
acceleration stage, and thus the spatial correlation of the pressure signal is lower and
therefore an increase in the wall vorticity flux level is to be expected (Andreopoulos
& Agui 1996). The spanwise wall vorticity flux field (figure 23b) has a structure very
similar to the streamwise field at this phase with similar kurtosis, although with a
higher negative skewness (figure 21a). This is an important finding since it reveals a
sustained process of production of strong positive and negative wall pressures during
this stage of the cycle (figure 15b), generating large streamwise pressure gradients
and enhancing the spanwise wall vorticity flux. Again, it is seen that the spanwise
vorticity is the most affected by the flow oscillations. A likely cause is the repeated
and widespread occurrence of the sweep/ejection event that was found to be associated
with high values of the wall vorticity flux (Andreopoulos & Agui 1996). At the end
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FIGURE 22. Wall vorticity flux at φ= 85◦. (a) Streamwise component σ1; contours drawn
for [−1, 2] m s−2 at 0.1 m s−2 intervals. (b) Spanwise component σ3; contours drawn for
[−0.5, 1] m s−2 at 0.1 m s−2 intervals. Dashed line: negative values; solid line: positive
values.

of the deceleration stage (figure 24) σ1 presents a spatial distribution similar to the
one found for φ = 135◦. On the other hand, a substantially different distribution is
found for σ3 at this stage. The correlation between pressure values is larger than in
the previous case and the extreme values are mostly positive and are spatially related
to negative streamwise pressure gradients.

5. Conclusions
The Stokes layer shows different regimes of flow, depending on the frequency

of oscillation, the free-stream velocity and the fluid properties. For low free-stream
speeds or high oscillation frequencies (low Reδ), the flow is laminar and the wall shear
stress obeys a cosine type law with a π/4 phase lag in relation to the free-stream
oscillation. As Reδ increases, turbulence appears in the deceleration stage of the cycle
but is suppressed during the acceleration phase (the IT regime) until Reδ is high
enough so as to have turbulence in the entire cycle. During this evolution with Reδ,
the wall friction behaviour changes as the relative strengths of turbulent stresses and
pressure gradient change.

The DNS reported here were able to reproduce the characteristics of the Stokes
layer cycle in the IT regime that have been identified in previous experimental and
numerical studies. In particular, the cycle exhibits the sudden appearance of turbulent
motions in the early moments of the deceleration stage of the cycle and their almost
complete suppression during the acceleration stage and the appearance, thickening and
disappearance of a log layer in the near wall mean velocity profile.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f W

in
ni

pe
g,

 o
n 

26
 Ju

l 2
01

8 
at

 1
0:

11
:2

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

52
0

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.520


Wall pressure and vorticity in the Stokes layer 503

0

2

4

6

8

2 4 6
x1/π∂

8 10 12 14 160

2

4

6

8

(a)

x 3
/π

∂

(b)

x 3
/π

∂

FIGURE 23. Wall vorticity flux at φ=135◦. (a) Streamwise component σ1; contours drawn
for [−10, 10] m s−2 at 1 m s−2 intervals. (b) Spanwise component σ3; contours drawn for
[−5, 5] m s−2 at 0.5 m s−2 intervals. Dashed line: negative values; solid line: positive
values.

The statistics of wall pressure (skewness and kurtosis) vary considerably during the
cycle, due to the change in sign of the predominant wall pressure fluctuations and
the relative number of extreme fluctuations in wall pressure. On average, during the
turbulent phase of the cycle, positive and negative extremes are equally likely to occur
but at the same time, very high values of pressure fluctuations are less likely as the
deceleration stage progresses. Vorticity statistics show also a variation along the cycle,
except for the skewness of the streamwise component that oscillates mildly around
zero throughout the cycle. Differences in these statistics, similar to the ones found for
canonical boundary layers (see Honkan & Andreopoulos (1997)) support the view that
vorticity is subject to the same influences from coherent structures as in the permanent
boundary layer case. Observation of instantaneous vorticity fields in this work and
others (Costamagna et al. 2003) further support this hypothesis.

At the wall, pressure and vorticity are intimately related by the wall vorticity
flux since the pressure gradient is the source of the wall vorticity flux. During the
oscillatory cycle, the maximum of σ coincides with the turbulent kinetic energy
maximum. Instantaneous distributions show a close connection to the pressure
distribution, as could be expected. Indeed, the relationship between wall pressure
and vorticity is intricate since the newly created wall vorticity is diffused into the
fluid, and then moved away from the wall, where it will modify the turbulence
structures that created the pressure distributions at the wall, thereby changing the flux
of vorticity at the wall.
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FIGURE 24. Wall vorticity flux at φ=180◦. (a) Streamwise component σ1; contours drawn
for [−1.5,1.5] m s−2 at 0.15 m s−2 intervals. (b) Spanwise component σ3; contours drawn
for [−1, 1] m s−2 at 0.1 m s−2 intervals. Dashed line: negative values; solid line: positive
values.

When considering viscous flow around a wave energy device, these results show that
the wall vorticity distribution, that is shed from the sharp edges of the device and is
entrained in the flow, will exhibit different characteristics according to the phase of the
cycle. This is especially true for the spanwise vorticity component that is affected to
a higher degree by the flow oscillation. This variation in the wall vorticity distribution
will influence the subsequent stages of the device motions, due to its effects on the
overall force balance. In the case of the wave energy devices the phase of the cycle is
determined not only by the ambient flow but also by the motion of the device itself,
which will feedback into the vorticity sheet characteristics. This interaction between
ambient flow, wall vorticity, global forces and device motion is especially important
during extreme events, where viscous loads are known to be significant. Further work
is required to gain a better insight into this process and, in particular, we plan to
extend the analysis in a setting where a vorticity sheet shedding from a sharp corner
occurs.
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