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We study three dimensional (3D) oceanic Lagrangian coherent structures (LCSs) in the Benguela upwell-
ing region obtained from an output of the regional ocean modeling system (ROMS). To do that, we first
computed finite-size Lyapunov exponent (FSLE) fields in the region volume that characterize mesoscale
stirring and mixing. Average FSLE values generally decreased with depth, but there was a local maximum
at a depth of approximately 100 m. LCSs are extracted as the ridges of the calculated FSLE fields. They
present a ‘‘curtain-like’’ geometry in which the strongest attracting and repelling structures appear as
quasivertical surfaces. LCSs around a particular cyclonic eddy, pinched off from the upwelling front,
are also calculated. The LCSs are confirmed to provide pathways and barriers to transport into and out
of the eddy.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Mixing and transport processes are fundamental to the physi-
cal, chemical and biological properties of oceans. From plankton
dynamics to the development of pollutant spills, there is a wide
range of practical issues that benefit from understanding and mod-
eling these processes. Although mixing and transport occur at a
wide range of scales in the oceans, mesoscale and sub-mesoscale
variability are known to play very important roles (Thomas et al.,
2008; Klein and Lapeyre, 2009).

Mesoscale eddies are especially important in this respect be-
cause of their long life in oceanic flows and their stirring and mix-
ing properties. In the southern Benguela region, for instance,
cyclonic eddies shed from the Agulhas current can transport and
exchange warm waters between the Indian Ocean and the South
Atlantic (Byrne et al., 1995; Lehahn et al., 2011). Moreover, meso-
scale eddies have been shown to drive important biogeochemical
processes in the ocean such as the vertical flux of nutrients into
the euphotic zone (McGillicuddy et al., 1998; Oschlies and Garçon,
1998). Another effect of eddy activity appears to be the intensifica-
tion of mesoscale and sub-mesoscale variability due to the fila-
mentation process, where strong tracer gradients are created by
the stretching of tracers in the shear- and strain-dominated regions
in between eddy cores (Elhmaı̈di et al., 1993). Studies of the verti-
cal structure of such eddies in the Benguela region (e.g., Doglioli
ll rights reserved.

court).
et al., 2007; Rubio et al., 2009) have shown that the eddies can ex-
tend up to 1000 m deep.

In recent decades, new developments in the description and
modeling of oceanic mixing and transport from a Lagrangian view-
point have emerged (Mariano et al., 2002; Lacasce, 2008). These
Lagrangian approaches have become more and more frequently
used due to the increased availability of detailed knowledge of
the velocity field from Lagrangian drifters, satellite measurements
and computer models. In particular, the very relevant concept of
the Lagrangian coherent structure (LCS) (Haller, 2000; Haller and
Yuan, 2000) is becoming crucial for the analysis of transport in
ocean flows. LCSs are structures that separate the flow into regions
with different dynamical behavior. They provide a general geomet-
ric view of flow dynamics, acting as a (time-dependent) roadmap
for the flow. They are templates serving as proxies to, for instance,
barriers and avenues to transport or eddy boundaries (Boffetta
et al., 2001; Haller and Yuan, 2000; Haller, 2002; d’Ovidio et al.,
2004; d’Ovidio et al., 2009; Mancho et al., 2006).

The relevance of the 3D structure of LCSs has begun to be ex-
plored in atmospheric contexts (duToit and Marsden, 2010; Tang
et al., 2011; Tallapragada et al., 2011). In the context of oceanic
flows, however, the identification of LCSs and the study of their
role in the transport of biogeochemical tracers has primarily been
restricted to the oceans surface (d’Ovidio et al., 2004; Waugh et al.,
2006; d’Ovidio et al., 2009; Beron-Vera et al., 2008). This is mainly
due to two reasons: (a) vertical tracer displacement is usually very
small compared to horizontal displacement; and (b) satellite data
of any quantity (temperature, chlorophyll, altimetry for velocity,
etc.) are only available for the ocean surface.

http://dx.doi.org/10.1016/j.ocemod.2012.04.004
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Fig. 1. The Benguela upwelling region. The velocity field domain is limited by the
continuous black line. The FSLE calculation area is limited by the dash-dot black
line. Bathymetric contour lines are derived from the ETOPO1 global relief model
(Amante and Eakins, 2009) starting at a depth of 0 m and ranging up to 4000 m at
intervals of 500 m.
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Oceanic flows can be considered 2D because there is a great dis-
parity between the horizontal and vertical length scales and flows
are strongly stratified due to the Earth’s rotation. There are, how-
ever, areas in the ocean where vertical motion is fundamental.
One area is the so-called upwelling regions, which are the most
biologically active marine zones in the world (Rossi et al., 2008;
Pauly and Christensen, 1995). The reason for this activity is the
Ekmann pumping mechanism. Close to the coast, there is a surface
upwelling of deep, cold waters that are rich in nutrients, inducing a
high concentration of plankton. Typically, the vertical velocities in
upwelling regions are much greater than in the open ocean, but
still one order of magnitude smaller than the horizontal velocities
in the same area. Another example of locations where there are
significant vertical processes is mesoscale eddies boundaries that
produce submesoscale structures (frontogenesis), which are
responsible for strong ageostrophic vertical processes in addition
to the vertical exchange that is thought to occur in the eddy inte-
rior (Klein and Lapeyre, 2009). Thus, the identification of the 3D
LCSs in these areas, as well as understanding their correlations
with biological activity, is crucial. Another reason to include the
third dimension in LCS studies is to investigate the vertical varia-
tion in LCS properties.

The primary objective of this paper is the characterization of 3D
LCSs extracted from an upwelling region, the Benguela area in the
southern Atlantic Ocean. To achieve this goal, we use finite-size
Lyapunov exponents (FSLEs). FSLEs (Aurell et al., 1997; Artale
et al., 1997) measure the separation rate of fluid particles between
two given distance thresholds. LCSs are computed as the ridges of
the FSLE field (d’Ovidio et al., 2004; Molcard et al., 2006; Haza
et al., 2008; d’Ovidio et al., 2009; Poje et al., 2010; Haza et al.,
2010). The rigorous definition of an LCS as a ridge of a Lagrangian
stretching measure was given for the finite-time Lyapunov expo-
nents (FTLEs), which are closely related to FSLEs, in Shadden et al.
(2005) and Lekien et al. (2007). More recently, hyperbolic LCSs have
been defined independently of such stretching measures by Haller
(2011). Following many previous studies (d’Ovidio et al., 2004;
Molcard et al., 2006; d’Ovidio et al., 2009; Branicki and Wiggins,
2009), we adapt the mathematical results for finite-time Lyapunov
exponents (FTLEs) to FSLEs, assuming them to be valid. In particular,
we assume that LCSs are identified with ridges (Haller, 2001), i.e.,
the local extrema of the FTLE field. We also expect, in accordance
with the results in Shadden et al. (2005) and Lekien et al. (2007)
for FTLEs, that the material flux through these LCSs is small and that
LCSs are transported by the flow as quasi-material surfaces.

To confirm our identification of LCSs as the ridges of the FSLE
field, we perform (in Section 3) direct particle trajectory integra-
tions that show that the computed LCSs indeed organize the tracer
flow. In our work, we will emphasize the numerical methodology
because up to now, FSLEs have only been computed for the marine
surface (an exception is Özgökmen et al. (2011)). We then focus on
a particular eddy that is very prominent in the area within the cho-
sen temporal window and study the stirring and mixing occurring
in its vicinity. Some previous results for Lagrangian eddies were
obtained by Branicki and Kirwan (2010) and Branicki et al.
(2011), applying the methodology of lobe dynamics and the turn-
stile mechanism to eddies pinched off from the Loop Current. In
this paper, we focus on FSLE fields and the associated particle tra-
jectories to study transport into and out of the chosen mesoscale
eddy. Because this is a first attempt to study 3D oceanic LCSs, more
general results (for Benguela and other upwelling regions) are left
for future work.

To circumvent the lack of appropriate observational data in the
vertical direction, we use velocity fields from a numerical simula-
tion. They are high resolution simulations from the ROMS model
(see Section 2 below) and are thus appropriate for studying regio-
nal-medium scale basins.
The paper is organized as follows: in Section 2, we describe the
data and methods. In Section 3, we present our results. Section 4
contains a discussion of the results, and Section 5 summarizes
our conclusions.
2. Data and methods

2.1. Velocity data set

The Benguela ocean region is situated off of the west coast of
southern Africa. It is characterized by a vigorous coastal upwelling
regime forced by equatorward winds, substantial mesoscale activ-
ity of the upwelling front in the form of eddies and filaments, and
also by the northward drift of Agulhas eddies.

The velocity data set comes from a regional ocean model simu-
lation of the Benguela region (Le Vu et al., submitted for publica-
tion). The ROMS model (Shchepetkin and McWilliams, 2003,
2005) is a split-explicit free-surface, topography-following model.
It solves the incompressible primitive equations using the Bous-
sinesq and hydrostatic approximations. Potential temperature
and salinity transport are included by coupling advection/diffusion
schemes for these variables. The model was forced with climato-
logical data. The data set area extends from 12�S to 35�S and from
4�E to 19�E (see Fig. 1). The velocity field u = (u,v,w) consists of
2 years of daily averages of zonal (u), meridional (v), and vertical
velocity (w) components, stored in a 3D grid with a horizontal res-
olution of 1/12 degrees (�8 km) and 32 vertical terrain-following
levels using a stretched vertical coordinate where the layer thick-
ness increases from the surface/bottom to the ocean interior. Be-
cause the ROMS model considers the hydrostatic approximation,
it is important to note that Mahadevan (2006), when comparing
the results from non-hydrostatic and hydrostatic versions of the
same model of vertical motions at submesoscale fronts, found that
while instantaneous vertical velocities structures differed between
the versions, the averaged vertical flux is similar in both hydro-
static and non-hydrostatic simulations.
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2.2. Finite-size Lyapunov exponents

The finite size Lyapunov exponent (Aurell et al., 1997; Artale
et al., 1997) is particularly well suited to the study of non-asymp-
totic dispersion processes such as stretching at finite scales and
time intervals. It is defined as:

k ¼ 1
s log

df

d0
; ð1Þ

where s is the time it takes for the separation between two parti-
cles, initially d0, to reach df. In addition to the dependence on the
values of d0 and df, the FSLE also depends on the initial position of
the particles and on the time of deployment. Locations (i.e., initial
positions) leading to high values of this Lyapunov field identify re-
gions of strong separation between particles, i.e., regions that will
exhibit strong stretching during evolution, which can be identified
with the LCS (Boffetta et al., 2001; d’Ovidio et al., 2004; Joseph
and Legras, 2002).

In principle, to compute FSLEs in three dimensions, one only
needs to extend the method of d’Ovidio et al. (2004); that is, one
needs to compute the time that fluid particles initially separated
by d0 = [(dx0)2 + (dy0)2 + (dz0)2]1/2 required to reach a final distance
of df = [(dxf)2 + (dyf)2 + (dzf)2]1/2. The primary difficulty in this com-
putation is that in the ocean, vertical displacements (even in
upwelling regions) are much smaller than the horizontal ones
and thus do not contribute significantly to total particle dispersion
(Özgökmen et al., 2011). By the time that the scale of horizontal
particle dispersion reaches tenths or hundreds of kilometers (typ-
ical mesoscale structures are studied using df � 100 km (d’Ovidio
et al., 2004)), the particle dispersion in the vertical dimension
can reach, at most, scales of hundreds of meters, and usually less.
This fact means that vertical separation will not contribute signif-
icantly to the accumulated distance between particles. In addition,
because the length scales of the horizontal and vertical dimensions
differ by several orders of magnitude, one faces the impossibility of
assigning equal d0 to the horizontal and vertical particle pairs. It
should be noted, however, that these shortcomings arise from
the different scales of length and time that characterize horizontal
and vertical dispersion processes in the ocean and thus should not
be considered as intrinsic limitations of the method. For non-
oceanic flows, a direct generalization of FSLEs is straightforward.

Therefore, in this paper, we implemented a quasi 3D computa-
tion of FSLEs. That is, we perform a computation for every (2D)
ocean layer, but for the particle trajectories calculation, we use
the full 3D velocity field, i.e., at each level (depth), we set dz0 = 0,
and the final distance is computed without taking the vertical dis-
tance between particles. It is important to note that because we al-
low the particles to evolve in the full 3D velocity field, we take into
account vertical quantities such as vertical velocity shear that may
influence the horizontal separation between particle pairs.

There are other possible approaches to the issue of different
scales in the vertical and horizontal. One such approach is to assign
anisotropic initial and final displacements in the FSLE calculation
(i.e., including a dz0 and dzf that are much smaller than the horizon-
tal initial and final separations). A second approach is to use differ-
ent weights for the horizontal and vertical separations in the
calculations of distance, perhaps in combination with the first ap-
proach. We have evaluated both alternatives and found that, with
reasonable choices of initial and final distances and distance met-
rics, the results were equivalent to the quasi-3D computation. The
reason for this equivalence is that actual dispersion is primarily
horizontal, as noted above.

In more detail, a grid of initial locations x0 in the longitude/lat-
itude/depth geographical space (/,h,z), fixing the spatial resolution
of the FSLE field, is set up at time t. The horizontal distance among
the grid points, d0, was set to 1/36 degrees (�3 km), i.e., a resolu-
tion three times finer than the velocity field (Hernandez-Carrasco
et al., 2011), and the vertical resolution (distance between layers)
was set to 20 m to have a good representation of the vertical vari-
ations in the FSLE field. Particles are released from each grid point,
and their 3D trajectories are calculated. The distances of each par-
ticle with respect to the particles that were initially its neighbors at
a horizontal distance d0 are monitored until one of the horizontal
separations reaches a value df. By integrating the 3D particle trajec-
tories backward and forward in time, we obtain two different types
of FSLE maps: the attracting LCS (from the backward integration)
and the repelling LCS (forward integration) (d’Ovidio et al., 2004;
Joseph and Legras, 2002). In this way, we obtain FSLE fields with
a horizontal spatial resolution given by d0. The final distance df

was set to 100 km, which is, as already mentioned, a typical length
scale for mesoscale studies. The trajectories were integrated for a
maximum of T = 178 days (approximately 6 months) using an inte-
gration time step of 6 h. When a particle reached the coast or left
the velocity field domain, the FSLE value at its initial position
and initial time was set to zero. If the interparticle horizontal sep-
aration remains smaller than df during all the integration time,
then the FSLE for that location is also set to zero.

The equations of motion that describe the evolution of particle
trajectories are

d/
dt
¼ 1

Rz

uð/; h; z; tÞ
cosðhÞ ; ð2Þ

dh
dt
¼ 1

Rz
vð/; h; z; tÞ; ð3Þ

dz
dt
¼ wð/; h; z; tÞ; ð4Þ

where / is longitude, h is latitude and z is the depth. Rz is the radial
coordinate of the moving particle Rz = R � z, with R = 6371 km the
mean Earth radius. For all practical purposes, Rz � R. Particle trajec-
tories are integrated using a 4th order Runge–Kutta method. For the
calculations, one needs the (3D) velocity values at the current loca-
tion of the particle. Because the 6 grid nodes surrounding the parti-
cle do not form a regular cube, direct trilinear interpolation cannot
be used. Thus, an isoparametric element formulation is used to map
the nodes of the velocity grid surrounding the particle position to a
regular cube, and an inverse isoparametric mapping scheme (Yuan
et al., 1994) is used to find the coordinates of the interpolation point
in the regular cube coordinate system.

2.3. Lagrangian coherent structures

In 2D, LCSs practically coincide with (finite-time) stable and
unstable manifolds of relevant hyperbolic structures in the flow
(Haller, 2000; Haller and Yuan, 2000; Joseph and Legras, 2002).
The structure of these last objects in 3D is generally much more
complex than in 2D (Haller, 2001; Pouransari et al., 2010), and lo-
cally, they can be either lines or surfaces. As noted earlier, however,
vertical movement in the ocean is slow. Thus, at each fluid parcel,
the directions of strongest attraction and repulsion should be
nearly horizontal. This, combined with the incompressibility prop-
erty, implies that the most attracting and repelling regions (i.e., the
LCSs) should appear as almost vertical surfaces, as the attraction or
repulsion should occur normally to the LCS. As a consequence, the
LCSs will have a curtain-like’’ geometry, with deviations from the
vertical due either to the orientation of the most attracting or
repelling direction deviating from the horizontal or to instances
where strong vertical shear produces variations along the vertical
in the most repelling or attracting regions in the flow. We expect
the LCS sheet-like objects to coincide with the strongest hyperbolic
manifolds when these are 2D and to contain the strongest hyper-
bolic lines.
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Fig. 2. Vertical profile of 30-day average backward and forward FSLEs. The 30-day
average field was spatially averaged at each layer over the FSLE calculation area to
produce the vertical profiles. The backward FSLE average is shown in continuous
and the forward FSLE is shown in dashed.
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The curtain-like geometry of the LCS was already commented
on in Branicki and Malek-Madani (2010), Branicki and Kirwan
(2010) and Branicki et al. (2011). In the latter paper, it was shown
that, in a 3D flow, these structures would appear mostly vertical
when the ratio of the vertical shear of the horizontal velocity com-
ponents to the average horizontal velocities is small. This ratio also
determines the vertical extension of the structures. In Branicki and
Kirwan (2010), this argument was used to construct a 3D model of
hyperbolic structures from the computation in a 2D slice. In the
present paper, we confirm the curtain-like geometry of the LCSs
and show that they are relevant to the organization of the fluid
flow in this realistic 3D oceanic setting. This is performed in the
next section by comparing actual particle trajectories with the
computed LCSs.

In contrast with 2D, where LCSs can be visually identified as the
maxima of the FSLE field, in 3D the ridges are hidden within the
volume data. Thus, one needs to explicitly compute and extract
them using the definition of LCSs as the ridges of the FSLEs. A ridge
L is a co-dimension 1 orientable, differentiable manifold (which
means that for a 3D domain D, ridges are surfaces), satisfying the
following conditions (Lekien et al., 2007):

1. The field k attains a local extremum at L.
2. The direction perpendicular to the ridge is the direction of the

fastest descent of k at L.

Mathematically, the two previous requirements can be ex-
pressed as

nTrk ¼ 0; ð5Þ
nTHn ¼ min

kuk¼1
uTHu < 0; ð6Þ

where rk is the gradient of the FSLE field k, n is the unit normal
vector to L and H is the Hessian matrix of k.

The method used to extract the ridges from the scalar field
k(x0,t) is from Schultz et al. (2010). It utilizes an earlier (Eberly
et al., 1994) definition of ridge in the context of image analysis
as a generalized local maxima of scalar fields. For a scalar field
f : Rn ! R with gradient g =rf and Hessian H, a d-dimensional
height ridge is given by the conditions

8d<i6n gTei ¼ 0 and ai < 0; ð7Þ

where ai, i 2 {1,2, . . . ,n}, are the eigenvalues of H, ordered such that
a1 P � � �P an, and ei is the eigenvector of H associated with ai. For
n = 3, (7) becomes

gTe3 ¼ 0 and a3 < 0: ð8Þ

This ridge definition is equivalent to the one given by (5) because
the unit normal n is the eigenvector (when normalized) associated
with the minimum eigenvalue of H. In other words, in R3 the e1, e2

eigenvectors point locally along the ridge, and the e3 eigenvector is
orthogonal to it.

The ridges extracted from the backward FSLE map approximate
the attracting LCS, and the ridges extracted from the forward FSLE
map approximate the repelling LCS. The attracting LCSs are the
more interesting from a physical point of view (d’Ovidio et al.,
2004, 2009), as particles (or any passive scalar driven by the flow)
typically approach them and spread along them, giving rise to fil-
ament formation. In the extraction process, it is necessary to spec-
ify a threshold s for the ridge strength ja3j, so that the ridge points
whose value of a3 is lower (in absolute value) than s are discarded
from the extraction process. Because the ridges are constructed by
triangulations of the set of extracted ridge points, the s threshold
greatly determines the size and shape of the extracted ridge by fil-
tering out regions of the ridge that have low strength. The reader is
referred to Schultz et al. (2010) for details about the ridge extrac-
tion method. The height ridge definition has been used to extract
LCSs from FTLE fields in several works (see, among others, Sadlo
and Peikert (2007)).
3. Results

3.1. Three-dimensional FSLE field

The 3D FSLE field was calculated for a 30-day period beginning
on September 17 of year 8 of the ROMS simulation period, with
snapshots taken every 2 days. The fields were calculated for an
area of the Benguela ocean region between latitudes 20�S and
30�S and longitudes 8�E and 16�E (see Fig. 1). The area is bounded
in the NW by the Walvis Ridge, and the continental slope approx-
imately bisects the region from NW to SE. The western half of the
domain has abyssal depths of approximately 4000 m. The calcula-
tion domain extended vertically from 20 up to 580 m in depth.
Both backward and forward calculations were made to extract
the attracting and repelling LCSs.

Fig. 2 displays the vertical profile of the average FSLE for the 30-
day period. There are small differences between the backward and
the forward values due to the different intervals of time involved in
their calculation, but both profiles have a similar shape and show a
general decrease with depth. There is a notable peak in the profiles
at a depth of approximately 100 m that indicates increased meso-
scale variability (and transport, as shown in Section 3.2 at that
depth).

A snapshot of the attracting LCSs for day 1 of the calculation
period is shown in Fig. 3. As expected, the structures appear as thin
vertical curtains, most of them extending throughout the depth of
the calculation domain. The area is populated with LCSs, denoting
the intense mesoscale activity in the Benguela region. As already
mentioned, in three dimensions, the ridges are not easily observed
because they are hidden in the volume data. However, the horizon-
tal slices of the field in Fig. 3 indicate that the attracting LCSs fall
along the maximum backward FSLE field lines of the 2D slices.
The repelling LCSs (not shown) also fall along the maximum for-
ward FSLE field lines of the 2D slices.

Because the k value of a point on the ridge and the ridges
strength a3 are only related through the expressions (7) and (8),



Fig. 3. Attracting LCSs (blue) for day 1 of the calculation period, together with
horizontal slices of the backward FSLE field at 120 m and 300 m depths. The color
bar refers to the color map of horizontal slices. The units of the color bar are day�1.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 4. Trajectory (advancing from NE to SW) of the eddy center inside the
calculation domain. Circles indicate the location of the eddys center during the 30-
day FSLE calculation period, and squares indicate previous and later positions.
Bathymetric lines are the same as in Fig. 1.

J.H. Bettencourt et al. / Ocean Modelling 51 (2012) 73–83 77
the relationship between the two quantities is not direct. This cre-
ates a difficulty in choosing the appropriate strength threshold for
the extraction process. A value of s that is too small will result in
very small LCSs that appear to have little influence on dynamics,
whereas a greater value will result in only a partial rendering of
the LCS, limiting the possibility of observing their real impact on
the flow. Computations with several values of s lead us to the opti-
mum choice s = 20 day�1 m�2, meaning that grid nodes with
a3 < �20 day�1 m�2 were filtered out from the LCS triangulation.

We have observed in this section an example of how the ridges
of the 3D FSLE field, the LCSs, are distributed in the Benguela ocean
region. Their ubiquity signifies their impact on transport and mix-
ing properties. In the next section, we concentrate on the proper-
ties of a single 3D mesoscale eddy.

3.2. Study of the dynamics of a relevant mesoscale eddy

Let us study a prominent cyclonic eddy observed in the data set.
The trajectory of the center of the eddy was tracked and is shown
in Fig. 4. The eddy was apparently pinched off at the upwelling
front. At day 1 of the FSLE calculation period, its center was located
at latitude 24.8�S and longitude 10.6�E, leaving the continental
slope and having a diameter of approximately 100 km. One may
ask, what is its vertical size? Is it really a barrier, at any depth, to
particle transport?

To properly answer these questions, the eddy, in particular its
frontiers, should be located. From the Eulerian point of view, it is
commonly accepted that eddies are delimited by closed contours
of vorticity and that the existence of strong vorticity gradients pre-
vents transport into and out of the eddy. Such transport may occur
when the eddy is destroyed or undergoes strong interactions with
other eddies (Provenzale, 1999). From a Lagrangian view point,
however, an eddy can be defined as a region delimited by the inter-
sections and tangencies of LCSs, whether in 2D or 3D space. The
eddy itself is an elliptic structure (Haller and Yuan, 2000; Branicki
and Kirwan, 2010; Branicki et al., 2011). In this Lagrangian view of
an eddy, the inhibition of transport into and out of the eddy is now
related to the existence of these transport barriers delimiting the
eddy region, which are known to be quasi-impermeable.

Using the first approach, i.e., the Eulerian view, the vertical dis-
tribution of the Q-criteria (Hunt et al., 1988; Jeong and Hussain,
1995) was used to determine the vertical extension of the meso-
scale eddy. The Q criterion is a 3D version of the Okubo–Weiss cri-
terion (Okubo, 1970; Weiss, 1991) and measures the relative
strengths of vorticity and straining. In this context, eddies are de-
fined as regions with positive Q, with Q the second invariant of
the velocity gradient tensor

Q ¼ 1
2
ðkXk2 � kSk2Þ; ð9Þ

where kXk2 = tr(XXT), kSk2 = tr(SST) and X, S are the antisymmet-
ric and symmetric components of ru. Using Q = 0 as the Eulerian
eddy boundary, it can be observed from Fig. 5 that the eddy extends
vertically down to at least 600 m.

Let us move to the Lagrangian description of eddies, which is
more in the spirit of our study and will allow us to study particle
transport: eddies can be defined as the region bounded by intersect-
ing or tangential repelling and attracting LCSs (Branicki and Kirwan,
2010; Branicki et al., 2011). Using this criterion and first looking at
the surface located at a depth of 200 m, we observe in Fig. 6 that
the Eulerian eddy certainly appears to be located inside the area
defined by several intersections and tangencies of LCSs. This eddy
has an approximate diameter of 100 km. In the south-north direc-
tion, there are two intersections that appear to be hyperbolic
points (H1 and H2 in Fig. 6). In the west-east direction, the eddy
is closed by a tangency at the western boundary and an intersec-
tion of lines at the eastern boundary. The eddy core is devoid of
high FSLE lines, indicating that weak stirring occurs inside (d’Ovidio
et al., 2004). As additional Eulerian properties, we note that near or
at the intersections H1 and H2, the Q-criterion indicates straining
motions. In the case of H2, Fig. 5 (right panel) indicates high shear
up to a depth of 200 m. The fact that the hyperbolic regions H1 and
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Fig. 6. Q-criterion map at a depth of 200 m together with patches of backward
(blue) and forward (green) FSLE values. Black dashed lines have Q = 0. FSLE patches
contain the highest 60% of FSLE values. Color bar values are Q � 1010 s�2. The eddy
we study is the clear region in between points H1 and H2. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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H2 lie in strain-dominated regions of the flow (Q < 0) highlights the
connection between hyperbolic particle behavior and instanta-
neous hyperbolic regions of the flow. The ridges of the FSLE field,
however, do not remain in the negative Q regions but cross into
rotation-dominated regions with Q > 0. This finding indicates that
there are some differences between the Eulerian view (Q) and
the Lagrangian view (FSLE). It is the latter that can be understood
in terms of particle behavior as limiting regions of initial condi-
tions (particles) that stay away from hyperbolic regions for a long
enough time (Haller and Yuan, 2000).

In 3D, the eddy is also surrounded by a set of attracting and
repelling LCSs (Fig. 7), calculated as described in Section 2.3. The
lines identified in Fig. 6 are now considered to belong to these ver-
tical surfaces.
Note that the vertical extents of these surfaces are determined
in part by the strength parameter used in the LCS extraction pro-
cess, and thus, their true vertical extension is not clear from the re-
sults presented here. To the south, the closure of the Lagrangian
eddy boundary extends down to the maximum depth of the calcu-
lation domain, but moving northward, it is observed that the LCSs
decrease in depth. Most likely, this does not mean that the eddy is
shallower in the north but rather that the LCSs are losing strength
(lower ja3j) and that portions of the LCs are filtered out by the
extraction process. In any case, it is observed that as in 2D calcula-
tions, the LCSs delimiting the eddy do not perfectly coincide with
its Eulerian boundary (Joseph and Legras, 2002), and we expect
the Lagrangian view to be more relevant for addressing transport
questions.

In the next paragraphs, we analyze the fluid transport across the
eddy boundary. Some previous results for Lagrangian eddies were
obtained by Branicki and Kirwan (2010) and Branicki et al. (2011).
Applying the methodology of lobe dynamics and the turnstile
mechanism to eddies pinched off from the Loop Current, Branicki
and Kirwan (2010) observed a net fluid entrainment near the base
of the eddy and net detrainment near the surface, with fluid trans-
port into and out of the eddy being essentially confined to the
boundary region.

We consider six sets of 1000 particles each that were released
on day 1 of the FSLE calculation period and their trajectories, inte-
grated by a 4th-order Runge–Kutta method with an integration
time step of 6 h. The sets of particles were released at depths of
50, 100, 200, 300, 400 and 500 m. In Fig. 8, we plot the particle sets
together with the Lagrangian boundaries of the mesoscale eddy
viewed in 3D. A top view is shown in Fig. 9. As expected, the ver-
tical displacements are small.

At day 3 (top left panel of Figs. 8 and 9), it can be observed that
there is a differential rotation (generally cyclonic, i.e., clockwise)
between the sets of particles at different depths. The shallower sets
rotate more quickly than the deeper ones. This differential rotation
of the fluid particles could be viewed from a Lagrangian perspec-
tive as a result of the attracting and repelling strengths of the LCSs
that limit the eddy varying with depth. Note that the sets of parti-
cles are released at the same time and at the same horizontal posi-
tion, and thus, differences in their behavior are due to the
variations of the LCS properties with depth.

At day 13, the vortex starts to expel material through filamen-
tation (Figs. 8 and 9, top right panels). A fraction of the particles ap-
proach the southern boundaries of the eddy from the northeast.
Those to the west of the repelling LCS (green) turn west and



Fig. 7. Three-dimensional LCSs around the mesoscale eddy at day 1 of the 30-day FSLE calculation period. Green: repelling LCSs; Blue: attracting LCSs. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Three-dimensional view of the evolution of elliptic patches released at different depths inside of the eddy on day 1 of the 30-day FSLE calculation period. Top left: day
3; top right: day 13; bottom left: day 19: bottom right: day 29. Red: 40 m; yellow: 100 m; cyan: 200 m; magenta: 300 m; grey: 400 m; black: 500 m. Attracting LCSs are
shaded in blue, whereas repelling LCSs are shaded in green. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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recirculate inside the eddy along the southern attracting LCS
(blue). Particles to the east of the repelling LCS turn east and leave
the eddy, forming a filament aligned with an attracting (blue) LCS.
Later, trajectories to the south of the eddy are influenced by addi-
tional structures associated with a different southern eddy. At day
29 (bottom right panels), the same process can be observed to have
occurred in the northern boundary, with a filament of particles
leaving the eddy along the northern attracting (blue) LCS. This
filamentation appears to begin earlier in shallower water than
at greater depths because the length of the expelled filament



Fig. 9. Top view of the evolution of particle patches and LCSs shown in Fig. 8. Top left: day 3; top right: day 13; bottom left: day 19; bottom right: day 29. Colors as in Fig. 8.
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diminishes with depth. However, all of the expelled filaments fol-
low the same attracting LCS. Fig. 10 illustrates the stages previous
to filamentation, in which the structure of the LCSs, their tangen-
cies and intersections, and the paths of the particle patches are
more clearly visible. Note that the LCSs do not form fully closed
structures and that the particles can escape the eddy through the
resulting openings. The images suggest lobe-dynamics processes,
but much higher precision in the LCS extraction would be needed
to optimally observe such details.

This filamentation event appears to be the only mechanism
responsible for the transportation of material outside of the eddy,
as the rest of the particles remained inside the eddy boundaries. To
obtain a rough estimate of the amount of matter expelled in the fil-
amentation process, we tracked the percentage of particles leaving
a 200 km diameter circle centered on the eddy center. In Fig. 11,
the change in this percentage over time is illustrated for the parti-
cle sets released at different depths. The onset of filamentation is
clearly visible around days 9–12 as a sudden increase in the per-
centage of particles leaving the eddy. The percentage is highest
for the particles located at a 100 m depth and decreases as the
depth increases. At depths of 400 and 500 m, there are no particles
leaving the circle. There is a clear lag in the onset of filamentation
between the different depths: the onset is simultaneous for the
40 m and 100 m depths but occurs later for greater depths.

4. Discussion

The spatial average of FSLEs defines a measure of stirring and
thus of horizontal mixing between the scales used for its computa-
tion. The larger the average, the larger the mixing activity (d’Ovidio
et al., 2004). The general trend in the vertical profiles of the average
FSLE (Fig. 3) shows a reduction in mesoscale mixing with depth.
There is, however, a rather interesting peak in this average profile
occurring at 100 m, i.e., close to the thermocline. This peak could
be related to submesoscale processes that occur alongside the
mesoscale ones. The submesoscale is associated with filamentation
(the thickness of filaments is on the order of 10 km or less), and we
have observed that filamentation and the associated transport
intensity (Fig. 11) are higher at a 100 m depth. It is not clear at
the moment what the precise mechanism responsible for this in-
creased activity at depths of approximately 100 m might be (per-
haps associated with instabilities in the mixed layer), but we
note that the intensity of shearing motions (see the Q plots in
Fig. 5) is higher within 200 m of the ocean surface. Less intense fil-
amentation could be caused by the reduction of shear at depths
greater than those values.

From an Eulerian perspective, it is thought that vortex filamen-
tation occurs when the potential vorticity (PV) gradient aligns itself
with the compressional axis of the velocity field in strain coordi-
nates (Louazel and Hua, 2004; Lapeyre et al., 1999). This alignment
is accompanied by exponential growth of the PV gradient magni-
tude. The fact that filamentation occurs along the attracting LCSs
appears to indicate that this exponential growth of the PV gradient
magnitude occurs across the attracting LCSs.

In the specific spatiotemporal area studied here and, in particu-
lar, for the eddy on which we focused our analysis, we have con-
firmed that the structure of the LCSs is curtain-like’’ such that
the strongest attracting and repelling structures are quasivertical
surfaces. Their vertical extension would depend on physical trans-
port properties but is also altered by the particular threshold



Fig. 10. Top view of the initial stages of evolution of the particle patches and LCSs of Figs. 8 and 9. Top left: day 7; top right: day 9; bottom left: day 11; bottom right: day 13.
Colors as in Fig. 8.
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parameter used to extract the LCSs. These observations imply that
transport and stirring occur primarily in the horizontal dimension,
which is a reasonable result considering the disparity between hor-
izontal and vertical velocities in the ocean and the oceans vertical
stratification. However, we should mention that our results are not
fully generalizable to all ocean situations and that any ocean area
or oceanic event should be studied independently to reveal the
shape of its associated 3D LCSs.

Some comments follow about the nature of vertical transport
structures. FSLEs are suited to the identification of hyperbolic
structures (structures that exhibit high rates of transversal stretch-
ing or compression in their vicinity). Thus, the question, then,is
whether one can expect that structures responsible for vertical
transport will also exhibit substantial (vertical) stretching. This is
not so clear in the ocean for the reasons already indicated. If one
considers the case (relevant to our work) of purely isopycnal flow,
then strong vertical stretching would be associated with a rapid
divergence of isopycnic surfaces. In the case of coastal upwelling,
for instance, the lifted isopycnic surfaces move vertically in a
coherent fashion, so one should not expect strong vertical diver-
gence of particles flowing along neighboring isopycnic surfaces.
This is merely an example of the fact that it is possible that coher-
ent vertical motions do not imply the presence of hyperbolic
coherent structures such as those the FSLE may indicate.

Another possible limitation worth noting is the velocity field
resolution and its relation to the intensity of the vertical velocity.
It is accepted that in fronts or in the periphery of eddies, vertical
velocities are significantly greater than, for instance, in the eddy
interior. These zones of enhanced vertical transport correspond
to submesoscale features that were not adequately captured in
the velocity field used in this work due to its coarse resolution be-
cause submesoscale studies usually have resolutions <10 km (the
literature on this subject is quite extensive, so we refer the reader
to Klein and Lapeyre (2009) and Lévy (2008)).
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In any case, a most important point for the LCSs we have com-
puted is that in 3D, as in 2D, LCSs act as pathways and barriers to
transport, thus providing a skeleton organizing the transport
processes.

5. Conclusions

Three-dimensional Lagrangian coherent structures were used to
study the stirring processes leading to dispersion and mixing at the
mesoscale in the Benguela ocean region. We have computed 3D fi-
nite size Lyapunov exponent fields, and LCSs were identified with
the ridges of these fields. LCSs appear as quasivertical surfaces such
that horizontal cuts of the FSLE fields provide a highly accurate vi-
sion of the 3D FSLE distribution. These quasivertical surfaces ap-
pear to be coincident with the maximal lines of the FSLE field
(see Fig. 3) such that surface FSLE maps could be indicative of
the position of 3D LCSs, as long as the vertical shear of the velocity
does not result in a significant deviation of the LCS with respect to
the vertical. Average FSLE values generally decrease with depth,
but we find a local maximum and thus enhanced stretching and
dispersion, at a depth of approximately 100 m.

We have also analyzed a prominent cyclonic eddy that was
pinched off from the upwelling front and studied its filamentation
dynamics in 3D. The Lagrangian boundaries of the eddy were
upcomposed of the intersections and tangencies of attracting and
repelling LCSs apparently emanating from two hyperbolic loca-
tions north and south of the eddy. The LCSs were observed to pro-
vide pathways and barriers organizing the processes and geometry
of transport into and out of the eddy. This pattern extends down,
up to the maximum depth for which we calculated the FSLE fields
(�600 m), but the exact shape of the boundary is difficult to deter-
mine due to the decrease in ridge strength with depth. This issue
caused some parts of the LCSs not to be extracted. The inclusion
of a variable strength parameter in the extraction process is an
important step to be included in the future.

Filamentation dynamics, and thus transportation out of the
eddy, showed time lags with increasing depth. This observation
arises from the vertical variation of the flow field. However, fila-
mentation occurred across all depths, indicating that in reality, ver-
tical sheets of material are expelled from these eddies.

Many additional studies are needed to further clarify the details
of the geometry of the LCSs, their relationships with finite-time
hyperbolic manifolds and 3D lobe dynamics, and especially their
interplay with mesoscale and submesoscale transport and mixing
processes.
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