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Director Director Doctorando

iii





Aos meus pais. A Sonia.

v





Tiene el mar su mecánica como el amor sus śımbolos.
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Preface

In the late summer of 2010, having worked as an hydrodynamic design engineer
for two years before, I found myself sitting in a dinner table at a hotel restaurant,
overlooking the Mediterranean Sea from the italian coast at Sperlonga, a small
town in the province of Latina, about halfway between Rome and Naples.

I was enjoying a five course dinner in the company of established theoretical
physicists when one of them said something like:

We are not engineers. Engineers do what they are told withouth ques-
tioning. We scientists have to be critical and question everything.

Those words remained in my mind, periodically resurfacing and asking for reflex-
ion, and as my doctoral work progressed and my contact with science increased, I
found myself thinking that the words were true. Indeed, science and engineering
are two different activities that call for different mindsets, and I have come to
agree that engineers, by necessity, do not question their established methods and
results while the scientist has an obligation to do so if the need arises and while
for the former creativity is bound by established rules and most of the times it
is looked upon with suspicion for the latter it is nothing more than a tool of the
trade that should be used as often as possible.

Now, as I write my thesis, I realize that in addition to the results presented in
this document, I have achieved also a change of mind that is necessary first step
in becoming a scientist and for this I have mainly to thank my advisors Profs.
Cristóbal López and Emı́lio Hernández–Garcia. To them, I owe a great deal and
hope they are not too much disapointed with this outcome. To them, I say with
sincerity: Thank you!
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To my family in Mallorca, Óscar, Bárbara and Marcos a warm thank you for
making me feel at home away from home.

Finally, I thank Sonia with all my heart for the patience and unwavering support
that were necessary to accompany me in this journey. No matter how I write,
words will always fail to express my deepest admiration and gratitude for her
courage, caring and tenderness that I have had the privilege of receiving. Thank
you, minha cerejinha.

xviii



Abstract

xix





Abstract

The dynamics of the ocean is characterized by multiple time and space scales
of motion driven by the energy input at the large scale ocean gyres. Through
the mechanism of baroclinic instability, a substantial part of this energy input
is transferred to mesoscale motions, characterized by time and space scales of
weeks to months and tens to hundreds of kilometers. These mesoscale motions
are ubiquitous in the global ocean and occur as Rossby waves or mesoscale eddies.
These last are masses of fluid in nonlinear rotation, typically with diameters of
the order of 100 kms and depths up to 1000 meters. They are long lived (life
spans reaching few months) and can carry differentiated water masses through
hundreds of kilometers across the open ocean.

Water masses in the ocean move principally in the horizontal, and vertical veloc-
ities are normally negligible due to the combined effect of rotation and stratifica-
tion. However, vertical motions are at the core of extremely important processes
in the ocean, specially in the vertical exchange of tracers between the stratified
interior and the well mixed superficial layers. The supply of nutrients to the
usually nutrient depleted surface waters, where photosynthesis and production
of new organic matter occurs, is one of such processes. Mesoscale motions are
an important driver of these vertical exchanges and are responsible for a large
supply of nutrients to the euphotic layer.

Mesoscale eddies are coherent, i.e., they maintain their identity for long enough
time to allow their observation. Coherent structures are common in a large vari-
ety of turbulent flows and are thought to play a major role in turbulent processes.
They have been mostly studied in the Eulerian perspective where persistent cor-
relations between flow quantities are sought in a fixed spatial domain. However,
by not following the fluid motion, Eulerian techniques are limited because they
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miss a major aspect of coherency: the transport of the same fluid mass by the
coherent motion. The Lagrangian viewpoint, on the other hand follows the fluid
as it moves and thus is a natural way of looking at coherent fluid motions.

The Lagrangian perspective of ocean dynamics has benefited greatly with the
adoption of several concepts and tools from dynamical systems theory. These
contributions deal with the fate of individual trajectories of fluid particles and
with ensembles of particles. The study of these provides a powerful insight into
the transport properties of turbulent flows and how these properties affect the
budget of physical and biogeochemical tracers such as carbon dioxide or oxygen
in the ocean. A very useful concept is the Lagrangian coherent structure that
may be defined as a region of the flow that greatly impacts the behavior of fluid
masses in its vicinity. They behave as barriers or pathways to transport in the
ocean and have an important effect in the turbulent fluxes of tracers. Most of the
applications have been to two dimensional (2d) settings but given the importance
of vertical motions in several critical processes occurring in the ocean, the study
of these structures in three dimensions (3d) is a pressing and prominent step
forward in our understanding of the ocean. A resume of the contributions of this
thesis follows:

In a canonical turbulent flow in a channel, the 3d Lagrangian coherent structures
were found to be related to eddies that are created at the near-wall portion of the
channel and are advected normally to the wall by the turbulence itself. Unlike
3d Eulerian coherent structures, Lagrangian structures function as 3d barriers
separating the inner turbulent motions from the more quiet center region of the
channel. They are advected at the mean flow speed and thus have a material
character.

In the oceanic setting of the Benguela upwelling region, the relatively small mag-
nitude of vertical velocities confines the motions to quasi 2d planes. The 3d
Lagrangian structures we observe are then quasi vertical and populate the re-
gion, signaling the complexity of ocean transport in mesoscale active regions.
They form material barriers around mesoscale eddies and the exchange of water
between the eddy interior and the exterior is controlled by the evolution of these
3d Lagrangian eddy boundaries.

Oceanic tracer budgets are strongly affected by stirring, i.e., the process of in-
tensification of the tracer gradient by advection. In the oxygen minimum zone
(OMZ) off Peru, mesoscale eddies are ubiquitous and the associated Lagrangian
structures are strongly correlated to enhanced O2 gradients in the OMZ core,
along a region between 400 and 600 m depth. Furthermore, the Lagrangian bar-
riers around the eddies allow them to carry O2 rich waters into the OMZ, in
episodic ventilation events. The combined effect of these events is to enhance
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turbulent fluxes of O2 into the OMZ, that are one order of magnitude higher
than the mean O2 fluxes.

Coastal filaments play an important role in the cross-shore exchange of water
masses. These filaments are frequently observed in upwelling regions. In the
Iberian upwelling region, the 3d Lagrangian structures defining the 3d structure
of the offshore transport through a filament, were found to be barriers that pre-
vented the fluid inside the filament to mix with outside water. These 3d structures
provided a channel that transported the flow from the coastal upwelling source
to a cyclonic eddy in open waters.

Summing up, in three different oceanic settings, 3d Lagrangian structures were
found to determine fluid transport and consequently the exchange of physical and
biogeochemical properties between distinct physical and biogeochemical regions:
mesoscale eddy interior/exterior in the Benguela upwelling regions; the Peruvian
OMZ core/exterior oxygenated regions and nearshore cold waters and offshore
warm waters in the Iberian upwelling region.
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Resumen

La dinamica del océano se caracteriza por múltiples escalas espacio-temporales
regidas por el suministro de enerǵıa en los giros océanicos de gran escala. A
través del mecanismo de inestabilidad barocĺınico una gran parte de esta en-
erǵıa es tranferida a los movimientos de mesoescala caracterizados por escalas
espacio-temporales de semanas a meses y de decenas a cientos de quilómetros.
Estos movimientos de mesoescala son comunes en el océano y ocurren como on-
das de Rossby o remolinos de mesoescala. Estos últimos constituyen fluido en
rotación nolineal, t́ıpicamente con diámetros del orden de los 100 kilómetros y
profundidades de hasta los 1000 metros. Éstos tienen un tiempo de vida exten-
so alcanzando algunos meses de existencia y pueden transportar masas de agua
diferenciadas cientos de kilómetros a través del océano.

Las masas de agua en el océano se mueven principalmente en la horizontal y las
velocidades verticales son normalmente despreciables debido al efecto combinado
de la rotación y la estratificación del océano. Sin embargo, los movimientos verti-
cales están en el núcleo de procesos océanicos muy importantes, especialmente en
el intercambio vertical de los trazadores entre el interior estratificado del océano y
las capas superficiales bien mezcladas. Uno de estos procesos es el suministro de
los nutrientes hacia las aguas superficiales, usualmente desprovistas de nutrientes,
donde la fotośıntesis y la producción del nuevo material orgánico ocurren. Los
movimientos de mesoescala son un importante conductor de estos intercambios
verticales y son los responsables de una gran aportación de nutrientes a la capa
eufótica.

Los remolinos de mesoescala son coherentes y esto significa que los mismos con-
servan su identidad durante un tiempo suficientemente largo como para permitir
su observación. Las estructuras coherentes son comunes en una gran variedad de
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flujos turbulentos y se piensa que juegan un importante papel en los procesos tur-
bulentos. Estos han sido principalment estudiados en la perspectiva Euleriana,
en la cual se buscan correlaciones persistentes entre las cantidades del flujo en
un dominio espacial fijo. Sin embargo, al no seguir el movimiento del fluido, las
técnicas Eulerianas son limitadas porque estas no consideran un aspecto mayor
de la coherencia: el transporte de la misma masa del fluido por un movimiento
coherente. El punto de vista Lagrangiano, por otra parte, sigue al fluido mien-
tras este se mueve y entonces es un medio natural de observar los movimientos
coherentes del fluido.

La perspectiva Lagrangiana de la dinámica del océano ha sido beneficiada en
gran medida con la adopción de varios conceptos y herramientas de la teoŕıa
de sistemas dinámicos. Estas contribuciones tienen que ver con las trayectorias
individuales de las part́ıculas del fluido y con conjuntos de part́ıculas. El estudio
de estas permite profundizar el estudio del transporte de las propiedades de flujos
turbulentos y conocer como estas propiedades afectan el balance de los trazadores
fiśıcos y biogeoqúımicos tales como el dióxido de carbono o el ox́ıgeno en el océano.

Un concepto muy útil es la estructura coherente Lagrangeana que puede ser defini-
da como una región del flujo que afecta en gran medida el comportamiento de las
masas de agua alrededor. Estas se comportan como barreras o avenidas para el
transporte en el océano y tienen un efecto importante en los flujos turbulentos de
los trazadores. Muchas de las aplicaciones de este concepto han sido en entornos
bidimensionales (2d) pero dada la importancia de los movimientos verticales en
procesos cŕıticos que ocurren en el océano, el estudio de estas estructuras en 3 di-
mensiones (3d) constituye un paso hacia adelante en el conocimiento del océano.
A continuación se presenta el resumen de esta tesis:

En un flujo canónico turbulento en un canal, las estructuras Lagrangianas coher-
entes en 3d estan relacionadas con los remolinos que son creados en una región
próxima de la pared del canal y son transportadas hacia el interior del canal por
la propia turbulencia. Por el contrario de las estructuras Eulerianas 3d coher-
entes, las estructuras Lagrangianas funcionan como una barrera 3d, separando los
movimientos turbulentos proximos a la pared de la región central del canal. Estas
son transportadas a la velocidad del flujo medio y por esto tienen un carácter
material.

En el entorno océanico de la región de Benguela, la magnitud relativamente pe-
quena de las velocidades verticales limita los movimientos a planos casi 2d. Las
estructuras Lagrangianas 3d que se observan son casi verticales y ocupan la región,
indicando la complejidad del transporte océanico en las regiones de mesoescala
activas. Estas forman barreras de material alrededor de los giros de mesoescala
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xxix

e intercambian agua entre el interior y el exterior del remolino controlado por la
evolución de las fronteras de estos giros Lagrangeanos 3d.

El balance océanico de los trazadores está fuertemente influenciado por la advec-
ción, o sea, el proceso de intensificación del gradiente del trazador. En la zona
de ox́ıgeno mı́nimo (OMZ) en la costa de Perú, los remolinos de mesoescala son
ub́ıcuos y están asociados a las estructuras Lagrangianas, que están fuertemente
correlacionadas con los gradientes de O2 intensificados en el núcleo de la OMZ
a lo largo de una región entre los 400 y los 600 m de profundidad. Además, las
barreras Lagrangianas alrededor de los remolinos permiten transportar el agua
rica en O2 hacia el interior de la OMZ mediante eventos de ventilación episódicos.
El efecto combinado de estos eventos produce el incremento de flujos turbulentos
de O2 hacia el interior de la OMZ que son un orden de magnitud mas grandes
que los flujos medios de O2.

Los filamentos costeros juegan un papel importante en el intercambio de masas
de agua entre la costa y el oceáno abierto. Estos filamentos son frecuentemente
observados en las regiones de afloramiento costero. En la region Ibérica de aflo-
ramiento, se ha encontrado que las estructuras Lagrangianas 3d, que definen las
estructuras 3d del transporte hacia el océano abierto a través del filamento, son
barreras que previnien que el algua dentro del filamento se mezcle con el agua
exterior. Estas estructuras 3d forman un canal que transporta el flujo desde la
fuente costera de afloramiento hacia un remolino ciclónico en aguas abiertas.

Para concluir, en tres diferentes entornos océanicos, se ha encontrado que las es-
tructuras Lagrangianas 3d determinan el transporte del fluido y por consiguiente
el intercambio de las propiedades f́ısicas y biogeoqúımicas entre el interior y el
exterior de remolinos de mesoescala en la region de afloramiento de Benguela;
entre las regiones del núcleo y el exterior oxigenado de la OMZ peruana y en-
tre las aguas fŕıas costeras y las aguas cálidas exteriores en la región Ibérica de
afloramiento costero.
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Chapter 1

Introduction

The oceans are restless. They are in a state of perpetual motion sustained by the
action of the winds at the ocean surface and by density differences in the surface
and in the ocean’s interior. These motions drive important oceanic processes
that greatly affect the state of the planet and of life in it. From the maintenance
of fishery stocks to carbon sequestration from the atmosphere, oceanic processes
play an indisputable role in the fate of planet Earth and of its living organisms.

Motions in the ocean are turbulent: three-dimensional, nonlinear, random, dif-
fusive, dissipative and continuous∗. In our study of the dynamics of the ocean
we may at times neglect one or more of these aspects for the convenience of the
analysis, but ultimately they are common to all processes, although their relative
importance can be quite different.

Three-dimensionality is an aspect that is often put aside in the analysis of oceanic
motions due to the fact that the Earth’s rotation and the stratification of the
ocean greatly limit vertical motions of water parcels, resulting in vertical ve-
locities that are several orders of magnitude smaller than the horizontal ones.
Nonetheless, as weak as they may be, vertical motions play a very important role
in the state of the oceans because they, among other things, provide mechanisms
for the sinking of ventilated surface waters to the abyss and for bringing nutri-
ents to the euphotic zone, where through photosynthesis, production of organic
matter occurs.

Randomness and diffusivity in the ocean are connected in the phenomenon of
mixing. Mixing is a combination of two distinct processes: stirring and diffusion.
Turbulence promotes energetic motions of water parcels with distinct concentra-
tions. Due to the nonlinearity of eddy motions, scalars fields are deformed by the

∗List adapted from [1]
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CHAPTER 1. INTRODUCTION

rotating and translating eddies (stirring) producing elongated features (filaments)
that can bring waters with different physical, chemical and biological signatures
into contact. The current view [2] is that the stirring process will intensify gra-
dients up to a level where molecular diffusion will overcome the intensification
process and eventually mix locally the water masses. Additionally, the eddies can
carry with them physical, chemical and biological anomalies across considerable
distances before disappearing.

The quasi-steady state circulation of the ocean implies that the energy imparted
to oceanic motions must be lost by other processes or else the circulation would
accelerate. This is accomplished through the dissipative character of phenomena
such as wave breaking or bottom drag. Another pathway for the dissipation of
energy is viscous dissipation whereby kinetic energy is transformed into internal
energy of the fluid. This requires that a continuum of time and space scales exist
in the ocean so that the energy forcing the motions at large scales is transferred
to the smallest scales of motion where it is dissipated by molecular viscosity.

1.1

Time and space scales of oceanic motions

The oceanic motions and the processes that these control occur on a large spec-
trum of time and space scales. At the seaside, one can observe surface waves
with periods in the range of one to ten seconds and wave heights from centime-
ters to several meters; tides are also ubiquitous phenomena in almost all coastal
areas with periods from several hours to one day and amplitudes in the meter
range. Currents may also be casually observed stretching for several kilometers
along the coast. The set of ocean dynamics that is readily observable through
the naked eye is only a small subset of the full range of ocean motions that are
known. On the small time/space scale end of the spectrum (see Figure 1.1),
molecular processes are present while on the opposite end of the spectrum we
have decadal oscillations and climate variations occurring over scales of 10-100
years and across 1000-10000 km. What Figure 1.1 also shows is that the spectrum
of oceanic motions is continuous both in time and space. In this thesis, we will
be concerned primarily with the medium range of ocean dynamics: the mesoscale
motions occupying the spectrum between the weekly to yearly periods and 10 km
to 500 km of spatial expression.

4



1.1. TIME AND SPACE SCALES OF OCEANIC MOTIONS

Figure 1.1: Time and space scales of oceanic processes. Adapted from
[3].
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CHAPTER 1. INTRODUCTION

Figure 1.2: Mechanical energy balance for the world’s oceans in TW
[4]. KE – Kinetic Energy. GPE – Gravitational Potential Energy.

1.2

Energetics of oceanic motions

The major source of energy to the oceans is the heat flux of solar radiation [4],
amounting to 52.4 PW (1 PW = 1015 W). Although the oceans are subject to
differential heating they are not a heat engine. Sandstrom’s theorem [5] states
that a closed circulation can be maintained in the ocean only if the heating source
is situated at a pressure level higher than the cooling source. The atmosphere is
heated from below and cools at the top, but the ocean is heated and cooled from
the surface (neglecting geothermal heat fluxes) so there should be no circulation
driven by the thermal forcing. The fact that there is a circulation raises the
important question of how? The answer is mechanical mixing that carries the
warmer fluid to a higher pressure thereby lowering the effective level of heating
of the oceans [6]. The main sources of this mechanical mixing are wind stress
and tides [7](see Figure 1.2).

Ekman flux convergence creates a vertical velocity (Ekman pumping) WE at the
base of the Ekman layer. The pumping is responsible for pushing warm water
into the subsurface ocean and thus forming the bowl shaped main thermocline
in the subtropical ocean [8, 9]. This process of lifting of isopycnal surfaces acts
as a means of conversion of kinetic energy to gravitational potential energy and
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estimates based on scaling analysis show that the potential energy available by
this process is 1000 times larger than the kinetic energy associated to the mean
wind-driven circulation [10].

Steep isopycnal surfaces along the edges of the wind driven ocean gyres are baro-
clinically unstable and the available potential energy can be converted by this
mechanism to eddy kinetic energy, that can be 100 times higher than the kinetic
energy of the mean flow [10]. Maximum energy transfer rates are found for eddies
with wavelength of 200 km and e-folding times of 80 days, placing these features
of oceanic circulation in the mesoscale range of oceanic motions. Since eddy en-
ergy is mostly dissipated by small scale processes, this mechanism provides a sink
to the potential energy of the mean flow through mesoscale motions.

1.3

Mesoscale motions in the ocean

Satellite global observations of sea-surface height (SSH) anomalies have revealed
that more than half of the SSH variability is due to features with amplitudes of
5-25 cm and diameters of 100-200 km, propagating westward at the phase speed
of nondispersive baroclinic Rossby waves [11]. While earlier studies attributed
this observations to linear Rossby waves (with modifications due to effects not
accounted for in the classical theory) [12], more recent observations [11, 13] have
determined the prevalence of coherent vortices with O(100 km) radii and mean
amplitude of 8 cm. These vortices are long lived (average lifetime of 32 weeks)
and propagate on average 550 km.

An important feature of these vortices is their nonlinearity, as measured by the
ratio U/c where U is maximum rotational speed within the vortex interior and c
the propagation speed. When U/c > 1 the vortex is nonlinear and there is trapped
fluid in its interior. These coherent nonlinear vortices are termed mesoscale ed-
dies. The eddy polarity is fairly equally distributed between cyclonic and an-
ticyclonic eddies, although there is a preference for the strongest eddies to be
anticyclonic in the Northern hemisphere and cyclonic in the Southern hemisphere
[13]. Highly nonlinear eddies follow the same preference.

SSH anomalies with length scales larger than those of mesoscale eddies propagate
westward at phase speeds higher than eddy propagation speed, which signal the
existence of features obeying linear Rossby waves dynamics. There is however a
fundamental difference in that mesoscale eddies, unlike linear Rossby waves, are
capable of transporting momentum, heat, mass and chemical species of seawater
for long distances and travelling times.
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Figure 1.3: Global map of SSH on 28 August 1996 constructed from
the merged T/P and ERS-1 data after spatially high-pass filtering with

half-power filter cutoffs of 20°of longitude by 10°of latitude [13].

The mesoscale variability is the dominant signal in the ocean circulation [14].
Areas of intense mesoscale activity are (see Figure 1.3) the western boundary
currents and the Antarctic Circumpolar Current. Open ocean currents that are
part of the large scale gyre circulation also contain mesoscale eddies. At the
eastern boundaries we observe vigorous currents and coastal upwelling systems
exhibiting high levels of mesoscale activity [14]. Although mixing and transport
in the oceans occur in a wide range of scales, mesoscale and sub-mesoscale (length
scales of 1-10 km) variability are known to play a very important role [15–20].
In the southern Benguela, for instance, cyclonic eddies shed from the Agulhas
current can transport and exchange warm waters from the Indian Ocean to the
South Atlantic [21, 22].

1.4

Vertical motions in the ocean

Vertical motions in the ocean, named upwelling or downwelling, are sustained by
velocities much smaller than the horizontal ones. These motions are neverthe-
less extremely important, as already mentioned. A first mechanism promoting
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Figure 1.4: Ekman transport divergence near the equator driven by
easterly trade winds. Top: Ekman transports; Bottom: Meridional
cross-section showing effect on the thermocline and surface temperature.

Adapted from [23].
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Figure 1.5: Coastal upwelling system due to an alongshore wind with
offshore Ekman transport (Northern Hemisphere). Adapted from [23].

such motions is Ekman divergence or convergence, whereby differential Ekman
transport caused by differences in wind stress across the ocean surface cause, by
necessity of mass conservation, the raising of subsurface waters in the case of
divergence or the sinking of surface waters in the case of Ekman convergence.
This mechanism is responsible for Equatorial upwelling (Figure 1.4) or the
aforementioned raising of density surfaces at the edges of oceanic gyres.

A related mechanism, due also to Ekman dynamics, is coastal upwelling. Here,
an alongshore wind stress, with the coast to its left (right) in the Northern (South-
ern) hemisphere will induce an offshore Ekman transport in the surface layer
(Figure 1.5). This offshore motion requires, in turn, to conserve mass, an upward
motion of coastal waters to compensate. In ideal, 2d, circumstances, this motion
is supplied by an onshore flow below the surface water layer. This supply of
sub-surface, nutrient enriched waters is responsible for making coastal upwelling
regions the most biologically active and productive marine zones in the world
[24, 25].

Associated with the upward motion of cold subsurface waters is the raising of
isopycnal surfaces, producing an outcropping of these surfaces and strong cross-
shore density gradients. This thin strip of strong density change is called the up-
welling front and it is a major component of the dynamics of coastal upwelling.
Due to this density gradient, an alongshore current is expected, by the ther-
mal wind relation [26]. In fact, a complex pattern of equatorward currents and
poleward counter-currents are usually found in these upwelling regions whose in-
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stability mechanisms are a major source of mesoscale variability in the form of
mesoscale eddies, fronts and submesoscale filaments [27–30]. The mesoscale eddy
activity in these upwelling areas seems to suppress production due to the induced
offshore export of nutrients [24, 31, 32]. Studies of the vertical structure of such
eddies in the Benguela region (e. g. [33] and [34]) have shown that they can
extend to one thousand meters deep waters.

Mesoscale motions are themselves relevant in the promotion of vertical motions
in the ocean. Many physical and biogeochemical tracers exhibit a common struc-
ture with high vertical gradients found just below the mixed layer. After sufficient
time a tracer balance will be achieved whereby the vertical tracer concentration
is maintained by the source/sink at the upper ocean (biological production and
air-sea exchanges) in equilibrium with the upper ocean/interior vertical tracer
exchange and tracer supply in the ocean interior. During winter, the deepening
of the mixed layer favors vertical convection and exchange but in the remaining
of the year stratification prevents the surface/ocean interior exchange through
mixed layer vertical velocities. Therefore, only vertical motions below the mixed
layer can be responsible for the vertical fluxes of tracers. This vertical velocity is
due almost entirely to mesoscale motions [30, 35, 36]. Indeed, mesoscale eddies
have been shown to drive important biogeochemical processes in the ocean such
as the vertical flux of nutrients into the euphotic zone [37–39].

One of the processes by which mesoscale eddies contribute to this vertical flux
is the eddy pumping mechanism [40–43], where uplifting of isopycnals occurs at
the center of cyclonic and mode-water eddies, bringing thermocline waters into
the surface layer (anticyclones have an opposite effect). Another process that
enhances vertical exchanges in mesoscale eddies is the eddy/wind interaction [44]
whereby Ekman divergence inside the eddy produces persistent vertical velocities.

Another effect of eddy activity seems to be the intensification of mesoscale and
sub-mesoscale variability due to the filamentation process where strong tracer gra-
dients are created by the stretching of tracers in the shear- and strain-dominated
regions in between eddy cores [45]. In this view, important vertical motions occur
at the eddy periphery or in between eddies [16]. The intense straining motions
may create large horizontal density gradient, that will force a vertical velocity
response according to the Omega equation [46]. High resolution surveys of a den-
sity front found vertical velocities up to 40 m/day at 200 m of depth [47]. At eddy
boundaries, that may be thought of as circular fronts, nonlinear Ekman pumping
was proposed as a mechanism for enhanced vertical velocities [15] and for stim-
ulating the injection of nutrients at the submesoscale in oligotrophic regions of
the ocean [39].
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1.5

Motivation and outline of the thesis

In the last decades new developments in the description and modeling of oceanic
mixing and transport from a Lagrangian viewpoint have emerged [48, 49]. These
Lagrangian approaches have become more and more frequent due to the increased
availability of detailed knowledge of the velocity field from Lagrangian drifters,
satellite measurements and computer models.

In particular, the very relevant concept of Lagrangian coherent structure (LCS)
[50, 51] is becoming crucial for the analysis of transport in flows. LCSs are
structures that separate regions of the flow with different dynamical behavior.
They give a general geometric view of the dynamics, acting as a (time-dependent)
roadmap for the flow. They are templates serving as proxies to, for instance,
barriers and avenues to transport or eddy boundaries [51–56].

In the ocean, where it is widely recognized that filamentary structures, eddies,
and in general oceanic meso- and submeso-scale structures have a great influence
on marine ecosystems the identification of LCSs and the study of their role in
the transport of biogeochemical tracers has primarily been restricted to two-
dimensional (2d) layers [24, 32, 57, 58]. There are two concurrent reasons for
this: a) because of stratification and rotation, vertical motions in the ocean
are usually very small when compared to horizontal displacements; b) synoptic
measurements (e.g. from satellites) of relevant quantities are restricted to the
surface.

There are, however, areas in the ocean where vertical motions are fundamental, as
discussed in the previous section. Thus, the identification of the three-dimensional
LCSs in these areas is crucial and their relevance begins to be unveiled in atmo-
spheric contexts [59–61] and in a turbulent channel flow in [62]. A kinematic
ABC flow was studied in [63] and a few previous results for mesoscale eddies in
3d were obtained in [64, 65], by applying the methodology of lobe dynamics and
the turnstile mechanism.

Given the success in the application of the concept of Lagrangian structures in
2d oceanic settings and the importance of 3d mesoscale dynamics as a source
of vertical motions in the ocean, the objective of this thesis is to study the 3d
characteristics of Lagrangian structures and their influence on oceanic processes.
To accomplish this, we compute 3d fields of finite size Lyapunov exponent (FSLE)
for different oceanic settings and use the concept of ridge of the scalar FSLE
field to locate Lagrangian coherent structures. Due to the scarcity of measured
3d velocity fields in the ocean, we were limited to the use of numerical data
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from simulations of the ocean. Moreover, we focused on situations where vertical
motions play an important role: mesoscale phenomena in coastal upwelling areas.

This thesis is organized as follows:

In chapter 2 we introduce general notions and concepts of dynamical systems
theory and of turbulent fluids that form the theoretical basis of this work. Espe-
cially, concepts such as stable and unstable manifolds, Lyapunov exponents and
Lagrangian coherent structures are introduced.

In chapter 3 we study the nature of Lagrangian structures in a canonical turbulent
flow denominated channel (Poiseuille) flow by computing 3d FSLE fields and
extracting ridges of the FSLE fields. We compare their characteristics with the
known Eulerian results for coherent structures in channel flows and highlight their
effect in fluid transport in the turbulent channel.

Chapter 4 describes the extraction of 3d Lagrangian structures in an oceanic
setting: the Benguela upwelling system and, especially, we study the structure
of a 3d mesoscale eddy in terms of Lagrangian structures and their effect on
transport.

In chapter 5 we study the effects of stirring of a biogeochemical tracer (dissolved
O2) by Lagrangian coherent structures in the Eastern Tropical South Pacific
Oxygen Minimum Zone and how this stirring action changes with depth.

Chapter 6 is dedicated to the structure and evolution of a coastal cold water
filament in the Iberian upwelling system. We extract 3d Lagrangian structures
to identify the filament boundaries and analyze its transport properties.

In chapter 7 we draw general conclusions.
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Chapter 2

General notions

This chapter collects concepts and notions used during the development of this
work. They are mostly related to turbulent flows and dynamical systems theory.
Physical oceanography topics were relegated to the different chapters that follow
this one, introduced as necessary to the discussion. No claim is made of strict
coherence of the material presented in this chapter or to any logic sequence in
its presentation and personal preference weighted considerably in the choice of
subjects.

The first topic that should be discussed is the difference between the Eulerian
and Lagrangian perspective of fluid dynamics, because it is at the heart of this
work and the base for all the others mentioned here.

Imagine that the reader is tasked with counting how many vehicles cross a bridge
in a given day of the week; he/she can do it in two ways: in the first way by
standing at the end of the bridge and simply count how many cars cross the road
at that location; in the second way, by standing in the beginning of the bridge,
stoping the next car that intends to cross it, gettting in the car and riding in it
until the end of the bridge; the reader will then exit the car and count it as one
more car who crossed the bridge and fastly make it’s way back to the beginning
of the bridge to ride the next one. The first way is the Eulerian way because the
reader observes what occurs in a particular position and time, while the second
way is the Lagrangian way because he/she follows the object of interest and
observes what happens along its path.

In fluid dynamics terms, in the Lagrangian perspective you follow fluid elements
along their trajectories, while in the Eulerian perspective you observe the changes
to flow variables at a fixed location in time and space.
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In the Lagrangian description of fluid flows, the particle motion is described by
a system of ordinary differential equations (ODE’s). The nature of the flow,
from laminar to strongly turbulent, is determined by the right-hand side (RHS)
of these ODE’s, the dynamics. The Lagrangian view provides a natural link
between fluid dynamics and dynamical systems due to the fact that in the La-
grangian description, the phase-space explored by the fluid particles is just the
n-dimensional configuration space in which the fluid lives. Seen as a dynamical
system, the fluid flow properties can be studied using concepts from dynamical
systems theory.

Finally, a word of caution: consistency in notation throughout this chapter was
impossible to achieve. The main reason for this is the different sources for the
material presented here - mainly review papers and books - and the particular
notation used therein. The other reason is that certain types of notations are
better suited than others to illustrate certain concepts, especially when the topic
under discussion relies heavily on tensor objects, so while boldface is used to
denote vector and tensor objects, some expressions make use of index notation
for clarity. Scalar quantities are denoted in normal face.

2.1

Fixed points and stability

A dynamical system of arbitrary dimension changes with time according to

ẋ = f (x(t), t) , (2.1)

where t is the independent variable, x the state of the system and f a generally
smooth function of position and time representing the forcing of the system. As
time evolves the solution x(t) will take values in a sequence that can be represented
as a curve in the domain of the system called the phase-space.

If the forcing f is independent of time, the system is said to be autonomous. In
this case, there are a special class of solutions that do not change, i.e., they do
not trace a curve in phase-space and occupy the same position for all t. For this
reason they are called fixed points x∗ and we have dx∗/dt = 0. The configuration of
phase-space in the vicinity of these fixed points turns out to be highly dependent
on the nature of the fixed points. To see this, consider a small perturbation
y = x − x∗ to x∗ whose dynamics can be expressed as:

ẏ =
d
dt

(x − x∗) =
d
dt

(y + x∗) = f (y + x∗). (2.2)
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Eu

Es

x*

a(t)

b(t)

Figure 2.1: Stable Es and unstable Eu invariant subspaces of a fixed
point x∗ in 2d phase-space. Trajectories a(t) and b(t) approach the fixed

point along Es and leave along Eu at exponential rates.

For the small perturbation y and neglecting higher order terms we may write

f (y + x∗) = f (x∗) + y
d f
dx

∣∣∣∣∣
x=x∗

, (2.3)

and since f (x∗) = 0 we have that

ẏ = y
d f
dx

∣∣∣∣∣
x=x∗

, (2.4)

where the derivative is computed at x = x∗, say D f ∗. Then, the perturbation
will evolve as y(t) = y(0) exp(D f ∗t), exponentially growing or decaying if D f ∗ is
positive or negative, respectively. The fixed point will then be named stable if it
attracts nearby trajectories (D f ∗ < 0) and unstable if it repels nearby trajectories
(D f ∗ > 0).

In two or more dimensions, D f ∗ is a constant n × n matrix with n eigenvalues
e1, . . . , en and eigenvectors v1, . . . ,vn. The phase space can be represented as the
direct sum of three subspaces Es, Eu and Ec, where Es spans the eigenvectors
whose eigenvalues have negative real part, Eu spans those eigenvectors whose
eigenvalues have positive real part and Ec spans the eigenvectors whose eigenval-
ues are purely imaginary [66]. Since solutions with initial conditions contained in
Es, Eu or Ec will remain there for all time, these subspaces are invariant subspaces
under the linearized flow. Their continuations to the nonlinear regime are the so-
called invariant manifolds. Solutions starting in Es or its manifold approach y = 0
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asymptotically as t→ +∞ so this subspace is called the stable subspace or mani-
fold, while solutions starting in Eu or its manifold approach y = 0 asymptotically
as t→ −∞ so the Eu subspace is called the unstable subspace or manifold.

2.2

Conservation laws for fluid motions

Fluid motions, how complex they may be, are governed by simple principles, the
most important being the conservation principle: in the absence of sources or
sinks of a quantity Q, the total amount of Q does not change. This principle is
usually expressed in the form of balance equations such as:

∂Q
∂t

+ ∇· (uQ) = SQ(x, t) , (2.5)

where the first term is the change of Q in a fixed position x (the local rate of
change), the second term is the amount of Q flowing through x due to the velocity
of the fluid u and SQ is the rate at which Q is produced or consumed at x at time
t. Thus, fluid motions can be defined by considering the conservation principle
applied to the fluid’s mass, momentum and internal energy. For incompressible
fluids (∇ · u = 0) with negligible changes in density, the following conservation
equations are obtained

∂ρ

∂t
+ u· ∇ρ = 0 , (2.6)

∂u
∂t

+ u· ∇u = −
1
ρ
∇p + ν∇2u + F , (2.7)

DE
Dt

=
1
ρ

k∇2T +
Υ

ρ
. (2.8)

In all these conservation laws, ρ is the fluid density and the left-hand side (LHS)
represents the rate of change along the trajectory of a fluid particle, the material
derivative D()/Dt = ∂()/∂t + u· ∇(). The first conservation equation expresses the
conservation of unitary mass and states that local changes in density are due
solely to fluid of different density being transported by the velocity field. The
second conservation equation states that the rate of change of momentum per
unitary mass along a particle trajectory is, in accordance with Newton’s 2nd
law, due to the sum of applied forces to the fluid particle: normal surface forces
due to differential normal pressure ∇p; tangential surface forces due to tangential
stresses ν∇2u and volume forces F. The coefficient ν is the kinematic viscosity
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(the ratio between the fluid viscosity µ and density) ν = µ/ρ and represents
the diffusion of momentum due to molecular motions across the fluid element’s
surface. The energy equation states that the change in the fluid element’s internal
energy, E, along a trajectory is due to heat conduction across its boundaries
(1st term of the RHS) and through viscous dissipation (2nd term of the RHS).
Viscous dissipation always acts to increase the internal energy of the fluid [67].
This set of equations is termed the Navier-Stokes equations (NSE) and they are
the cornerstone of modern fluid dynamical analysis. They are also extremely
complex and not thoroughly understood: at the moment there is no rigorous
global existence and uniqueness statement on the NSE ∗.

2.3

Turbulent flows

In spite of the difficulties presented by the NSE, they provide an accurate de-
scription of fluid flows that we observe in Nature. Given the tremendous variety
of these latter, ranging from orderly and predictable to erratic and impossible to
forecast, we can expect that these equations hold this vast richness of behaviors
in their inner workings. To the simple flows we call laminar, while the more
complex are named turbulent. There is a non-dimensional parameter Re —the
Reynolds number —that determines the complexity of the flow. It is defined as
the ratio between the typical magnitudes of the inertial effects and the viscous
effects of the flow:

Re =
UL

ν
. (2.9)

When non-dimensionalized by characteristic scales of velocity U and length L,
the momentum equation reads:

∂û
∂t̂

+ û· ∇û = −∇p̂ +
1

Re
∇

2û + F̂ , (2.10)

with primed variables made non-dimensional. The pipe flow experiments of
Reynolds showed that when Re is small, the flow was laminar while higher Re
resulted in turbulent motions in the pipe. The non-dimensional momentum equa-
tion (2.10) shows that turbulence is a phenomenon dominated by inertia since as
Re→∞, the viscous term vanishes.

∗There is a very non-negligible sum of $ 1,000,000 waiting for the first man
or woman that can produced such statement. Check the Millennium Prize at
http://www.claymath.org/millenium-problems/navier-stokes-equation/
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Turbulent flows exhibit strong irregularities and are highly sensitive to initial
disturbances. This character makes it difficult to obtain even approximate solu-
tions to the NSE at high Re. Moreover, the spectrum of time and space scales
occupied by flow phenomena increases with Re and so computational require-
ments are much more demanding for turbulent flows. Due to these obstacles,
turbulent flows have been studied extensively through statistical analysis where
characteristic values of the solutions and typical departures thereof are sought,
instead of a complete description of all flow features. The process of extracting
statistical information is called Reynolds averaging and it considers flow variables,
say velocity u, to be composed of a mean value u and a fluctuating component
u′ = u − u with u′ = 0. Through this approach, an equation for the mean flow
can be obtained (in tensor index notation for clarity):

ρu j
∂ui

∂x j
= ρ f i +

∂
∂x j

(−pδi j + µSi j − ρu′i u
′

j) , (2.11)

where Si j = ( ∂ui
∂x j

+
∂u j

∂xi
). Except for the last term in the RHS of (2.11), the mean

momentum equation contains the mean forcings by normal pressure, tangential
stresses and mean body forces. The term −ρu′i u

′

j is an additional forcing term that

originates in the fluctuating part of the flow and represents the mean transport of
turbulent momentum by the turbulence itself [68]. Additional insight to the effect
of turbulent fluctuations on the mean, large-scale flow can be gained by looking
at the equation for the mean kinetic energy of the flow, neglecting viscous terms:

ρu j
∂
∂x j

(
1
2

uiui) = −
∂
∂x j

(pu j + ρu′i u
′

jui) + ρu′i u
′

jSi j . (2.12)

Terms inside brackets in the RHS represent pressure work and redistribution
of mean kinetic energy by turbulence. The last term of the RHS represents
deformation work due to turbulent fluctuations and is almost always negative
[68] so its effect is to remove kinetic energy from the mean flow.

Where does this energy go? Richardson [69] proposed the mechanism of the
energy cascade whereby the flow is forced (energy injected in) at the large scales
(mean flow scales), producing large eddies that break up into smaller ones that
in turn break up into even smaller ones and so on so forth until an eddy size
is reached where viscosity dominates and the kinetic energy of the turbulence is
converted into heat by viscous dissipation.

This energy cascade involves a range of wavenumbers k = 2π/l where l is the
typical size of an eddy of a given scale. The lower bound to this range is given by
the largest possible eddy size, determined by the size of the system L, so we’ll have
kmin = 2π/L. The energy cascade proceeds through k-space until it is arrested by
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Energy injection 
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Figure 2.2: Energy cascade in 3d turbulence. E(k) is the turbulent
kinetic energy spectrum as function of wavenumber k. The large scale
mean flow has characteristic length scale L and η is the length scale at

which viscous dissipation of turbulent fluctuations occurs.

viscous dissipation. The physical parameters we can use to determine this scale
of dissipation are the kinematic viscosity ν and the dissipation rate ε = −dE′/dt,
where E′ is the total kinetic energy of the turbulent fluctuations. A characteristic
size of eddies at the dissipative end of the cascade is

η = (ν3/ε) , (2.13)

and the maximum possible wavenumber is kmax = 2π/η. A velocity scale can also
be formed as v = (νε)1/4. At this scale, the Reynolds number is Re = vη/ν = 1
and we conclude that viscous effects dominate rather than inertial ones. Note
that kmin is determined by the nature of the system under consideration while
kmax is determined by the properties ν and ε, so the ratio kmax/kmin can be made
as large as desired and infinitely large for infinite Re.

Energy is determined by the lowest wavenumber and the dissipation rate by the
highest wavenumber [70]. In between these two limits, the inertial range can
be made as large as we want simply by increasing Re. In this inertial range,
eddies of different size coexist in physical space. When two eddies interact the
effects can be decomposed into (a) convection of one eddie by the other and (b)
shearing of one eddie by the other. The first of these modes of interaction is not
dynamically significant [71] while the second results in distortion of the eddies
and transfer of energy to smaller disturbances. If the eddies differ considerably
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in size we may say that the second effect is very small and only the first mode,
dynamically irrelevant, is present. We can therefore argue that eddy interaction
is local in wavenumber space [71]. The combination of locality and averaging
over several eddy turn-over times leads us to conclude that the energy cascade
becomes independent of the actual mechanism that created turbulence and we
can invoke an universality in the high wavenumber range of the energy spectrum
of 3d turbulence [71].

Kolmogorov [72, 73] put forth these ideas in two hypotheses: that at sufficiently
high wave numbers the energy spectrum depends only on k, ν and ε so that we
should have:

E(k) = v2η f (kη) = ν5/4ε1/4 f (kη) , (2.14)

where f is a function of universal form; and that E(k) should become independent
of the viscosity as Re is increased towards infinity which amounts to having

f (kη) = C(kη)−5/3 = Cν−5/4ε5/12k−5/3 , (2.15)

with C constant. Then we will have

E(k) = Cε2/3k−5/3 , (2.16)

in the limit Re→ ∞. In the case of large but finite Re, we can assume the exis-
tence of a range where kmin � k � kmax in which E(k) is independent of viscosity
and has a k−5/3 slope. Although Kolmogorov’s theory is based on dimensional
arguments, it has been proven to be in good agreement with experiments for the
5/3 energy spectrum.

The actual physical mechanism by which energy is transferred to smaller scales
is a topic of great importance. Vortex stretching is widely considered to be
such mechanism [71]. Turbulent flows exhibit strong vorticity fluctuations. A
conservation equation for vorticity ω can be obtained by taking the curl of the
momentum equation (2.7):

Dω
Dt

= ω· ∇u + ν∇2ω . (2.17)

The last term in the RHS of (2.17) represents molecular diffusion of vorticity just
as in (2.11) there is a term for molecular diffusion of momentum (ν∇2u). The
first term of the RHS of (2.17) has however no counterpart in the momentum
balance equation and represents the interaction of vorticity with the velocity
gradients in physical space. In the inertial range, where scales of motion are
much larger than 1/kmax, viscosity effects may be neglected and we can consider
that vorticity moves with the fluid [67]. As the velocity gradients will act, in
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average, to stretch fluid line elements [71], vortex lines will also stretch on average.
Then, a stretched vortex line, by conservation of angular momentum, will increase
its angular velocity as it’s width is reduced and the energy associated with the
reduced length scale will increase. Therefore we observe a transfer of energy from
large to small scales in turbulence, whenever the vortex stretching mechanism is
present.

2.3.1 Two-dimensional turbulence

Turbulence in two-dimensional (2d) flows is another manifestation of irregular
fluid motion. Rigorously, it is never realized in nature or the laboratory where
there is always a certain degree of 3-dimensionality. Although irrealistic in the
strict sense, aspects of 2d turbulence manifest themselves in the physical world.
Of special interest to this work, we cite the case of nonlinear, chaotic, large-scale
motions in the oceans [74, 75].

In 2d, vorticity is normal to the plane of the flow, hence the vortex stretching
term disappears for the conservation equation for vorticity (2.17) and in the
inviscid limit ν→ 0, vorticity is conserved along fluid particle trajectories. In 2d
homogeneous or periodic systems the total energy changes as [76]:

DE
Dt

= −νZ , (2.18)

where Z = 〈ω2
〉 is the enstrophy. Since vorticity does not diverge in the inviscid

limit there is no viscous dissipation of energy, contrary to the case in 3d turbu-
lence. Thus a direct energy cascade of energy cannot exist in 2d turbulence. On
the other hand, enstrophy changes as

DZ
Dt

= −ν〈(∇ω)2
〉 , (2.19)

and in the inviscid limit there can still be dissipation of Z at the small scales since
(∇ω)2 will be amplified by distortion due to the velocity field [76] that generates
thin filaments of vorticity, enhancing ∇ω. So, in 2d, a direct cascade of enstrophy
from the large scales to the small scales should be expected [77].

For a E(k) ∼ k−α, we return to the Kolmogorov scaling (2.16). For the direct
enstrophy cascade range, the enstrophy flux is estimated to be Σ(k) ∼ λkk3E(k).
A constant enstrophy flux implies

E(k) = C′εZk−3 , (2.20)

where εZ is the dissipation of enstrophy by viscosity and C′ is an dimensionless
constant [78].
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k

E(k)  k-5/3  
inverse energy cascade 

Energy injection 
at 1/le

Energy dissipation
 at 1/L

Inertial range 

 k-3  
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Figure 2.3: Energy and enstrophy cascade in 2d turbulence. E(k) is the
turbulent kinetic energy spectrum as function of wavenumber k. Energy
is supplied at k = 1/le and dissipated at the large scale mean flow has

k = 1/L by friction.

2.4

Coherent structures

The established view of turbulence as a purely random phenomenon implied that
solely through statistical methods could it be understood. Visual observations
however, brought forward the concept of coherent structures that, it seemed,
gave turbulence a certain degree of deterministic organization. In this novel
perspective of turbulent phenomena, coherent structures appear as motions with
apparent order in the sense of a correlated and concentrated dynamic quality
[79]. This correlation in time and space can also be expressed as existing for long
enough time to allow its observation [80]. As for the dynamical quality, vorticity
ω has been used most extensively [81, 82], but any fundamental flow variable
that exhibits this kind of correlation may be used [83].

From visual observations, criteria to define a coherent structure were derived [79]:

(a) Coherent structures exhibit several scales, the largest comparable to the
characteristic dimension of the system.

(b) Are flow-specific and indirectly related to boundary conditions.
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(c) Exhibit recurrent patterns with a life span at least the average passage time
of the structure.

(d) Possess a high degree of organization in their structure and dynamics.

(e) Appear quasi-periodically at best and typically are stochastically intermit-
tent.

(f) Show strong similarities with corresponding structures of the (previous)
laminar-turbulent transition.

The initial formation mechanism is thought to be a flow instability and coherent
structures may be viewed initially as instability modes of the basic flow [79].
Vorticity is the dynamical variable more frequently involved in the identification
of coherent structures, so it is unsurprising to find that the taxonomy of coherent
structures is mainly populated by vortex type structures, as those in Figure 2.4.
In simple, canonical flows a reduced set of elementary coherent structures would
be composed of [79]: line vortex, ring vortex, hairpin vortex and helical vortex.

It is well known that coherent structures determine mixing, heat transfer and
other fluid phenomena in turbulent flows. Estimates of the fraction of total
turbulent energy attributable to coherent structures varies between 10 and 25
percent depending on the type of flow [79].

2.4.1 Coherent structures in 2d turbulence

In an extended range of conditions, the flow structure of 2d turbulence has its
vorticity concentrated in a small fraction of the spatial domain of the system.
These structures of correlated vorticity have typical long lifetimes when compared
with the characteristic eddy turnover times, persisting under advection by the
mean flow [85]. These coherent vortices contain most of the energy of the system
and their appearance is connected to the inverse energy cascade from small to
large scales [78].

Two-dimensional turbulence is then characterized by a background of random,
weakly energetic fluctuations, disturbed by strong coherent vortices and thin
vorticity filaments (Figure 2.5).
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Figure 2.4: Coherent structures in an 3d turbulent boundary layer (from
[84]).
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Figure 2.5: Vorticity field from a numerical simulation of freely decaying
two-dimensional turbulence (from [78]). Bright and dark tones indicate

negative and positive vorticity respectively.
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2.5

Dispersion in turbulent flows

In a statistically homogeneous, stationary turbulent flow, the probability of find-
ing a particle at x1 = x0 + X at time t1 = t0 + T can be described by the single
particle displacement probability density function (pdf) Q(X, t). The absolute
dispersion is defined as the second moment of Q:

X2(t) =

∫
X2Q(X, t)dX . (2.21)

The time derivative of X2(t) is the absolute diffusivity

κa(t) =
1
2

d
dt

X2(t) = X(t)u(t) =

∫ t

0
u(X, t)u(X, τ)dτ , (2.22)

which is the integral of the velocity autocorrelation [49]. Another form of the

absolute diffusivity is κa(t) = (u(t) − u)2
∫ t

0 R(τ)dτ, which allows us to write the
absolute dispersion as:

X2(t) = 2(u(t) − u)2

∫ t

0
(t − τ)R(τ)dτ , (2.23)

where R(τ) is the normalized velocity autocorrelation. At initial times R(τ) ∼ 1
and the absolute dispersion grows quadratically in time as

lim
t→0

X2(t) = (u(t) − u)2t2 . (2.24)

In the limit of large times we have

lim
t→∞

X2(t) = 2((u(t) − u)2(t
∫
∞

0
R(τ)dτ −

∫
∞

0
τR(τ)dτ) , (2.25)

and the absolute dispersion grows linearly in time.

If we consider instead the average separation between particle pairs in turbulence,
we face the problem of relative dispersion. Analogous to absolute dispersion,
relative dispersion is measured as:

Y2(t) =

∫
Y2P(Y, t)dY , (2.26)

where P(Y, t) is the separation probability of two particles separated by Y at time
t. The relative diffusivity is again the time derivative of the dispersion:

κr(t) =
1
2

d
dt

Y2(t) = Y(t)δu(t) , (2.27)
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where δu = dY(t)/dt is the pair separation velocity. For initial times the pair
velocity difference is constant if the particles are very close and the diffusivity
increases linearly in time [49]. For large times, particle velocities will be uncor-
related and relative dispersion will grow at twice the absolute diffusivity.

For intermediate times, pair velocities are correlated and we’ll have, for an Eule-
rian turbulence energy spectrum E(k) ∝ k−α [86]:

δu(Y)2 ∝ Yα−1, 1 < α < 3 , (2.28)

and the diffusivity will scale as κr ∝ Y(α+1)/2. In the inertial range of 2d and 3d
turbulence we have α = 5/3 and we find that

Y2(t) ∝ εt3, κr ∝ ε
1/3Y4/3 , (2.29)

where ε is the energy dissipation rate. The cubic dispersion law was predicted
by Richardson [87] and is named Richardson dispersion. In 2d turbulence there
is an additional range, the direct enstrophy cascade with α = 3, we find that, on
dimensional grounds [88]

Y2(t) ∝ exp(Aς1/3t), κr ∝ Y2 , (2.30)

where ς is the enstrophy dissipation rate. In 2d turbulence, one will find expo-
nential separation in the direct enstrophy cascade and Richardson dispersion in
the inverse energy cascade.

2.6

Chaotic advection

The motion of the fluid changes the arrangement of the fluid elements and hence
of the properties that these elements carry. To this process we call advection.
Considering a scalar property q in incompressible fluid, the conservation principle
reads (see section 2.2):

∂q
∂t

+ u· ∇q = Sq(x, t) . (2.31)

The LHS of (2.31) is just the material derivative of q and so the advection process
can be described as Dq/Dt = Sq. During fluid motion particles carry an amount
of the scalar q that changes according to the agencies that produce or consume
q, Sq(x, t). The particular changes of q during time evolution of the flow will
therefore depend on the trajectory x(t) of the fluid elements carrying q that will
visit different regions of the fluid domain.
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In 2d stationary flow, the velocity u can be represented by a scalar streamfunction
ψ such that

u = (u, v) = (
∂ψ

∂y
,−
∂ψ

∂x
) , (2.32)

and we recognize the form of one-degree of freedom Hamiltonian dynamics where
the streamfunction ψ plays the role of the Hamiltonian. In these type of flows,
streamlines are lines of constant ψ. The rate of change of ψ along a particle
trajectory is its material derivative

Dψ
Dt

= u· ∇ψ =
∂ψ

∂y
∂ψ

∂x
−
∂ψ

∂x
∂ψ

∂y
= 0 . (2.33)

If ψ does not change along particle trajectories, then particles move along the
lines of constant ψ, i.e. they move along streamlines, which are smooth. In time
dependent flows, ψ is no longer conserved along trajectories and fluid particles
are no longer restricted to motion along streamlines. In this regime, the KAM
theorem assures the existence of regular islands where particle trajectories are
smooth. These regular islands are surrounded by chaotic regions where particle
trajectories are aperiodic and chaotic. The regular islands are surrounded by
invariant surfaces that form barriers to the mixing between chaotic regions. As
the time dependence strengthens, these regular islands become scarce and even-
tually the chaotic regions grow until occupying most of the fluid domain and fluid
trajectories fill the entire domain [89].

In 3d flows, the streamfunction does not exist and particles are not forced to flow
along streamlines even in time-independent flows. Thus chaotic particle motion
can exist in the simplest of laminar flows.

2.7

Mixing

A more complete expression for the time evolution of a scalar q in fluid flow is
obtained by adding the diffusive flux of q due to molecular motions to (2.31). The
diffusive flux is usually modeled by Fick’s law where diffusion is proportional to
the scalar gradient ∇q. We assume, for simplicity, that the diffusion coefficient K
is constant. We then obtain (in index notation):

∂q
∂t

+ u j
∂q
∂x j

= K
∂2q
∂x j∂x j

+ Sq . (2.34)
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During the evolution of the flow, q will be advected by the velocity field and
its content in a fluid element will change due to local diffusive flux and by the
possibly various sources and sinks contained in the Sq term. When K = 0 and
Sq = 0 we obtain Dq/Dt = 0 and the scalar q is conserved along fluid particle
trajectories. Either way (conserved or not conserved during time evolution), the
observation of the field q in physical space will reveal patterns of high or low q in
the fluid domain that themselves evolve with time. The shape and complexity of
these regions is without a doubt related to the processes described by (2.34).

Connected to the shape of these patterns in the flow is the time evolution of the
gradient of q. To obtain a evolution equation for qi = ∂q/∂xi, we differentiate
(2.34) with respect to x j to obtain (neglecting the source term):

∂qi

∂t
+ u j

∂qi

∂x j
+ q j

∂u j

∂xi
= K

∂2qi

∂x j∂x j
. (2.35)

The gradient norm evolution is obtained by multiplying (2.35) by qi and, after
collecting similar terms, we have [64]:

D
Dt

q2 +
∂u j

∂xi
qiq j = K(

∂2q2

∂xi∂xi
−
∂qi

∂x j

∂qi

∂x j
) , (2.36)

where q2 = qiqi/2.

The evolution of a tracer advected and diffused by a flow was studied by Eckart
[90] who proposed a three phased evolution for q2: in the initial phase, the dy-
namics is dominated by the advection of the scalar gradient norm, represented
by the first term of the LHS of (2.36). In this phase the scalar field is gently
distorted by the fluid’s motions. In the second phase, called the ”stirring” phase
by Eckart, the dominant term is ∂u j/∂xiqiqi and the scalar gradient is strained
and elongated by the velocity gradient field. To see this more clearly we neglect
diffusion in this second phase and recall that since q is conserved along trajec-
tories, these are isolines of q and we can define ∇q = dq/dsn, where dq is the
difference in q between two neighboring isolines, ds the distance between those
isolines and n is a unit vector in the direction normal to the isoline of q. The
gradient norm is % = dq/ds and since dq is constant the change in the gradient
norm obeys

1
%

D%
Dt

= −
1
ds

D
Dt

(ds) , (2.37)

where we stress that this relations hold along a fluid particle trajectory. Integra-
tion of (2.37) yields:

%(t) = C2ds(t)−1 = C2eλ1t , (2.38)
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q
q+dq

|ds|

∇q=dq/ds

x(t)

x(t)+ds

Figure 2.6: Gradient of a conserved scalar q. The scalar isolines q and
q + dq are also material lines. As ds grows or decays the norm of the
scalar gradient decays or grows. Fast growth of the gradient norm is
found when particles diverge exponentially in the direction normal to the

gradient orientation.

where C2 is a constant. We recall that for long enough time (but not too long
as to allow diffusive effects to become dominant) the growth of infinitesimal line
segments is exponential with rate equal to λ1 (see section 2.8).

The third and final phase of the evolution of the scalar gradient norm is achieved
when the scalar gradient has been intensified by the stretching action of the
velocity gradients up to a point when the diffusive terms in (2.36) take over as
dominant. At this stage, diffusion starts to smooth the scalar field and mixing
occurs. A estimate of the width of q filaments when diffusion starts to become
dominant, the arrest scale, is wa ∝ (K/λ1)1/2 [91].
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2.8

Stretching and alignment in turbulent flows

In three-dimensional (3d) space x = (x, y, z), the trajectories of the fluid particles
are governed by the following dynamics:

ẋ = u(x, y, z, t) ,
ẏ = v(x, y, z, t) ,
ż = w(x, y, z, t) ,

(2.39)

where u = (u, v,w) is the velocity field. Sufficient regularity of u ensures that
solutions to (2.39) exist and are unique. Another requirement on u, specific
to the work here presented, is that the flow should be volume preserving, i.e,
incompressible:

∇·u = 0 . (2.40)

Solutions to (2.39) are described by the flow map φT
t : x(t) 7→ x(t + T), a mapping

that has as input the initial location of a particle at time t and whose output is
the position of the particle at time t + T.

The behavior of nearby trajectories is determined by the tangent map, the lin-
earization of the flow about the trajectory of interest. In fluid dynamics, the
tangent map is the velocity gradient tensor of the flow A:

Ai j =
∂ui

∂x j
, (2.41)

The importance of A in fluid dynamics is related to its symmetrical and anti-
symmetrical parts:

Ai j =
1
2

Si j +
1
2

Ωi j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi
) +

1
2

(
∂ui

∂x j
−
∂u j

∂xi
) . (2.42)

The rate-of-strain tensor S has three real eigenvalues si that in incompressible
flow must add to zero. When ordered by value, s1 > 0, s3 6 0 and s2 can have
either sign. The anti-symmetric part, the vorticity tensor Ω, has two complex
conjugate, imaginary eigenvalues and one zero eigenvalue whose eigenvector is
half the vorticity vector ωk = −1/2εi jkΩi j. In an Eulerian frame, motions in the
vicinity of a point are composed by elongation and rotation as determined by the
rate-of-strain and vorticity tensors.

In dynamical systems studies, the symmetrical and anti-symmetrical components
of A are rarely considered separately and, essentially, all anti-symmetrical infor-
mation is ignored [92]. Instead, attention is drawn to the evolution of small
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perturbations δx to x, that, using (2.39), after Taylor expansion about x and
neglecting higher order terms, are governed by

δ̇x = A· δx , (2.43)

where δx and A are evaluated along x(t). The linear, first order ODE (2.43) has
as fundamental matrix solution the tangent flow map [93], say from 0 to t:

M(t, 0; x0) = ∇x0φ
t
0(x0) , (2.44)

such that δx(t) = M(t, 0; x0)δx(0). The norm of the perturbation will grow as ∗

‖δx(t)‖2 = ‖M(t, 0; x0)δx(0)‖2 = δx(0)MT(t, 0; x0)M(t, 0; x0)δx(0) . (2.45)

We can define a mean rate of growth of the perturbation as:

λ∞ = lim
t→∞

1
t

ln
‖δx(t)‖
‖δx(0)‖

. (2.46)

This is the largest Lyapunov exponent and if it is positive, it implies exponential
growth of perturbations hence great sensitivity to initial conditions. Oseledec’s
theorem [94] proves that for all initial conditions, except a set of measure zero,
(2.46) exists.

The tensor MTM is symmetric and positive-definite, hence it eigenvectors form
an orthonormal set and its eigenvalues are real and positive. In n-dimensional
space, there are n pairs of eigenvalues/vectors σi/ξi and if δx0 is initially aligned
with ξi, δx0 = δ0ξi, then it will grow as δx(t) = Mδ0ξi and the length at time t
will be:

‖Mδ0ξi‖ = (δ0ξ
T
i MTMδ0ξi)1/2 = δ0(σi)1/2 . (2.47)

Returning to the mean growth rate and taking the limit δ0 → 0 so that the
linearization is valid for arbitrary long time we have

λi = lim
t→∞

lim
δ0→0

1
t

ln(
‖Mδ0ξi‖

δ0
) = lim

t→∞
lim
δ0→0

1
2t

ln σi . (2.48)

We can therefore define a ordered set of non-increasing Lyapunov exponents λi,
that in general will depend, on the initial condition x0, except for ergodic systems
where it is the same for all initial conditions except in a set of measure zero [94].
The λi can be positive or negative, but for incompressible flows, they must sum
to zero. In 3d, if there are non-zero λi then λ1 > 0, λ3 < 0 and λ2 can be either
—a familiar result already encountered for the eigenvalues of the rate-of-strain

∗MTM is usually refered to as the Cauchy-Green tensor
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tensor —whereas in 2d the λi must be λ1 = −λ2. This last result implies that
there will be a direction along which there is elongation ξ1 and contraction along
ξ2 in order to preserve mass (area in this case).

When δx0 is not directed along any of the ξi, it can nevertheless be expressed
by a sum of projections in to each of the eigendirections as δx0 =

∑
i αiξi and its

evolution will be given by

δx(t) =
∑

i

αiMξi . (2.49)

The vectors Mξi will grow in time as eλit so after long enough time (2.49) will be
dominated by the largest positive Lyapunov exponent λ1 and, independently of
the initial orientation of δx(t), the perturbation will be aligned with ξ1 and will
grow exponentially as eλ1t and we then may write λ∞ ∼ λ1.

2.9

Non-asymptotic Lyapunov exponents

The Lyapunov exponents defined above characterize the asymptotic behavior
of infinitesimally separated particles in a fluid system. However most of our
observations occur on finite time intervals and at finite spatial scales. Thus the
use of asymptotically defined measures is problematic. In addition, for ergodic
systems, the leading Lyapunov exponent is constant almost everywhere, fact that
does not provide a local view of stretching and alignment in turbulent flows. To
overcome these shortcomings, non-asymptotic variants of the classic Lyapunov
exponent λ∞ were introduced: the finite-time and finite-size Lyapunov exponents.

2.9.1 The finite-time Lyapunov exponent (FTLE)

The finite-time Lyapunov exponent (FTLE) measures the stretching rate of in-
finitesimal material line segments in a finite time interval [t, t + ∆t] under the
evolution of the flow given by the flow map φt+∆t

t (x). By removing the asymptotic
time limit in (2.48) we obtain the expression for the FTLE:

λ(∆t; x, t) = lim
δ0→0

1
2∆t

ln σ1 , (2.50)

where σ1 is the maximum eigenvalue of the MMT tensor, computed for the interval
[t, t + ∆t]. The FTLE depends on the initial condition so when computed for a
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domain D we obtain a map of FTLE showing regions with different rates of
stretching during evolution of the flow between t and t + ∆t.

The FTLE is distributed around a mean value that is none other than the asymp-
totic Lyapunov exponent and as the integration time increases the FTLE distri-
bution approaches this maximum [89]. Note that in the calculation of (2.50) ∆t
should be large enough to allow the alignment with the principal eigenvector of
the finite-time Cauchy-Green tensor to occur.

2.9.2 The finite-size Lyapunov exponent (FSLE)

The FTLE considers infinitesimal perturbations so it still has a asymptotic char-
acter. In order to study non-asymptotic dispersion processes such as stretching
at finite scales and bounded domains, the finite size Lyapunov Exponent (FSLE)
was introduced [52, 95, 96]. It is defined as:

λ(d0, d f ; x, t) =
1
τ

log
d f

d0
, (2.51)

where τ is the time it takes for the separation between two particles, initially d0,
to reach a value d f . In addition to the dependence on the values of d0 and d f ,
the FSLE depends also on the initial position of the particles and on the time of
deployment, as was the case with the FTLE.

An important aspect of the FSLE is its scale dependence. The growth of non-
infinitesimal perturbations δ is governed by nonlinearity and the growth rate is
scale-dependent [95, 97]. Thus for a fixed amplification ratio r = d f /d0 > 1 and
averaging over many particle pairs we find the following regimes for λ(d0, r) [98]:

1. In the limit d0 → 0, the FSLE tends to λ∞.

2. In the case of standard diffusion with linear growth of dispersion, λ(d0, r) ∼
d−2

0 .

3. When advection is relevant, correlations persist for long time and λ(d0, r) ∼
d−α0 , with α > −2.

4. When λ(d0, r) = constant over a range of d0 we observe exponential separa-
tion between trajectories.

The FSLE is a more convenient measure for the case of bounded flows because
characteristic spatial scales are more direct to identify than temporal ones. The
FSLE has been shown to be robust with respect to noisy or poorly resolved
velocity fields [99].
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2.10

Lagrangian coherent structures (LCS)

In turbulent flows, coherent structures tend to emerge. These are dynamic regions
where a flow quantity exhibits a high degree of correlation. In 3d turbulence,
coherent structures usually take the form of vortical structures of various shapes.
In 2d turbulence, coherent structures are identified with axisymmetric vortices
embedded in a background of weak turbulence. In between these vortices, thin
filaments of concentrated vorticity exist.

The Eulerian approach to coherent structures consists in the partition of the
flow field in regions with coherently distinct distributions of vorticity or other
dynamical quantities, e.g., regions where rotation dominates over strain and re-
gions where the opposite occurs. While allowing for systematic utilization, the
structures so educed do not reveal much of the underlying fluid motion, since
these criteria are not conserved along the trajectories of the fluid elements.

The Lagrangian view, on the other hand, looks directly at the behavior of the
trajectories and thus is able to provide a more accurate view of fluid motions.
This is an important point because, as seen in the earlier in this chapter, fluid
motions induced stirring in scalar fields that will eventually lead to enhanced
mixing of these quantities, a process that supports important phenomena in the
natural as in the technical world.

2.10.1 Lagrangian view of coherent structures

Visualizations of densely populated patches of passive particles in 2d turbulence
leads to the observation of distinct behaviors: continued elongation and thinning
of initially thick blobs of particles; coherent rotation of particle patches or simple,
correlated, translational motions of particles. From observations of this kind of
coherent motions, distinct Lagrangian dynamical regions can be educed:

1. Local stretching in the flow appears to happen across coherent structure
boundaries through divergence of nearby particles.

2. Thinning and folding appears to happen along coherent structure bound-
aries, as particles follow the curved boundaries

The first behavior is related to instability of particle trajectories due to which
divergence occurs while the second resembles the behavior of particle trajectories
converging towards an unstable manifold of the flow. For this reason coherent
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A) Time forward evolution B) Time backward evolution

Figure 2.7: Time evolution of a fluid patch (gray) in the vicinity of
attracting (blue) and repelling (green) coherent structures. A) Forward
in time. B) Backward in time. Arrows indicate forward in time direction

of trajectories on the coherent structure.

structures, in a Lagrangian view, can be seen as material lines that create smaller
tracer scales through stability or instability [100].

Since stability in forward time is equivalent to instability in backward time, the
coherent structures in the Lagrangian view can be classified as unstable in the
two time directions (Figure 2.7): the forward time unstable, in forward time will
attract nearby fluid that will thin and fold along them; the backward time unsta-
ble will, in backward time, also attract nearby fluid that will thin and fold along
them. So a backward time integration will reveal attracting coherent structures
while a forward time integration will reveal repelling coherent structures.

Analytic criteria for the identification of such structures were derived for flows
in 2d [100] and 3d [63]. These criteria were based firstly on the computation of
the time interval during which a material surface would be stable or unstable,
coherent structures being those that maximized this measure (the hyperbolicity
time approach). The criteria involved the computation of the invariants of the
velocity gradient along particle trajectories [100]. Another alternative criteria put
forth [63] was the identification of coherent structures with the local extrema of
the FTLE field. The rationale for this criteria is that if coherent structures attract
or repel particles for the longest in the flow, then, the net growth of a disturbance
normal to them should be the largest during the time interval of interest. Since
the FTLE (λ1 for a finite-time interval, see section 2.8) measures the growth
rate of disturbances then maximal disturbance growth should appear under the
maxima of the FTLE field. An immediate advantage of the FTLE approach over
the hyperbolicity time method was that the former could be computed directly
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from particle trajectories, without the need to compute the velocity gradient
tensor.

Relationships of Lagrangian coherent structures (LCS) with FTLEs were then
established [101, 102]. These relationships state that LCS can be identified with
the ridges (generalized maxima) of the FTLE field. Furthermore they state that
the flux through the LCS is inversely proportional to the strength of the ridge
and to the integration time of the FTLE field calculation. This flux is shown
to be small and the LCS extracted as the ridges of FTLE fields are considered
to be almost material-like surfaces. This identification has become widely used
in the field although it should be mentioned that there are other more precise
definitions of LCS [56, 103, 104], that consider LCS to be exact material surfaces
admitting zero flux across them.

In this work, we used instead finite-size Lyapunov exponents (FSLEs), which are
a measure of the separation rate of fluid particles between two given distance
thresholds (see section 2.9.2) to identify LCS. Although a rigorous connection
between the FSLE and LCSs has not been established, previous works [54, 55,
105–107] have shown that the ridges of the FSLE behave in a similar fashion
as the ridges of the FTLE field. Following these works we assume that LCSs
can be computed as ridges of FSLEs, and that they are transported by the flow
as almost material surfaces/lines, with negligible flux of particles through them.
Observations presented in this thesis are consistent with those assumptions.

The identification of LCS calculated from FTLE or FSLE fields in 2d flows is
straightforward since they practically coincide with (finite-time) stable and un-
stable manifolds of relevant hyperbolic structures in the flow [50, 51, 105] (but
see [103, 108]). The structure of these manifolds in 3d is generally much more
complex than in 2d [63, 109], and they can be locally either lines or surfaces.

2.10.2 LCS in 3d as ridges of FSLE fields

Differently than 2d, where LCS can be visually identified as the maxima of the
FSLE field, in 3d they are hidden within the volume data and one needs to
explicitly compute and extract them, using the definition of LCSs as the ridges of
the FSLE field. A ridge L is a co-dimension 1 orientable, differentiable manifold
(which means that for a 3d domain D, ridges are surfaces) satisfying the following
conditions [102]:

1. The field λ attains a local extremum at L.

2. The direction perpendicular to the ridge is the direction of fastest descent
of λ at L.
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The method used to extract the ridges from the scalar field λ(x0, t) is from [110].
It uses an earlier [111] definition of ridge in the context of image analysis, as a
generalized local maxima of scalar fields. For a scalar field f : Rn

→ R with
gradient g = ∇ f and Hessian H, a d -dimensional height ridge is given by the
conditions

∀d < i ≤ n, gTei = 0 and αi < 0, (2.52)

where αi, i ∈ {1, 2, . . . ,n}, are the eigenvalues of H, ordered such that α1 ≥ . . . ≥ αn,
and ei is the eigenvector of H associated with αi. For n = 3, Eq. (2.52) becomes

gTe3 = 0 and α3 < 0. (2.53)

In other words, in R3 the e1, e2 eigenvectors point locally along the ridge and
the e3 eigenvector is orthogonal to it, so the ridge maximizes the scalar field in
the normal direction to it and in this direction the field is more convex than
in any other direction, since the eigenvector associated with the most negative
eigenvalue is oriented along the direction of maximum negative curvature of the
scalar field.

The extraction process progresses by calculating the points where the ridge condi-
tions are verified and the ridge strength |α3| is higher than a predefined threshold
s so that ridge points whose value of α3 is lower (in absolute value) than s are
discarded from the extraction process. Since the ridges are constructed by tri-
angulations of the set of extracted ridge points, the strength threshold greatly
determines the size and shape of the extracted ridge, by filtering out regions of
the ridge that have low strength. The reader is referred to [110] for details about
the ridge extraction method. The height ridge definition has been used to extract
LCS from FTLE fields in several works (see, among others, [112]).

Since the λ value of a point on the ridge and the ridge strength α3 are only re-
lated through the expressions (2.52) and (2.53), the relationship between the two
quantities is not direct, which makes difficult to choose the appropriate strength
threshold s. A too small value of s will result in the extraction of very small LCSs
that appear to have little influence on the dynamics, while a large value will result
in only a partial rendering of the larger and more significant LCS, limiting the
possibility of observing their real impact on the flow.

The ridges extracted from the backward FSLE map approximate the attracting
LCSs, and the ridges extracted from the forward FSLE map approximate the
repelling LCSs. The attracting ones are the more interesting from a physical point
of view [54, 55], since particles (or any passive scalar driven by the flow) typically
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approach them and spread along them, so that they are good candidates to be
identified with the typical filamentary structures observed in tracer advection.

2.10.3 Calculation of 3d FSLE fields

In principle, to compute FSLE in 3d, the method of [54] can be extended to
include the third dimension, by computing the time it takes for particles initially
separated by d0 = [(∆x0)2 + (∆y0)2 + (∆z0)2]1/2 to reach a final distance of d f =

[(∆x f )2 + (∆y f )2 + (∆z f )2]1/2.

Concerning turbulent flows where we can implement a fully 3d computation of
the FSLE, we proceed as follows. A grid of initial locations x0 = (xi, y j, zk) is set
up at time t, fixing the spatial resolution of the FSLE field (figure 2.8). Particles
are released from each grid point and their three-dimensional trajectories are
calculated. The distances of each neighbor particle with respect to the central
one (initially d0) is monitored until one of the separations reaches a value d f .

(x,y,z)

(x,y,z-Δz0)

(x,y,z+Δz0)

(x-Δx0,y,z)

(x+Δx0,y,z)

(x,y-Δy0,z)

(x,y+Δy0,z)

Figure 2.8: Computational setup for the calculation of the FSLE field
in 3d. The FSLE at the location of the central particle (◦) is a measure
of the time it takes for any of the neighbor particles (•) to diverge from

the central particle by a distance greater than δ f .

In the ocean however, as indicated in [113], vertical displacements are much
smaller than horizontal. Therefore, the displacement in the z direction does not
contribute significantly to the calculation of d f in the ocean, which prompt us to
implement a quasi-3d computation of FSLEs: we use the full 3d velocity field for
particle advection but particles are initialized in 2d horizontal ocean layers and
the contribution ∆z f is not considered when computing d f (see more details in
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[113]). In any case, since we allow the full 3d trajectories of particles, we take
into account the vertical dynamics of the oceanic flows.

We obtain two different types of FSLE maps by integrating the three-dimensional
particle trajectories backward and forward in time: the attracting LCSs (for the
backward), and the repelling LCSs (forward) . We obtain in this way FSLE fields
with a spatial resolution given by d0. When a particle leaves the velocity field
domain or reaches a no-slip boundary, the FSLE value at its initial position and
initial time is set to zero. If the interparticle separation remains smaller than d f
past a maximum integration time ∆t, then the FSLE for that location is also set
to zero.

2.11

Numerical modeling of turbulent flows

Turbulent flows have been a subject of intense research aiming at the development
of simulation models. The main complication of the simulation is the range of
scales of flow phenomena that need to be considered. Thus, the simulation of a
turbulent flow requires the accurate representation of time and space scales that
span several orders of magnitude and the higher the Reynolds number, the wider
is this range. Given the constraints in computational resources, several classes of
simulation methods have been devised in order to balance the need for accurate
simulation of certain scales in the problem with the available resources. Thus,
numerical models may be classed as [114]:

(a) Reynolds-averaged Navier Stokes (RANS) models: In this class of
models only the mean flow is explicitly calculated using the mean flow equa-
tions such as (2.11). Turbulent fluctuations are considered through the
estimation of the Reynolds stress term by a variety of methods. In the most
widespread of these, the Reynolds stress term is equated to a ”diffusive term”
proportional to the mean rate of strain and a ”turbulent” viscosity.

(b) Large-eddy simulation (LES) models: In this class of models, the larger
scales of turbulent motions are explicitly modeled, while the smaller scales
(the subgrid scales) are treated on an average sense just as in the RANS
type of models.

(c) Direct numerical simulation (DNS) models: This last class is com-
prised of models that treat explicitly the full spectrum of turbulent motions
in a flow. In this models, the only approximation is in the discretization of
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space and time and they are the most accurate simulation models and also
the most expensive.

The turbulent flow studied in chapter 3 was simulated with a DNS model using
spectral discretization in a periodic domain. More details of the model can be
found in section 3.2.

The oceanic velocity data used in this work (chapters 4, 5 and 6) was obtained
from simulations of the regional ocean circulation model ROMS [115]. The ROMS
model belongs to the group of models that solve the RANS equations in the LES
fashion, using the hydrostatic and Boussinesq conditions. The first of these states
that vertical changes in pressure are due only to changes in the weight of the water
column and the second that density differences are small and negligible except
when combined with gravity (e.g. in the calculation of weight). The ROMS
model solves the primitive equations (RANS) in 3d curvilinear, terrain following
grid with a free-surface [116] and additional equations for transported tracers.
The Reynolds stress and turbulent fluxes at non resolved scales are parametrized
in the RANS fashion with eddy viscosity and diffusivity. Further details on
the ROMS model are given in the relevant chapters and a description of some
numerical procedures for manipulating the outputs of ROMS data are described
in the appendix A.
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Chapter 3

Coherent structures in a
turbulent channel flow

This chapter is based on

João H Bettencourt, Cristóbal López, and Emilio Hernández-Garćıa. Characterization

of coherent structures in three-dimensional turbulent flows using the finite-size lyapunov

exponent. Journal of Physics A: Mathematical and Theoretical, 46(25):254022, 2013.

In this chapter we use the finite size Lyapunov Exponent (FSLE) to characterize
Lagrangian coherent structures in a three-dimensional (3d) turbulent channel
flow. Traditionally, fluid flows have been observed and studied in the Eulerian
perspective where a fixed position is observed for a definite interval of time. The
other perspective, the Lagrangian, follows the motion of the fluid and thus is
better suited to study aspects of fluid flow such as material transport or the
deformation of fluid material in a given state of motion. Lagrangian coherent
structures act as the organizers of transport in fluid flows and are crucial to
understand their stirring and mixing properties. Generalized maxima (ridges) of
the FSLE fields are used to locate these coherent structures. Autocorrelations of
the FSLE field show that the structure is substantially different from the near wall
to the mid-channel region and relates well to the more widely studied Eulerian
coherent structure of the turbulent channel flow. The ridges of the FSLE field
have complex shapes due to the 3d character of the turbulent fluctuations.
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3.1

Introduction

Turbulent flow occurs in the natural environmental and in technological appli-
cations with such frequency that it could be considered the ”natural” state of
fluid flows to be found around us. Traditionally, fluid flows have been observed
and studied in the Eulerian perspective where a fixed position is observed for
a definite interval of time. The other perspective, the Lagrangian, follows the
motion of the fluid and thus is better suited to study aspects of fluid flow such as
material transport or the deformation of fluid material in a given state of motion.

Turbulent channel flow is a turbulent flow between two stationary, parallel walls
separated by a distance 2δ. It has been studied extensively due to its geometrical
simplicity and its wall-bounded nature, which makes it a suitable platform to
study phenomena appearing in more complex turbulent wall-bounded flows of
great technological interest.

The coordinates of the flow are: x for the streamwise direction, y for the cross-
stream coordinate that separates the two plates, and z for the spanwise direction.
The flow is maintained by a downstream pressure gradient dP0

dx acting against the
wall shear stress. The laminar flow solution U0 is a cross-stream parabolic profile
given by

U0(y) =
y2
− δ2

2µ
dP0

dx
, (3.1)

where µ is the dynamic viscosity. Following the Reynolds averaging method
[1], the turbulent flow velocity u is decomposed in a mean U = (U(y), 0, 0) and
a fluctuating component u′ = (u′, v′,w′). The mean turbulent velocity profile
U(y) differs from the laminar one, U0(y), by a lower centerline velocity U(0) and
increased near-wall velocity giving it a flatter shape. Due to the increase in mean
velocity near the wall, the shear stress near the wall is higher for the turbulent
case. The total shear stress τ appearing in the averaged Reynolds equations
gets contributions from both the viscous stress and the Reynolds stress −u′v′
associated to the velocity fluctuations:

τ
ρ

= ν
dU
dy
− u′v′ . (3.2)

The symmetries of the domain and the Reynolds equations imply that τ depends
only on the cross-stream coordinate y, and the dependence is linear, so that it
can be written as

τ(y)
ρ

= u2
τ

(
1 −

y
δ

)
. (3.3)
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The shear velocity uτ gives the velocity scale of the turbulent velocity fluctuations.
The formula [1]:

ρu2
τ = µ

dU(y)
dy

∣∣∣∣∣
y=0

, (3.4)

allows to compute uτ from measurements of the mean velocity profile from the
simulations. A length scale can be formed by combining uτ with ν: the wall scale
δ+ = ν/uτ. The wall distance can now be expressed as y+ = y/δ+, and the same
normalization could be done for the rest of coordinates. The viscous Reynolds
number Reτ = δ/δ+ is simply the ratio between the two relevant length scales.

The existence of coherent structures in turbulent wall-bounded flows has been
known for several decades from investigations on intermittency in the interface
between turbulent and potential flow regions, on the large eddy motions in the
outer regions of the boundary layer, and on coherent features in the near-wall
region ([83] and references therein). Since then, through experimental and nu-
merical investigations, a picture of the organization of these coherent structures
in the turbulent boundary layer has emerged, which has become rather complete
from the Eulerian point of view [83, 117]. Our approach is a contribution to the
Lagrangian exploration of these coherent structures, as in [62] and [118].

The longitudinal velocity field in the inner region of the channel (the viscous sub-
layer adjacent to the wall and the intermediate buffer region) is organized into
alternating streamwise streaks of high and low speed fluid. Turbulence produc-
tion occurs mainly in the buffer region in association with intermittent and violent
outward ejections of low-speed fluid and inrushes of high-speed fluid towards the
wall. The outer region is characterized by the existence of three-dimensional
δ-scale bulges that form on the turbulent/potential flows interface. Irrotational
valleys appear at the edges of the bulges, entraining high-speed fluid into the tur-
bulent inner region. A central element in the structure of the turbulent boundary
layer is the hairpin vortex, mainly because it is a structure with the capability
of transporting mass and momentum across the mean velocity gradient and be-
cause it provides a paradigm with which to explain several observations of wall
turbulence [80, 83].

3.2

Data

The data used to extract the LCS come from a direct numerical simulation (DNS)
of turbulent channel flow at a viscous Reynolds number Reτ = 180. The setup
of the simulation follows that of [119] and is summarized in table 3.1. The
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Re chan. center 4000 Reτ nominal 180 Reτ actual 172
Lx 4π δ 1 Lz

4
3π

L+
x 2166.61 δ+ 0.0058 L+

z 722.20
nx 128 ny 129 nz 128
∆x+ 17.06 ∆y+ 0.005 ∆z+ 5.6867

Table 3.1: Simulation parameters. Quantities with + refer to wall units.
Lx, 2δ and Lz are the domain sizes in the x, y and z directions. ∆x+, ∆y+

and ∆z+ are the respective spatial resolutions (given at the first point
above the wall for the y case), and nx, ny and nz the corresponding number
of grid points. Re = Uδ/ν is the Reynolds number based on the channel
center mean speed, whereas Reτ = uτδ/ν is the viscous Reynolds number.
The nominal value is an input to the computer code, and the actual value

comes by using Eq. (3.4) for the computed mean profile U(y).

simulations were conducted using the CFD solver Channelflow.org [120]. The
Channelflow.org code solves the incompressible Navier-Stokes equations in a
rectangular box with dimensions Lx × 2δ× Lz, with periodic boundary conditions
in the x (so that fluid leaving the computational domain in the direction of the
mean flow at x = Lx reenters it at x = 0) and in the spanwise z direction. No-slip
conditions are imposed on y = ±δ. The unsteady velocity field u is represented
as a combination of Fourier modes in the x and z directions and of Chebyshev
polynomials in the wall-normal direction. The pressure gradient necessary to
balance the friction at the walls was chosen as to maintain a constant bulk velocity
of 2

3 U0. Time stepping is a 3rd-order Semi-implicit Backward Differentiation.
Note that in our computations δ+ = 1/Reτ = 0.0058 so that in wall units 0 < y+ <
344.

The flow was integrated from an initial base-flow with parabolic profile and a small
disturbance that evolved into a fully developed turbulent flow. The total integra-

tion time was ∆t = 600 time units that in dimensionless form t+ = t
(
u2
τ/ν

)
gives

∆t+ = 83.54. After an initial transient of about 200 time units the simulations
reached a statistically stationary state from which statistics was accumulated.

The mean quantities and first order statistics of our simulations where compared
to those of [119] and the agreement is quite good. The profile of the mean velocity
in wall units is shown in figure 3.1. The profile for the Reynolds stress −u′v′ shows
that the maximum (in absolute value) is located at approximately y+ = 30, in
the outer limit of the buffer layer (see figure 3.2).
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Figure 3.1: Mean velocity profile U(y)/uτ . Solid line: our simulations;
squares: [119]; dashed line: logarithmic profile U(y)/uτ = 2.5 log(y+) + 5.5.
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Figure 3.2: Reynolds stress u′v′ profile at Reτ = 180. Solid line: our
simulations; squares: [119] (given up to the channel centerline).
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Calculation d0 d f /d0 ∆t dt
Complete channel 0.024 20 20 0.05
LCS subdomain 0.003 67 10 0.05

Table 3.2: FSLE calculation parameters. dt is the integration time step
and ∆t the maximum integration time.

3.3

Results

The LCS were extracted from the turbulent velocity field data described in the
previous section. A calculation of FSLE field in the entire turbulent channel was
conducted in order to understand the statistical properties of the FSLE field in
this class of turbulent flows. A subsequent calculation in a subdomain of the
channel was used to extract the LCS in that subdomain for a sequence of time
instants. The setup of both calculations is shown in table 3.2.

The 3d FSLE field.

The 3d backward FSLE field for the entire channel was calculated at a single
time instant in the statistically steady state. The initial and final distances d0
and d f were chosen as a balance between encompassing the widest possible range
of scales of motion (measured by the ratio d f /d0), and adequate resolution and
computational cost. The initial distance is of the order of 4δ+ and the final
distance of the order of 0.5δ – a typical scale of coherent structures found in the
turbulent channel flow – so that the ratio of scales, d f /d0, is approximately Reτ/8.

Figure 3.3 shows an instantaneous configuration of the FSLE values in a stream-
wise wall-normal plane. The maxima of the FSLE appear to be located close
to the walls with occasional sloping structures extending to the midchannel re-
gion. The channel center is devoid of high FSLE values but coherent patches
of low FSLE values can still be observed. These structures are not distributed
uniformly along the length of the channel but appear to be organized in packets.
This organization bears resemblance to the widely accepted picture of organized
structures in wall turbulence where the outer region is dominated by packets of
sloping hairpin vortices and the inner region by near wall vortices (the hairpin
vortices legs) and shear layers [80, 83].
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Figure 3.3: Instantaneous FSLE field at t = 420 shown on a
streamwise/wall-normal plane in the turbulent channel. Walls are at the
top and bottom of the figure. Mean velocity is in the streamwise direction

from left to right.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

20

40

60

80

100

120

140

< λ >

y+

Figure 3.4: FSLE profile averaged over (x, z), as a function of the cross-
stream normalized coordinate y+. Only half of the channel is shown since

the profile is quasi-symmetric about the channel centerline.
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A cross-stream FSLE profile is obtained by averaging the 3d field over the periodic
directions x and z. It is shown in figure 3.4. The profile is symmetric about the
channel centerline and shows a maximum at approximately y+ = 4, inside the
viscous sublayer (this location corresponds to the first grid point off the wall).

Because of the periodic boundary conditions in the x and z directions the av-
erage profiles along these directions are rather unstructured, and we resort to
two-point correlation functions to quantify the statistical structure properties.
For each plane parallel to the walls, i.e. for each value of y+, we compute the
fluctuations of the FSLE values around the average in that plane: Λ(x+, y+, z+) ≡
λ(x+, y+, z+) −

〈
λ(x+, y+, z+)

〉
x+,z+ . From this quantity we define the streamwise

Rxx(y+; x̄+) correlation function as:

Rxx(y+; x̄+) =

〈
Λ(x+, y+, z+)Λ(x+ + x̄+, y+, z+)

〉
x+,z+〈

Λ(x+, y+, z+)2〉
x+,z+

, (3.5)

and the spanwise Rzz(y+; z̄+) correlation function

Rzz(y+; z̄+) =

〈
Λ(x+, y+, z+)Λ(x+, y+, z+ + z̄+)

〉
x+,z+〈

Λ(x+, y+, z+)2〉
x+,z+

. (3.6)

In the above equations the averages are over the periodic directions x+ and z+.
The correlations are shown in Figs. 3.5 and 3.6 at different distances from the
walls: one smaller, one larger, and one approximately coincident with the location
of the maximum Reynolds stress. These functions reveal sizes and organization
of the different structures in the Lagrangian FSLE field, to be contrasted with
Eulerian correlation functions in the same system [121].

Close to the wall (y+ = 4 and y+ = 12.2), viscous effects dominate. The corre-
lations show that the FSLE field is organized in streamwise structures of length
scale approximately l+ ∼ 500 wall units. In the transverse direction z+ the oscil-
lations seen in Rzz for y+ = 4 indicate an approximately periodic arrangement of
the streaks [62], with a spacing ∼ 50−100 wall units. This pattern of organization
is similar to what is seen in Eulerian descriptions [83, 121].

At planes further away from the wall (y+ = 28.4 and y+ = 122.1 in Figs. 3.5
and 3.6), correlation functions in both directions become shorter ranged, and
periodic features are progressively lost. This corresponds to a rather disordered
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Figure 3.5: Streamwise correlation function Rxx(y+; x̄+) as a function
of the streamwise separation x̄+, at four distances from the lower wall:
Continuous line: y+ = 4; dashed line y+ = 12.2; dash-dot line y+ = 28.4;

dotted line: y+ = 122.1.
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Figure 3.6: Spanwise correlation function Rzz(y+; z̄+) as a function of the
spanwise separation z̄+, at four distances from the lower wall: Continuous
line: y+ = 4; dashed line y+ = 12.2; dash-dot line y+ = 28.4; dotted line:

y+ = 122.1.
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Figure 3.7: Instantaneous FSLE field in plane parallel to the wall at
y+ = 4. The time is the same as in figure 3.3

distribution of structures, each with a typical size related to the width of the
correlation functions, i.e. of the order of 50 wall units, as also seen in figure 3.3.

An instantaneous near-wall FSLE field is shown in figure 3.7, where the high FSLE
values appear in slender and elongated structures with length and width corre-
sponding to the streamwise and spanwise correlation lengths discussed above. It
is unclear whether the correlation lengths result from a single streamwise struc-
ture or from the overlapping of shorter structures (a feature of the near wall
coherent structure arrangement [82]).

These are the highest FSLE values that are to be found in the channel as the plot
in figure 3.4 shows. The mechanism for the formation of these structures could
be the lifting of low speed fluid close to the wall by the action of counter rotating
vortex pairs located above the viscous sublayer (see figure 3.8). This mechanism
is widely known in the Eulerian view of coherent structures of turbulent wall
bounded flows (ejections or bursting, [80]).
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Figure 3.8: Mechanism for the rapid separation of fluid from the near
wall viscous sublayer. The mean flow is into the page.

The near wall fluid is advected away from the wall by the action of these vortices.
This mechanism could be responsible for very fast particle separation in particle
pairs where one particle is lifted away and the other remains in the low speed
zone close to the wall. We note that the particle separation would increase not
only by the wall normal distance between particles but also because the ejected
particle would move to a region with higher streamwise velocity. Shear layers
near the wall is another possible way to produce large particle dispersion. These
mechanisms would explain the fact that the maximum average FSLE is located
so close to the wall and not on the buffer region where turbulence production is
larger. To conclude, we note that these high FSLE regions near the wall seem to
extend to the midchannel region in an inclined fashion. It is not clear whether
this pattern signals the existence of a hairpin vortex with streamwise legs and
inclined head or if there are two separate structures: the streamwise vortices and
the hairpin arch or head [83]. Also, we note that the interpretation of the high
FSLE regions near the wall do not require the existence of a counter rotation pair
of vortices, as only one vortex would suffice.

To illustrate these mechanisms, a map of the FSLE field in a spanwise/wall normal
plane for the LCS domain calculation is shown in figure 3.9, together with a set
of passive particles initially located in a rectangular region close to the wall and
released some instants before the time of the FSLE map. In order to focus just
on the above mentioned ejection mechanism involving only the vertical motion of
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Figure 3.9: FSLE map in a (z, y) plane located at x = 6.0 (x+ = 1034).
The time of the map is t = 413.8. together with a set of particles initially
located in rectangular region z+

∈ [345, 380] and y+
∈ [3.4, 13.8]. The

particles were released at t = 409. Particle trajectories were integrated
using only the spanwise and wall normal velocity components. The mean

flow is moving out of the page.

the particles, the trajectory integration was made in a 2d fashion by setting the
longitudinal component of the particles velocity to zero.

The particles seem to have been lifted from wall by a streamwise vortex located
to the left of the particle plume, with center at (z+, y+) ∼ (340, 30). We note that
the structures are moving with the mean flow and that the continuous motion of
the particles away from the wall is due to the passage of a streamwise structure
that imparts this sustained motion to the particles for long enough time. To
compare the Eulerian and Lagrangian coherent structures, figure 3.10 shows the
turbulent velocity components in the same plane at the nearest time available in
the turbulent dataset. The signature of the streamwise vortex discussed above
can be seen in the Eulerian map at the same location. It is embedded in a patch
of negative streamwise velocity fluctuation u. To the right, close to z+ = 380, a
vertical shear layer appears dividing the negative and positive patches of u. The
Lagrangian signature of this vertical shear layer is not very strong and appears
in figure 3.9 as quasi-vertical line of moderate FSLE extending from y+ = 25
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Figure 3.10: Instantaneous turbulent velocity components at x = 6.0
(x+ = 1034) and t = 413.75. Velocity vectors correspond to the inplane
velocity components (w, v), together with contours of streamwise turbu-
lent velocity u. Dashed contours are negative u (into the paper) and

continuous contours are positive u (from the paper).

to y+ = 60. On the lower right of the map, there is a set of high FSLE lines
almost parallel to wall, signaling the existence of high particle dispersion. In
the Eulerian map (figure 3.10), it can be seen that there is a shear layer parallel
to the wall at the same location (400 < z+ < 440 and y+

∼ 8). The fact that
this shear layer has a much stronger Lagrangian signature than the vertical shear
layer could be because it has the same orientation and sign of the mean shear
and therefore acts together with the latter to disperse neighboring particles across
the wall normal direction. The high FSLE line seen at the middle of the map in
figure 3.9, separating the two convoluted features can be seen to be related to the
existence of two counter-rotating vortices, one with center located at ∼ (380, 60)
and the other at ∼ (420, 100). The line of high FSLE line is seen to be located
at the boundary between both vortices. In section 3.3, we present a 3d view of
these structures and their evolution in time.
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Propagation velocity.

In turbulent channel flow the velocity perturbations propagate in the streamwise
direction approximately with the velocity of the mean flow [122]. In the case of
Lyapunov exponents, [118] measured the FTLE field in an 2D turbulent boundary
layer velocity field obtained by time-resolved PIV measurements. The FTLE
maxima were found to move with the mean flow velocity.

We measured the propagation velocity of the FSLE field perturbation using a
space-time correlation of the form:

Ruu(y+; x̄+; t̄+) =

〈
Λ(x+, y+, z+, t+)Λ(x+ + x̄+, y+, z+, t+ + t̄+)

〉
x+,z+〈

Λ(x+, y+, z+, t+)2〉
x+,z+

, (3.7)

where x̄+ and t̄+ are the delays in the streamwise direction and time. The time
delay is fixed and the propagation velocity is defined as

V+ =
X̄+

t̄+
, (3.8)

where X̄+ is the streamwise lag for which Ruu is maximum. The choice of the
time delay is related to the time scale of the FSLE field. A first rule is to choose
a time delay that gives reasonable peaks in the correlation. If there are several
time scales present, several t̄+ will result in correlations exhibiting peaks. The
calculation of (3.8) was made for a full length and height spanwise section of
the channel. A time series of FSLE fields with time step of dt+ = 1.8 and time
length ∆t+ = 431 was calculated for this section to offset the effects of the limited
spanwise extent of the section. The final time lag used in (3.8) was equal to dt+.
All larger delays produced correlations with no significant peak. A reason for
this could be the fact that by setting the FSLE final distance the length scales of
turbulence retained in the FSLE field is fixed, and then there will be only one time
delay producing a peak in the correlation (3.7), specifically that corresponding
to V+.

The profile of the propagation velocity is shown in figure 3.11. The propagation
velocity is very close to the mean flow velocity. The result shows that the maxima
of the FSLE field, that produce high values of Ruu and where we expect to find
the ridges of the FSLE field, move with the flow. Hence, one may conclude, as
expected, that the FSLE ridges also move with the flow approximately as material
surfaces.
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Figure 3.11: Propagation velocity of FSLE field (V+) and mean flow
(U+).

The 3d LCS.

The previous description summarized the statistical properties of the different
structures appearing in an instantaneous FSLE field. To make further progress
we now extract three-dimensional attracting LCSs in a region of the channel at
a series of time instants. The extraction domain had dimensions L+

x × L+
y × L+

z =
103× 129× 124. The initial separation d0 and distance ratio d f /d0 were increased
from the previous calculation to improve the resolution and extract smoother
structures, but sacrificing a complete view of 3d LCS in the turbulent channel.
The extraction threshold was set to s = 50000, a compromise value between speed
and cost of extraction and continuity of the extracted surfaces. The FSLE fields
were calculated for an interval of 1.5 time units with a time step of 0.1 units.

The 3d LCSs are rendered in figure 3.12, in a sequence of time instants, as they
pass through the calculation domain. They have a clearly 3d shape and move with
the flow. The LCS seem to create a boundary between the inner turbulent region
and the outer region that is practically devoid of FSLE. The highest LCS have
δ-scale heights above the wall, and have a distinct mushroom shape enclosing the
regions of the channel closer to the wall, where high FSLE values can be found.
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Figure 3.12: 3d attracting LCS in the channel flow together with a
FSLE map at the fixed plane x = 6.0 (x+ = 1034). Time goes from top to
bottom, at intervals of 0.1 time units. The flow direction is in the positive
x direction in each panel, and a wall is at the bottom. The sequence shows
how one of the flow structures is advected and passes through the x = 6.0

plane.

63



CHAPTER 3. 3D COHERENT STRUCTURES IN CHANNEL
FLOW

Near the wall, the LCS adopt the shape of sheets parallel to it, which reflects the
high rates of shear that occur in that region. These sheets form the base of the
mushroom-shaped excursions up to the channel center.

3.4

Conclusions

Lyapunov exponents are useful to identify Lagrangian coherent structures in tur-
bulent flows. These constitute the pattern determining the pathways of particle
transport in the flow and thus strongly influence the transport and mixing prop-
erties in the fluid. In a turbulent channel flow, the FSLE field is organized into
longitudinal structures close to the wall that develop into sloping ones away from
the wall. Correlations in the streamwise and spanwise direction show the typical
dimensions of these structures. They were found to be similar to the Eulerian
coherent structures that are known to exist in this same regions of the turbulent
channel. Specially, elongated streamwise vortices that move low speed fluid away
from the wall into the channel core. In 3d, the LCSs appear as mushroom-shaped
excursions of near-wall sheet-like structures of a scale comparable to the channel
width. They separate the channel into an interior region, where the FSLE attains
high values, and an exterior region, showing low FSLE values. The distribution
of LCS in the turbulent channel resembles the commonly accepted picture where
upward excursions of near wall fluid coexist with inward rushes of mid-channel
irrotational flow. Further work is necessary to elucidate the relations between
LCS and fluid transport in these type of flows, not least because the visualization
of 3d structures and transport in turbulence is a complex and time-consuming
subject. We note that there are fundamental differences between the Lagrangian
and Eulerian coherent structures, although they can actually have a common
interpretation as vortices or shear layers. Lagrangian coherent structures have
a clear impact in particle trajectories whereas Eulerian coherent structures are
related to space/time coherency in, e.g., velocity signals and do not necessarily
affect particles. In the above comparison, only the strongest FSLE features had a
clear connection to the features in the Eulerian distribution, which indicates that,
inversely, only the Eulerian features that live long enough or are strong enough
to affect particles in a discernible fashion will appear in the Lagrangian point
of view of coherent structures. The results shown in this chapter highlight the
usefulness of Lyapunov analysis and dynamical systems theory as a tool to study
transport and mixing in fluid flows, through the concept of Lagrangian coherent
structures.
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Chapter 4

Oceanic 3d Lagrangian
Coherent Structures

This chapter is based on

João H. Bettencourt, Cristóbal López, and Emilio Hernández-Garćıa. Oceanic three-

dimensional Lagrangian coherent structures: A study of a mesoscale eddy in the Benguela

upwelling region. Ocean Modelling, 51(0):73 – 83, 2012.

We study three dimensional oceanic Lagrangian Coherent Structures (LCSs) in
the Benguela region, as obtained from an output of the ROMS model. We first
compute Finite-Size Lyapunov exponent (FSLE) fields in the region volume, char-
acterizing mesoscale stirring and mixing. Average FSLE values show a general
decreasing trend with depth, but there is a local maximum at about 100 m
depth. LCSs are extracted as ridges of the calculated FSLE fields. They present
a “curtain-like” geometry in which the strongest attracting and repelling struc-
tures appear as quasi vertical surfaces. LCSs around a particular cyclonic eddy,
pinched off from the upwelling front are also calculated. The LCSs are confirmed
to provide pathways and barriers to transport in and out of the eddy.

4.1

Introduction

The main objective of this chapter is the characterization of 3d LCSs, extracted
in an upwelling region, the Benguela area in the Southern Atlantic Ocean. To
confirm that our identification of LCSs with ridges of the FSLE field, we perform
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(in section 4.3.2) direct particle trajectory integrations that show that the com-
puted LCS really organize the tracer flow. In our work, we will emphasize the
numerical methodology since up to now FSLEs have only been computed for the
marine surface (an exception is [123]). We then focus on a particular eddy very
prominent in the area at the chosen temporal window and study the stirring and
mixing on it’s vicinity. Some previous results for Lagrangian eddies were obtained
by [124] and [65], applying the methodology of lobe dynamics and the turnstile
mechanism to eddies pinched off from the Loop Current. In this chapter we focus
on FSLE fields and the associated particle trajectories to study transport in and
out of the chosen mesoscale eddy.

To circumvent the lack of appropriate observational data in the vertical direction,
we use velocity fields from a numerical simulation. They are high resolution
simulations from the ROMS model (see section 4.2 below) thus appropriate to
study regional-medium scale basins.

4.2

Data and Methods.

4.2.1 Velocity data set.

The Benguela ocean region is situated off the west coast of southern Africa.
It is characterized by a vigorous coastal upwelling regime forced by equatorward
winds, a substantial mesoscale activity of the upwelling front in the form of eddies
and filaments, and also by the northward drift of Agulhas eddies.

The velocity data set comes from a regional ocean model simulation of the
Benguela Region [126]. ROMS [115, 127] is a split-explicit free-surface, topogra-
phy following model. It solves the incompressible primitive equations using the
Boussinesq and hydrostatic approximations. Potential temperature and salinity
transport are included by coupling advection/diffusion schemes for these vari-
ables. The model was forced with climatological data. The data set area ex-
tends from 12°S to 35°S and from 4°E to 19°E (see Fig. 1). The velocity field
u = (u, v,w) consists of two years of daily averaged zonal (u), meridional (v),
and vertical velocity (w) components, stored in a three-dimensional grid with an
horizontal resolution of 1/12 degrees ∼ 8 km, and 32 vertical terrain-following
levels using a stretched vertical coordinate where the layer thickness varies, in-
creasing from the surface to the ocean interior. Since the ROMS model considers
the hydrostatic approximation it is important to note that [128], when compar-
ing results from non-hydrostatic and hydrostatic versions of the same model of

70



4.2. DATA AND METHODS.

   4
o
E    8

o
E   12

o
E   16

o
E   20

o
E 

  35
o
S 

  30
o
S 

  25
o
S 

  20
o
S 

  15
o
S 

Figure 4.1: Benguela ocean region. The velocity field domain is limited
by the continuous black line. The FSLE calculation area is limited by the
dash-dot black line. Bathymetric contour lines are from ETOPO1 global
relief model [125] starting a 0 m depth up to 4000 m at 500 m interval.
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vertical motions at submesoscale fronts, found that while instantaneous vertical
velocities structures differ, the averaged vertical flux is similar in both hydrostatic
and non-hydrostatic simulations.

4.2.2 3d FSLE fields.

The main difficulty in extending the calculation of 3d FSLE fields is that in
the ocean vertical displacements (even in upwelling regions) are much smaller
than the horizontal ones, and so do not contribute significantly to total particle
dispersion [123]. By the time the horizontal particle dispersion has scales of
tenths or hundreds of kilometers (typical mesoscale structures are studied using
δ f ≈ 100km [54]), particle dispersion in the vertical can have at most scales of
hundreds of meters and usually less. This means that the vertical separation will
not contribute significantly to the accumulated distance between particles. In
addition, since length scales in the horizontal and vertical differ by several orders
of magnitude, one faces the impossibility of assigning equal δ0 to the horizontal
and vertical particle pairs. It should be noted however that these shortcomings
arise from the different scales of length and time that characterize horizontal and
vertical dispersion processes in the ocean, and so should not be seem as intrinsic
limitations of the method. For non-oceanic flows a direct generalization of FSLEs
is straightforward.

Thus, in this chapter we implemented a quasi three-dimensional computation
of FSLEs. That is, we make the computation for every (2d) ocean layer, but
where the particle trajectories calculation use the full 3d velocity field. I.e., at
each level (depth) we set δzO = 0, and the final distance is computed without
taking the vertical distance between particles. It is important to note that, since
we allow the particles to evolve in the full 3d velocity field, we take into account
vertical quantities such as vertical velocity shear that may influence the horizontal
separation between particle pairs.

There are other possible approaches to the issue of different scales in the vertical
and horizontal. One way is to assign anisotropic initial and final displacements
in the FSLE calculation (i. e., including a δz0 and δz f much smaller than the
horizontal initial and final separations). A second approach is to use different
weights for the horizontal and vertical separations in the calculations of the dis-
tance, perhaps in combination with the first. We have checked both alternatives
and found that, with reasonable choices of initial and final distances and distance
metrics, the results were equivalent to the quasi-3d computation. The reason is
that actual dispersion is primarily horizontal as commented above.
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More in detail, a grid of initial locations x0 in the longitude/latitude/depth ge-
ographical space (φ, θ, z), fixing the spatial resolution of the FSLE field, is set
up at time t. The horizontal distance among the grid points, δ0, was set to 1/36
degrees (≈ 3 km), i.e. three times finer resolution than the velocity field [99],
and the vertical resolution (distance between layers) was set to 20 m in order
to have a good representation of the vertical variations in the FSLE field. Par-
ticles are released from each grid point and their three dimensional trajectories
calculated. The distances of each particle with respect to the ones that were
initially neighbors at an horizontal distance δ0 are monitored until one of the
horizontal separations reaches a value δ f . By integrating the three dimensional
particle trajectories backward and forward in time, we obtain the two different
types of FSLE maps: the attracting LCS (for the backward), and the repelling
LCS (forward) [54, 105]. We obtain in this way FSLE fields with a horizontal
spatial resolution given by δ0. The final distance δ f was set to 100 km, which is,
as already mentioned, a typical length scale for mesoscale studies. The trajecto-
ries were integrated for a maximum of T = 178 days (approximately six months)
using an integration time step of 6 hours. When a particle reached the coast or
left the velocity field domain, the FSLE value at its initial position and initial
time was set to zero. If the inter particle horizontal separation remains smaller
than δ f during all the integration time, then the FSLE for that location is also
set to zero.

The equations of motion that describe the evolution of particle trajectories are

dφ
dt

=
1

Rz

u(φ, θ, z, t)
cos(θ)

, (4.1)

dθ
dt

=
1

Rz
v(φ, θ, z, t), (4.2)

dz
dt

= w(φ, θ, z, t), (4.3)

where φ is longitude, θ is latitude and z is the depth. Rz is the radial coordinate
of the moving particle Rz = R − z, with R = 6371 km the mean Earth radius.
For all practical purposes, Rz ≈ R. Particle trajectories are integrated using a
4th order Runge-Kutta method. For the calculations, one needs the (3d) velocity
values at the current location of the particle. Since the six grid nodes surrounding
the particle do not form a regular cube, direct trilinear interpolation can not be
used. Thus, an isoparametric element formulation is used to map the nodes of
the velocity grid surrounding the particles position to a regular cube, and an
inverse isoparametric mapping scheme [129] is used to find the coordinates of the
interpolation point in the regular cube coordinate system.
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The structure of LCS in 3d is can be very complex in turbulent flows (as seen in
the previous chapter), and they can be locally either lines or surfaces. As com-
mented before, however, vertical motions in the ocean are slow. Thus, at each
fluid parcel the strongest attracting and repelling directions should be nearly
horizontal. This, combined with the incompressibility property, implies that the
most attracting and repelling regions (i.e. the LCSs) should appear as almost ver-
tical surfaces, since the attraction or repulsion should occur normally to the LCS.
As a consequence, the LCSs will have a “curtain-like” geometry, with deviations
from the vertical due to either the orientation of the most attracting or repelling
direction deviating from the horizontal, or when strong vertical shear produces
variations along the vertical in the most repelling or attracting regions in the
flow. We expect the LCS sheet-like objects to coincide with the strongest hy-
perbolic manifolds when these are two dimensional, and to contain the strongest
hyperbolic lines.

The curtain-like geometry of the LCS was already commented in [64], [124],
or [65]. In the latter paper it was shown that, in a 3d flow, these structures
would appear mostly vertical when the ratio of vertical shear of the horizontal
velocity components to the average horizontal velocities is small. This ratio also
determines the vertical extension of the structures. In [124], the argument was
used to construct a 3d picture of hyperbolic structures from the computation in
a 2d slice. In the present chapter we confirm the curtain-like geometry of the
LCSs, and show that they are relevant to organize the fluid flow in this realistic
3d oceanic setting. This is done in the next section by comparing actual particle
trajectories with the computed LCSs.

4.3

Results

4.3.1 Backward and forward 3d FSLE fields

The 3d FSLE fields were calculated for a 30 day period starting September 17,
with snapshots taken every 2 days. The fields were calculated for an area of the
Benguela ocean region between latitudes 20°S and 30°S and longitudes 8°E to
16°E (see figure 4.1). The area is bounded at NW by the Walvis Ridge and the
continental slope approximately bisects the region from NW to SE. The western
half of the domain has abyssal depths of about 4000 m. The calculation domain
extended vertically from 20 up to 580 m of depth. Both backward and forward
calculations were made in order to extract the attracting and repelling LCS.
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Figure 4.2: Vertical profile of 30 day average backward and forward
FSLE. The 30 day average field was spatially averaged at each layer over
the FSLE calculation area to produce the vertical profiles. The backward
FSLE average is shown in continuous and the forward FSLE is shown in

dashed.

Figure 4.2 displays the vertical profile of the average FSLE for the 30 day period.
There are small differences between the backward and the forward values due to
the different intervals of time involved in their calculation. But both profiles have
a similar shape and show a general decrease with depth. There is a notable peak
in the profiles at about 100 m depth that indicates increased mesoscale variability
(and transport, as shown in Sect. 4.3.2 at that depth).

A snapshot of the attracting LCSs for day 1 of the calculation period is shown
in figure 4.3. As expected, the structures appear as thin vertical curtains, most
of them extending throughout the depth of the calculation domain. The area
is populated with LCS, denoting the intense mesoscale activity in the Benguela
region. As already mentioned, in three dimensions the ridges are not easily seen,
since they are hidden in the volume data. However the horizontal slices of the
field in figure 4.3 show that the attracting LCS fall on the maximum backward
FSLE field lines of the 2d slices. The repelling LCS (not shown) also fall on the
maximum forward FSLE field lines of the 2d slices.

Since the λ value of a point on the ridge and the ridges strength α3 are only
related through the expressions (2.52) and (2.53), the relationship between the
two quantities is not direct. This creates a difficulty in choosing the appropriate
strength threshold for the extraction process. A too small value of s will result
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Figure 4.3: Attracting LCS (blue) for day 1 of the calculation period,
together with horizontal slices of the backward FSLE field at 120 m and
300 m depth. Colorbar refers to colormap of horizontal slices. The units

of the colorbar are day−1.
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Figure 4.4: Trajectory (advancing from NE to SW) of the eddy center
inside the calculation domain. Circles indicate the center location during
the 30 day FSLE calculation period, and squares previous and posterior

positions. Bathymetric lines same as in figure 4.1.

in very small LCS that appear to have little influence on the dynamics, while
a greater value will result in only a partial rendering of the LCS, limiting the
possibility of observing their real impact on the flow. Computations with several
values of s lead us to the optimum choice s = 20 day−1m−2, meaning that grid
nodes with α3 < −20 day−1m−2 were filtered out from the LCS triangulation.

We have seen in this section an example of how the ridges of the 3d FSLE field, the
LCS, distribute in the Benguela ocean region. Their ubiquity shows their impact
on the transport and mixing properties. In the next section we concentrate on
the properties of a single 3d mesoscale eddy.

4.3.2 Study of the dynamics of a relevant mesoscale eddy

Let us study a prominent cyclonic eddy observed in the data set. The trajectory
of the center of the eddy was tracked and it is shown in figure 4.4. The eddy was
apparently pinched off at the upwelling front. At day 1 of the FSLE calculation
period its center was located at latitude 24.8°S and longitude 10.6°E, leaving the
continental slope, and having a diameter of approximately 100 km. One may ask:
what is its vertical size? is it really a barrier, at any depth, for particle transport?
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To properly answer these questions the eddy, in particular its frontiers, should be
located. From the Eulerian point of view it is commonly accepted that eddies are
delimited by closed contours of vorticity and that the existence of strong vorticity
gradients prevent the transport in and out of the eddy. Such transport may occur
when the eddy is destroyed or undergoes strong interactions with other eddies
[78]. In a Lagrangian view point, however, an eddy can be defined as a region
delimited by intersections and tangencies of LCS, whether in 2d or 3d space. The
eddy itself is an elliptic structure [51, 65, 124]. In this Lagrangian view of an eddy,
the transport inhibition to and from the eddy is now related to the existence of
these transport barriers delimiting the eddy region, which are known to be quasi
impermeable.

Using the first approach, i.e., the Eulerian view, the vertical distribution of the
Q-criteria [81, 130] was used to determine the vertical extension of the mesoscale
eddy. The Q criterion is a 3d version of the Okubo-Weiss criterion [131, 132] and
measures the relative strength of vorticity and straining. In this context, eddies
are defined as regions with positive Q, with Q the second invariant of the velocity
gradient tensor

Q =
1
2

(‖Ω‖2 − ‖S‖2), (4.4)

where ‖Ω‖2 = tr(ΩΩT), ‖S‖2 = tr(SST) and Ω, S are the antisymmetric and
symmetric components of ∇u. Using Q = 0 as the Eulerian eddy boundary, it
can be seen from Fig. 4.5 that the eddy extends vertically down to, at least, 600
m.

Let us move to the Lagrangian description of eddies, which is much in the spirit
of our study, and will allow us to study particle transport: eddies can be defined
as the region bounded by intersecting or tangent repelling and attracting LCS
[65, 124]. Using this criterion, and first looking at the surface located at 200 m
depth, we see in Fig. 4.6 that certainly the Eulerian eddy seems to be located
inside the area defined by several intersections and tangencies of the LCS. This
eddy has an approximate diameter of 100 km. In the south-north direction there
are two intersections that appear to be hyperbolic points (H1 and H2 in figure
4.6). In the West-East direction, the eddy is closed by a tangency at the western
boundary, and a intersection of lines at the eastern boundary. The eddy core
is devoid of high FSLE lines, indicating that weak stirring occurs inside [54].
As additional Eulerian properties, we note that near or at the intersections H1
and H2 the Q-criterion indicates straining motions. In the case of H2, figure
4.5 (right panel) indicates high shear up to 200 m depth. The fact that the
hyperbolic regions H1 and H2 lie in strain dominated regions of the flow (Q < 0)
highlights the connection between hyperbolic particle behavior and instantaneous
hyperbolic regions of the flow. The ridges of the FSLE field, however, do not
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Figure 4.5: Colormap of Q-criterion. White contours have Q = 0. Day
1 of the 30 day FSLE calculation period. Left panel: Latitude 24.5◦S;

Rigth panel: Longitude 10.5◦E. Colorbar values are Q × 1010 s−2.

remain in the negative Q regions but cross into rotation dominated regions with
Q > 0. This indicates that there are some differences between the Eulerian view
(Q) and the Lagrangian view (FSLE). It is the latter that can be understood
in terms of particle behaviour as limiting regions of initial conditions (particles)
that stay away from hyperbolic regions for long enough time [51].

In 3d, the eddy is also surrounded by a set of attracting and repelling LCS (figure
4.7), calculated as explained in section 2.10.2. The lines identified in figure 4.6
are now seen to belong to the vertical of these surfaces.

Note that the vertical extent of these surfaces is in part determined by the
strength parameter used in the LCS extraction process, so their true vertical
extension is not clear from the results presented here. On the south, the closure
of the Lagrangian eddy boundary extends down to the maximum depth of the
calculation domain, but moving northward it is seen that the LCS shorten their
depth. Probably this does not mean that the eddy is shallower in the North, but
rather that the LCS are losing strength (lower |α3|) and portions of it are filtered
out by the extraction process. In any case, it is seen that as in two-dimensional
calculations, the LCS delimiting the eddy do not perfectly coincide with its Eu-
lerian boundary [105], and we expect the Lagrangian view to be more relevant to
address transport questions.

In the next paragraphs we analyze the fluid transport across the eddy boundary.
Some previous results for Lagrangian eddies were obtained by [124] and [65]. Ap-
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Figure 4.6: Q-criterion map at 200 m depth together with patches of
backward (blue) and forward (green) FSLE values. Black dashed lines
have Q = 0. FSLE patches contain the highest 60% of FSLE values.
Colorbar values are Q × 1010 s−2.The eddy we study is the clear region in

between points H1 and H2.
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Figure 4.7: 3d LCSs around the mesoscale eddy at day 1 of the 30 day
FSLE calculation period. Green: repelling LCS; Blue: attracting LCS.

plying the methodology of lobe dynamics and the turnstile mechanism to eddies
pinched off from the Loop Current, [124] observed a net fluid entrainment near
the base of the eddy, and net detrainment near the surface, being fluid transport
in and out of the eddy essentially confined to the boundary region. Let us see
what happens in our setting.

We consider six sets of 1000 particles each, that were released at day 1 of the FSLE
calculation period, and their trajectories integrated by a fourth-order Runge-
Kutta method with a integration time step of 6 hours. The sets of particles
were released at depths of 50, 100, 200, 300, 400 and 500 m. In figure 4.8 we
plot the particle sets together with the Lagrangian boundaries of the mesoscale
eddy viewed in 3d. A top view is shown in figure 4.9. As expected, vertical
displacements are small.

At day 3 (top left panel of figures 4.8 and 4.9) it can be seen that there is
a differential rotation (generally cyclonic, i.e. clockwise) between the sets of
particles at different depths. The shallower sets rotate faster than the deeper ones.
This differential rotation of the fluid particles could be viewed, in a Lagrangian
perspective, as the fact that the attracting and repelling strength of the LCS that
limit the eddy varies with depth. Note that the six sets of particles are released
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Figure 4.8: Three dimensional view of the evolution of elliptic patches
released at different depths inside of the eddy at day 1 of the 30 day FSLE
calculation period. Top left: day 3; Top right: day 13; Bottom left: day
19: Bottom right: day 29. Red: 40 m; Yellow: 100 m; Cyan: 200 m;
Magenta: 300 m; Grey: 400 m; Black: 500 m. Attracting LCS are shaded

in blue while repelling LCS are shaded in green.
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at the same time and at the same horizontal positions, and thereby their different
behavior is due to the variations of the LCS properties along depth.

At day 13 the vortex starts to expel material trough filamentation (Figs.4.8 and
4.9, top right panels). A fraction of the particles approach the southern bound-
aries of the eddy from the northeast. Those to the west of the repelling LCS
(green) turn west and recirculate inside the eddy along the southern attracting
LCS (blue). Particles to the east of the repelling LCS turn east and leave the
eddy forming a filament aligned with an attracting (blue) LCS. At longer times
trajectories in the south of the eddy are influenced by additional structures as-
sociated to a different southern eddy. At day 29 (bottom right panels) the same
process is seen to have occurred in the northern boundary, with a filament of
particles leaving the eddy along the northern attracting (blue) LCS. The fila-
mentation seems to begin earlier at shallower waters than at deeper ones since
the length of the expelled filament diminishes with depth. However all of the
expelled filaments follow the same attracting LCS. Figure 4.10 shows the stages
previous to filamentation in which the LCS structure, their tangencies and cross-
ings, and the paths of the particle patches are more clearly seen. Note that the
LCS do not form fully closed structures and the particles escape the eddy through
their openings. The images suggest lobe-dynamics processes, but much higher
precision in the LCS extraction would be needed to really see such details.

This filamentation event seems to be the only responsible for transport of material
outside of the eddy, since the rest of the particles remained inside the eddy
boundaries. To get a rough estimate of the amount of matter expelled in the
filamentation process we tracked the percentage of particles leaving a circle of
diameter 200 km centered on the eddy center. In Fig. 4.11 the time evolution
of this percentage is shown for the particle sets released at different depths. The
onset of filamentation is clearly visible around days 9-12 as a sudden increase
in the percentage of particles leaving the eddy. The percentage is maximum for
the particles located at 100 m depth and decreases as the depth increases. At
400 and 500 m depth there are no particles leaving the circle. There is a clear
lag between the onset of filamentation between the different depths: the onset is
simultaneous for the 40 m and 100 m depths but occurs later for larger depths.

4.4

Discussion.

The spatial average of FSLEs defines a measure of stirring and thus of horizontal
mixing between the scales used for its computation. The larger the average, the
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Figure 4.9: Top view of the evolution of particle patches and LCSs
shown in Fig. 8. Top left: day 3; Top right: day 13; Bottom left: day 19:

Bottom right: day 29. Colors as in figure 4.8.
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Figure 4.10: Top view of the initial stages of evolution of the particle
patches and LCSs of Figs. 8 and 9. Top left: day 7; Top right: day 9;

Bottom left: day 11: Bottom right: day 13. Colors as in figure 4.8.

85



CHAPTER 4. OCEANIC 3D STRUCTURES

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

Days

%
 P

a
rt

ic
le

s

 

 

40 m

100 m

200 m

300 m

400 m

500 m

Figure 4.11: Percentage of particles outside a 200 km diameter circle
centered at the eddy center, as a function of time.

larger the mixing activity [54]. The general trend in the vertical profiles of the
average FSLE (Fig. 4.3) shows a reduction of mesoscale mixing with depth. There
is however a rather interesting peak in this average profile occurring at 100 m,
i.e. close to the thermocline. It could be related to submesoscale processes that
occur alongside the mesoscale ones. Submesoscale is associated to filamentation
(the thickness of filaments is of the order of 10 km or less), and we have seen
that the filamentation and the associated transport intensity (Fig. 4.11) is higher
at 100 m depth. It is not clear at the moment what is the precise mechanism
responsible for this increased activity at around 100 m depth (perhaps associated
to instabilities in the mixed layer), but we note that the intensity of shearing
motions (see the Q plots in 4.5) is higher in the top 200 meters. Less intense
filamentation could be caused by reduction of shear in depths larger than these
values.

From an Eulerian perspective, it is thought that vortex filamentation occurs
when the potential vorticity (PV) gradient aligns itself with the compressional
axis of the velocity field, in strain coordinates [133, 134]. This alignment is
accompanied by exponential growth of the PV gradient magnitude. The fact
that the filamentation occurs along the attracting LCS seems to indicate that this
exponential growth of the PV gradient magnitude occurs across the attracting
LCS.
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In the specific spatiotemporal area we have studied, and in particular, for the
eddy on which we focused our analysis, we have confirmed that the structure of
the LCSs is “curtain-like”, so that the strongest attracting and repelling struc-
tures are quasi vertical surfaces. Their vertical extension would depend of the
physical transport properties, but it is also altered by the particular threshold
parameter selected to extract the LCSs. These observations imply that trans-
port and stirring occurs mainly on the horizontal, which is a reasonable result
considering the disparity between horizontal and vertical velocities in the ocean,
and its stratification. However, we should mention that our results are not fully
generalizable to all ocean situations, and that any ocean area or oceanic event
should be studied in particular to reveal the shape of the associated 3d LCS.

Some comments follow about the nature of vertical transport structures. FSLEs
are suited to the identification of hyperbolic structures (structures that exhibit
high rates of transversal stretching or compression in their vicinity). The ques-
tion is if one can expect that structures responsible for vertical transport will
also exhibit substantial (vertical) stretching. This is not so clear in the ocean for
the reasons already indicated. If one considers the case (relevant to our work)
of purely isopycnal flow, then strong vertical stretching would be associated with
a rapid divergence of isopycnic surfaces. In the case of coastal upwelling, for
instance, the lifted isopycnic surfaces move vertically in a coherent fashion, so
one should not expect strong vertical divergence of particles flowing along neigh-
boring isopycnic surfaces. This is just an example of the fact that it is possible
that coherent vertical motions do not imply the presence of hyperbolic coherent
structures such as those the FSLE may indicate.

Another possible limitation worth mentioning is the velocity field resolution and
its relation to the intensity of the vertical velocity. It is accepted that in fronts
or in the eddy periphery, vertical velocities are significantly greater than, for
instance, in the eddy interior. These zones of enhanced vertical transport corre-
spond to submesoscale features that were not adequately captured in the velocity
field used in this work due to its coarse resolution, since submesoscale studies
usually have resolutions < 10 km (the literature on this subject is quite large, so
we refer the reader to [16] and [20] ).

In any case, a most important point for the LCS we have computed is that in 3d,
as in 2d, they act as pathways and barriers to transport, so that they provide a
skeleton organizing the transport processes.
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4.5

Conclusions

Three dimensional Lagrangian Coherent Structures were used to study stirring
processes leading to dispersion and mixing at the mesoscale in the Benguela ocean
region. We have computed 3d Finite Size Lyapunov Exponent fields, and LCSs
were identified with the ridges these fields. LCSs appear as quasi vertical surfaces,
so that horizontal cuts of the FSLE fields gives already a quite accurate vision of
the 3d FSLE distribution. These quasi vertical surfaces appear to be coincident
with the maximal lines of the FSLE field (see fig. 4.3) so that surface FSLE maps
could be indicative of the position of 3d LCS, as long as the vertical shear of the
velocity does not result in a significant deviation of the LCS with respect to the
vertical. Average FSLE values generally decrease with depth, but we find a local
maximum, and thus enhanced stretching and dispersion, at about 100 m depth.

We have also analyzed a prominent cyclonic eddy, pinched off the upwelling front
and study the filamentation dynamics in 3d. Lagrangian boundaries of the eddy
were made of intersections and tangencies of attracting and repelling LCS that
apparently emanating from two hyperbolic locations North and South of the eddy.
The LCS are seen to provide pathways and barriers organizing the transport pro-
cesses and geometry. This pattern extends down up to the maximum depth were
we calculated the FSLE fields (∼ 600 m), but the exact shape of the boundary
is difficult to determine due to the decrease in ridge strength with depth. This
caused some parts of the LCS not to be extracted. The inclusion of a variable
strength parameter in the extraction process is an important step to be included
in the future.

The filamentation dynamics, and thus the transport out of the eddy, showed time
lags with increasing depth. This arises from the vertical variation of the flow field.
However the filamentation occurred along all depths, indicating that in reality
vertical sheets of material are expelled from these eddies.

Many more additional studies are needed to further clarify the details of the
geometry of the LCSs, their relationships with finite-time hyperbolic manifolds
and three dimensional lobe dynamics, and specially their interplay with mesoscale
and submesoscale transport and mixing processes.

We thank the LEGOS group for providing us with 3D outputs of the velocity
fields from their coupled BIOBUS/ROMS climatological simulation.

88



Chapter 5
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This chapter is based on
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as barriers to mixing in the Eastern Tropical Pacific Oxygen Minimum Zone. Nature

Geosciences, Submitted.

The oxygen content of sea water is a major factor affecting marine fauna and bio-
geochemical cycles. Zones where an oxygen deficit is present in the water column
represent significant portions of the total area and volume of the world oceans
and are thought to be increasing. In the Eastern Tropical Pacific an Oxygen
Minimum Zone is found. The area is populated by numerous mesoscale eddies
whose role on the exchange of water mass properties remains largely unknown.
We study this problem from a modeling approach and a Lagrangian point of view,
characterizing pathways and barriers to transport and mixing of oceanic regions
with distinct concentrations of dissolved oxygen. Our results show that, at cer-
tain depths, mesoscale structures have a relevant and dual role: On the one hand
their mean positions and paths are important to maintain the Oxygen Minimum
Zone frontiers. On the other their fluctuations eventually entrain oxygen across
these frontiers as eddy fluxes, that we estimate.
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5.1

Introduction

Low concentrations of dissolved O2 in the world coastal waters have severe con-
sequences to marine life. Hypoxic levels (O2 < 88 µM) [135] are lethal to about
half of marine benthic species and a fraction of them exhibits extreme sensitivity
to hypoxia with lethal concentrations as high [136] as 140 µM. O2 deficiency
also has profound impacts on marine biogeochemical cycles since denitrification
only occurs in O2 poor waters so it is a contributor to the fixed nitrogen deficit
together with the anammox process [137, 138]. Regions of the ocean where O2
deficiency in the water column can be found are called Oxygen Minimum Zones
(OMZs). The OMZs are differentiated in the vertical by three distinct layers: the
oxycline (upper O2 gradient), the core (with typically O2 < 20 µM) and the lower
O2 gradient. The total area and volume of the known OMZs amount to 8% and
7% of the global ocean, respectively [139]. It is believed that these values might
increase in the future due to rising temperatures which decrease O2 solubility, in
addition to the enhancing of the stratification [140, 141].

The Eastern Tropical South Pacific (ETSP) contains one of the three major per-
manent OMZ, with an oxycline layer extending from the upper 10 to 170 meters,
followed by a core with a thickness of 340 meters [139]. The lower oxygen gra-
dient (values larger than 0.1µM/m) extends to about 3700 meters [139]. This
OMZ is maintained by the combination of significant rates of biological produc-
tion and decomposition of sinking organic material [142] at the upwelling region
off Peru, and weak circulation in the shadow zone of the eastern Southern Pa-
cific subtropical gyre. The circulation is then dominated by the equatorial and
eastern boundary current systems [143]. Mesoscale eddies and filaments are ubiq-
uitous in this area [144]. In contrast to the oligotrophic regions of the ocean where
eddies can sustain biological productivity [38], in upwelling regions stirring by ed-
dies tends to reduce biological production [31, 32]. Recent observations off Peru
confirmed that coastal eddies are acting as hotspots of nitrogen loss [145, 146],
whereas open water and cyclonic eddies seem to be of reduced importance or even
negligible, respectively, as hotspots of active nitrogen loss. In the ETSP the role
played by mesoscale eddies in the distribution of O2 within the OMZ remains
unclear and we approach this problem by analyzing data coming from a coupled
physical-biogeochemical high-resolution model of the regional ETSP OMZ [147],
and characterizing mesoscale transport and stirring by means of Finite-size Lya-
punov exponent (FSLE) fields [54, 96]. Maxima in these fields form filamentary
structures, the so-called Lagrangian Coherent Structures (LCSs) [51, 54, 55] iden-
tifying the most active mesoscale regions and acting as barriers for fluid transport
across them.
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In this chapter we focus in the transport aspects of the mesoscale-OMZ inter-
action, particularly in the OMZ boundaries, and the fluxes across them. Then
we do not address the biogeochemical processes occurring inside the OMZ which
are certainly determinant in the area dynamics (and are included in our regional
simulation model) but we gauge instead the physical effects of the mesoscale
structures on the OMZ dynamics. This is done by: a) computing correlations
between the (statistically averaged over time) O2 concentration and FSLE at lay-
ers located at different depths; b) studying events of O2 rich-waters entrainment
into the OMZ; c) calculating the (temporally averaged) O2 normal fluxes across
the northern and southern frontiers of the OMZ as a function of the depth and
its correlation with the average mixing measurement obtained from FSLE. The
relationship between the FSLE characterization and other Lagrangian diagnosis
provided by residence times is also discussed.

5.2

Data

5.2.1 Circulation and Oxygen Minimum Zone modeling

The circulation and OMZ modeling in the Eastern Tropical Pacific was accom-
plished by the combination of the hydrodynamic model ROMS [115] (Regional
Ocean Modeling System) and the biogeochemical model developed [148] for the
Eastern Boundary Upwelling Systems (BioEBUS). The Eastern Tropical Pacific
configuration covers the region from 4o N to 20o S and from 70o to 90o W with an
horizontal resolution of 1/9o degrees (≈ 12 km) and 32 terrain-following vertical
levels with variable vertical resolution (higher in the upper ocean). The coupled
model is run in a climatological configuration previously validated [149] for the
Eastern Tropical South Pacific, and the present configuration has been recently
validated and a sensitivity analysis was performed [147]. The model was forced by
the QuickSCAT [150] wind stress monthly climatology and by heat and fresh wa-
ter fluxes from the COAD [151] monthly climatology. The dynamical variables at
the three open ocean boundaries are provided by a monthly climatology computed
from the Simple Ocean Data Assimilation reanalysis [152]. For the biogeochemical
model, boundary conditions of nitrate and oxygen concentrations are taken from
CSIRO Atlas of Regional Seas (CARS 2009, http://www.cmar.csiro.au/cars) and
chlorophyll a concentration from SeaWiFS (http://oceancolor.gsfc.nasa.gov/).
The simulations were performed for a 22-year period. The first 13 years were
run with the physics only and the following 9-years were run with the physi-
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cal/biological coupling. The coupled model reached a statistical equilibrium after
4 years and model outputs were stored every 3 days (averaged).

5.2.2 3d FSLE fields

We computed daily three-dimensional (3d) fields of backward FSLE for simulation
year 21. This was done by setting up a regular 3d latitude-longitude-depth grid of
initial conditions with spacing in the two horizontal directions of δ0 = 1/27o (i.e.
≈ 4 km) and 30 vertical layers with variable vertical spacing. The grid covered
the ETSP from 88o W to 70o W and 18o S to 2o N. Vertically, the grid extended
from 10 to 1100 m depth and was clustered in the upper 500 m of ocean. To
obtain the FSLE field, λ(x, t), at location x and time t, one particle is released
at time t from each grid node at location x and the separation to the particles
released from neighboring nodes is monitored. τ is the time needed for the first
of these separations to reach the value δ f (that in this study was set at 100 km).
Trajectories were integrated backward in time for 6 months with a Runge-Kutta
4th order method. If at the end of this interval the separations are smaller than
δ f , or if the particles leave the domain or hit the shore, then the FSLE for the
release location is set to zero.

5.3

Results

5.3.1 Backward FSLE 3d fields

Maximum values of FSLEs computed backwards in time can be interpreted as
fronts of advected tracers, since they delineate the lines along with the tracers
are stretched and folded by the fluid flow.

A map of instantaneous backward FSLE is shown in Fig. 5.1 for different depths.
In the upper layer (Fig. 5.1 A) we observe that below 4o S the FSLE field
is organized in thin filamental features with high FSLE value superimposed on
a low FSLE background. Above 4o S, we see a larger density of small-scale
features, that represent the change in dynamical regime [153] as we approach
the equator. Time scales associated with the Lagrangian dynamics at this depth
vary from 4 to 10 days (the FSLE is roughly an inverse time scale). At higher
depths (Fig. 5.1 B, C and D) the features of the instantaneous FSLE field are
maintained although the intensity is reduced from its values at the surface. The
area near the equator with dense small-scale structure is reduced at 113 m depth
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Figure 5.1: Map of backward FSLE for the 1st of January of year 21.
A) 10 m depth. B) 113 m depth. C) 410 m depth. D) 592 m depth. Note

the different colorbar at different depths.
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Figure 5.2: Vertical map of backward FSLE for the 1st of January of
year 21, at 16.45o S.

and qualitatively different or non-existent at 410 and 592 m depth (Fig. 5.1 B, C
and D, respectively). At all depths shown, the high FSLE lines are more common
near the coast, which in this region is the main source of mesoscale variability due
to instability of coastal currents and the associated upwelling regime [144, 154].

The vertical structure of the instantaneous FSLE field is shown in Fig. 5.2 for the
same date and a cut at 16.45o S. The thin filamental structures appearing in the
horizontal maps have a vertical extension of about 400 m from the surface down.
The structures oriented parallel to the zonal axis reveal this curtain like shape,
as can be observed between 76o W and 78o W and 100 and 300 m depth. Such
shape has already been observed (in 3d) in similar calculations for the Benguela
upwelling zone [113] and can be justified theoretically [65]. Dynamical studies
with particle trajectories showed that the most intense curtains can be related to
Lagrangian eddy boundaries.

The temporal-mean horizontal maps of the backward FSLE fields are shown in
Figure 5.3 for four depths: 10, 113 and 410 and 592 m. One can observe the
most persistent patterns of mixing, in particular, the northern and southern strips
delineating the frontiers of the OMZ. The depth profile of horizontally averaged
mean FSLE field for simulation year 21 (Figure 5.4) shows the decrease in stirring
with depth, with a subsurface peak at ≈ 30 m depth. This decrease of stirring
with depth, as measured by the FSLE, was also found in a study of the Benguela
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Figure 5.3: Horizontal maps of backward FSLE temporally averaged for
year 21. A) 10 m depth. B) 113 m depth. C) 410 m depth. D) 592 m

depth. Note the different colorbar at different depths.

95



CHAPTER 5. STIRRING IN THE PERU OMZ

0.02 0.04 0.06 0.08

0

100

200

300

400

500

600

700

800

900

1000

1100

<λ>

D
e

p
th

 (
m

)

Figure 5.4: Time mean of the horizontally averaged depth profile of the
backward FSLE field < λ > (in day−1) for year 21.

upwelling region [113]. Its origin could be simply the overall smaller velocities
found at deeper layers, and also the decrease in the nonlinearity of the mesoscale
eddies (as indicated for example by its ratio between rotation and propagation
velocities) that occurs with depth [144].

5.3.2 Exit times

Residence times (RT) are a tool to study fluid exchange between two regions.
Although the OMZ does not constitute a geographically determined region such
as a basin or bay, it is still possible to define appropriate limits to the OMZ (as we
have done all along this chapter) so that fluid exchange between the OMZ and its
exterior may be studied with RT distributions [155, 156]. They are Lagrangian
diagnosis complementary to the FSLE methods. The RT of a fluid particle is
defined as the time it spends inside a certain region before crossing a particular
boundary. Here we compute the RT in the OMZ as the time the particle remains
with a O2 content below 20 µM. The results obtained are similar if instead the
exit is computed from the average OMZ core region, i.e. the volume in which the
temporally averaged O2 concentration is smaller than 20 µM. Trajectories can
be integrated forward in time (and them the computed time is properly an exit
time) or backward in time (so that one is calculating then the residence time the
particle has been in the region before present).
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Figure 5.5: Residence times (RT) at 410 m depth for 1st July of year
20. A) Backward RT. Superimposed white lines are 0.035 day−1 backward
FSLE isolines. B) Forward RT. Superimposed white lines are 0.038 day−1

forward FSLE isolines. The magenta lines bound the region inside which
the concentration of O2 was smaller than 20µM already at the initial time,
so that outside these lines the exit times are zero. The red color associated
to a residence time of 2.5 years is in fact associated also to all residence

times larger than this duration.
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We show in Fig. 5.5 the RT distribution at 410 meters depth for the 1st of July
of simulation year 20. Similar results are observed at other depths. To obtain
this distribution, particles were released from the same horizontal regular grid
described in the previous section and the trajectories were integrated backward
and forward for 2.5 years (the need to use such large integration times forced us
to use as initial time year 20 instead of year 21 as in other calculations, since the
simulation dataset contains only 22 years). Backward and forward FSLE fields
were also computed for this date and location for comparison purposes.

The RT are larger than 2.5 years in most of the area identified as the OMZ core.
In contrast with this rather homogeneous distribution in the centre, at the OMZ
boundaries the RT distribution assumes quite complex shapes, where several
reentrant zones of low RT and sharp transitions to low RT. Additionally, there
are several cases of thin regions of low RT intruding in to the high RT central zone.
These sharp boundaries between high and low RT coincide in some areas with high
FSLE values. This coincidence is a feature observed with the RT distributions
of passive particles in a given geographical region [156]. Since passive particles
are Lagrangian tracers, we conclude that in the areas of matching RT changes
and FSLE lines, the O2 content is conserved along particle trajectories and local
changes in O2 occur mostly due to advection. The long residence times found are
consistent with the low ventilation regime needed for the biogeochemistry in the
area to reduce oxygen concentrations to hypoxic levels.

5.3.3 Correlations between mean FSLE and O2 fields

The 20 µM isosurface of the annual mean O2 field for simulation year 21 (Fig.
5.6a gives an OMZ core with maximal meridional extension at approximately 400
m depth extending between 3o S and 16o S. The higher O2 concentrations north of
2o S are associated to subsurface eastward equatorial currents carrying relatively
oxygen-rich water [157], while the southern increase of O2 (14o S to 17o S) is
adjacent to the northern part of the subtropical gyre. Figure 5.6a displays also
the annual mean backward FSLE field at 410 m depth, which shows a remarkable
relation to the mean O2 field delineating the limits of the OMZ core. The FSLE
mean field is structured as zonal bands coincident with the north and south OMZ
boundaries with relatively high FSLE values when compared to the core region.
Both bands are signals of the eddies released from their formation region near
the continental shelf and advected offshore [144, 158]. This indicates that the
enhanced mesoscale activity in those areas delineate the limits of the average OMZ
region at core depths. To further quantify the relationship between mesoscale
dynamics and the frontiers of the OMZ we note that since LCSs (that we locate
as maximum values of FSLEs) act as transport barriers, large gradients of O2

98



5.3. RESULTS

Figure 5.6: Mean O2 and FSLE fields and correlations for simulation
year 21. a) 20 µM isosurface of mean O2 concentration rendered together
with an horizontal plane at 410 meters depth displaying at he mean FSLE
field. The vertical scale is nonlinear and stretched in the upper 500 m
depth. The solid volume with the flat top is the Peruvian coast. b)
Zonally averaged mean FSLE and O2 gradient, averaged between 380 m
and 600 m depth. C) Pearson correlation coefficient (R) between zonally
averaged mean FSLE and O2 gradient as a function of depth (solid line).
Upper and lower bounds of R give the Fisher 95% confidence interval

(dashed-lines).
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should occur across such structures [159]. Thus we expect to find a relationship
between the stirring intensity as measured by the FSLE and the O2 gradient
norm (in the following any mention to the O2 gradient should be understood as
referring to its modulus or norm). The relationship between both averaged fields
is quantified in Fig. 5.6 B where we plot the meridional profiles of mean FSLEs
and O2 gradient averaged in a part of the OMZ core, showing the coincidence
in the maxima of both quantities: the maxima of FSLE indicating the positions
of the LCSs and the maxima of the gradients of O2 signalling the northern and
sourthern frontiers of the OMZ. This correlation is not equally strong at all depths
as it is shown in Fig. 5.6 C, where we plot the vertical profile of the Pearson
correlation coefficient, R, between the zonally averaged mean FSLE and mean
gradient of O2 concentration. Roughly, we can distinguish two areas in the OMZ
core: a) between 190 − 350 meters where these quantities show correlations of
alternating sign; and b) between 380 − 600 meters where the correlation is large
and positive (with an average R of 0.748). It is in this subarea of the OMZ where
the mesoscale dynamics contributes more intensely to determine its boundaries.

To explore further the relationship between FSLE and O2 horizontal gradients,
first we observe in Fig. 5.7 A) how the lines of high FSLE values determine
instantaneous (at depth 410 m) fronts for the O2 concentrations. These are
located in the northern and southern frontiers of the OMZ as has been discussed
all along the text. In Fig. 5.7 B) it its shown how the high-FSLE lines coincide
with the largest horizontal gradients of O2.

In Fig. 5.8 A) and B) we show FSLE and O2 gradient maps, respectively, aver-
aged temporally (for simulation year 21) and vertically in the mid-depth range
of the OMZ (between 350 and 600 m). We do not discuss the relationship be-
tween the high values of FSLE and of O2 gradients found very close to the coast,
since that region has a very different dynamics and biogeochemistry, and it is
influenced by the presence of coastal currents. The maps clearly show the high
gradient zones north and south of a central basin with low average O2 gradient
that coincides with the OMZ. The northern band is located approximately at an
interface between an eastward mean zonal flow relatively rich in O2 [143, 157] and
a southern adjacent westward mean flow. This flow configuration at middepth
present in our simulation data shows similarities with ADCP data [158] taken
in February 2009 that show a eastward flow and an adjacent westward flow with
velocities about 2.5 cm/s. The mean FSLE field for the same depth range (Figure
5.8 A) shows that the band between 0o and 4o S is a zone of high FSLE. On the
southern boundary, high O2 gradients are located close to the equatorward edge
of the southern subtropical gyre, along a zonal band below 16o S. In this region,
we also find high values of the mean FSLE but these are distributed along a wider
zonal region, poleward from 14o S.
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Figure 5.7: Lines of high FSLE values (> 0.04 day−1, black) superim-
posed on instantaneous O2 and O2 gradient fields on 1st of March of year

21 at 410 m depth. A) O2 concentration. B) O2 horizontal gradient.

Figure 5.8: Mean fields averaged over 300−600 meters depth and during
year 21. A) FSLE. B) O2 horizontal gradient.
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The center of the OMZ forms a basin of low O2 gradients and also low FSLE.
The low values of O2 are found due to low or inexistent ventilation (as quantified
by large residence times) of this region coupled to the respiration of sinking
organic matter. The low FSLE distribution is due to the absence of significant
mesoscale activity at this depth. Although this region is located offshore of the
Peru upwelling strip, and receives anticiclonic eddies formed in instabilities of the
coastal currents [160], mesoscale activity as measured by eddy intensity decreases
as we move offshore [144], and it is only intense in the two strips surrounding the
OMZ.

5.3.4 Ventilation by eddies and eddy fluxes

Besides mean behaviour, individual events are also of maximum relevance, since
mesoscale eddies are able to transport waters with different biogeochemical prop-
erties with respect to surrounding areas, and to entrain water around them. This
could give rise to sporadic episodes of high O2 patches inside the OMZ. In Fig.
5.9 we show one of these temporal sequence where an eddy dipole (with borders
signalled by maxima of FSLE at 410 meters) entrains water with large oxygen
content (the red-yellow tongue at 80 − 82oW) towards the interior of the OMZ.
This episode had a duration of approximately 3 months (from the 9th of Septem-
ber to the 1st of December of simulation year 21; in the figure only the first month
is displayed) and our calculations show that during this period the entrainment
of these waters carried 0.4 × 106 mol of O2 per meter of depth into the OMZ at
this depth. We characterize the eventual entrainment of water across the OMZ
boundaries by displaying in Fig. 5.10 Hovmöler plots of the time evolution of the
O2 anomaly at the North (panel A) and South (panel B) OMZ 20µM boundaries
at 410 m depth. The anomaly is the actual O2 concentration minus the mean
at that location (20µM). Since the overall eddy fluxes point towards the OMZ
interior, positive anomalies indicate oxygenated water entering into the OMZ.
The slopes in the Hovmöler plots indicate overall westward propagation.

O2 anomalies are more variable for the northern boundary (standard deviation
of 4.8 µM) than for the southern boundary (standard deviation of 3.1 µM). This
difference is probably related to the fact that at the North boundary, the O2
content of northern adjacent waters is much higher than the OMZ levels while at
the South boundary this difference is not so strong. Additionally, at the North
boundary the O2 front is more stable meaning that there is an available pool of
O2 rich waters readily available to be entrained into to the OMZ by propagating
mesoscale structures. At the southern boundary the O2 anomaly seems to be
dependent on the actual O2 content of traveling eddies that occasionally approach
the boundary.
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Figure 5.9: Entrainment of O2 rich waters into the OMZ due to LCS
motion. Color codifies O2 at 410 m depth and the lines are the 0.075day−1

FSLE isolines. a) 16 September; b) 7 October; c) 25 October; all of
simulation year 21. Note the oxygen-rich tongue entering the OMZ at
80 − 82oW. White continuous line is the 20 µM mean isoline at 410 m

depth (corresponding to the southern OMZ frontier).
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Figure 5.10: Hovmöller plots of O2 concentration anomalies at OMZ
boundaries at 410 m depth during simulation year 21. A) Northern bound-
ary. B) Southern boundary. Anomaly measured relative to 20 µM level.
Distance along boundary increases towards offshore. So, coast is at the

right and the anomalies propagate offshore.
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At the northern boundary the anomalies last longer than at the southern one
and remain more coherent during their propagation offshore In the South, ven-
tilation events are more intermittent. However, during the year under analysis,
the greatest episode of O2 anomaly crossing the OMZ at this depth occurred in
the southern boundary with peak O2 anomaly of ∼ 17 µM around day 300 and
between 600 and 800 km from the coast (this is the episode depicted in Figure
5.9).

The observation of ventilation events into the OMZ by eddy activity are important
to elucidate the physical mechanisms that promote them, but a composite picture
of their effect can only be achieved by a statistical analysis of several events during
a relevant time period. A quantification of the mean amount of O2 entering
through the OMZ frontiers due to turbulent processes was carried out by the
computation of eddy fluxes of O2 normal to the northern and southern boundaries.
We computed O2 eddy (or turbulent) fluxes by using the Reynolds transport
theorem and the decomposition of the velocity and O2 concentration fields in
their mean and fluctuating components. We calculate them across the mean
20 µM level boundary between 200 and 600 meters of depth during simulation
year 21. Eddy fluxes are computed from the covariance between horizonal velocity
anomalies and O2 concentration anomalies. The eddy flux across each of the mean
20µM north and south boundaries was computed by averaging the product of the
fluctuating velocity component normal to the boundary and the fluctuating O2
concentration component. We choose signs so that positive fluxes are towards
the interior of the OMZ, and negative fluxes point towards the outside. At the
northern boundary the eddy flux profile is mainly positive (Fig. 5.11a, red line),
meaning that the O2 variance due to horizontal turbulent fluxes is bringing O2
into the OMZ. The highest eddy fluxes are reached at core depths between 350 and
500 meters which is close to the depth range where the higher FSLE mean values
at the boundary are obtained (Fig. 5.11a, blue line), although the maximum
value of this latter quantity appears deeper than the eddy flux maximum (350
vs 480 meters). Above 300 meters the normal eddy fluxes are small and the
minimum is obtained around 300 meters, where the FSLE is minimum also.

The profiles of mean and eddy fluxes across the 20 µM OMZ boundaries for
depths between 200 and 600 meters were computed for simulation year 21 and
shown in Fig. 5.12. The fluxes are averaged also along the horizontal extension
of the boundary at each depth. Blue lines are for the northern boundary and red
for the southern one. Overall, the mean fluxes are much smaller than the eddy
ones. In the northern boundary, eddy fluxes and mean fluxes and both positive
up to about 250 m depth. At deeper locations the eddy flux is again positive, and
the mean flow slightly negative (i.e. pointing outsize the OMZ). At the southern
boundary the eddy flux is positive above 380 m, becoming negligible further down.
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Figure 5.11: Vertical profiles of mean FSLE and normal eddy flux av-
eraged along the northern and southern OMZ boundaries from the coast
until 88o W for each depth. Blue lines are for FSLE values and and red

lines for eddy fluxes. a) Northern boundary. b) Southern boundary.
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Figure 5.12: Vertical profiles of O2 fluxes at the 20µM OMZ mean
boundaries between 200 and 600 m depth. The fluxes have been averaged
along the horizontal extension of the boundary (from coast to 88oW) for
each depth, and during year 21. A) Eddy flux profile (these are the red
curves in Fig. 5.11). B) Mean flux profile (note the much smaller values

as compared with the eddy fluxes.)
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Boundary Eddy flux (µmol s−1) Mean flux (µmol s−1)
Northern 6.1526×106 -2.0080×105

Southern 1.0038×107 -3.5625×105

Table 5.1: Eddy and mean O2 flow rates across the 20 µM mean bound-
aries from 200 to 600 m depth and from coast to 88oW.

The mean flux is positive above about 230 m, being negative or negligible below.
Globally integrated between 200-600 m depth and along the northern 20 µM
boundary from coast until 88oW, the eddy turbulent flow rate towards the OMZ
interior is of 6.15×106µmol s−1 whereas the mean flow rate is 2×105µmol s−1 and
directed outwards . At the southern 20 µM mean boundary, eddy fluxes are also
positive (red line in Fig.5.11b along the range of depths considered, being fairly
constant from 200 to 300 m, and nearly vanishing between 400 to 600 m depth.
Integrated between 200-600 m and from coast to 88oW, the eddy turbulent flow
rate towards the OMZ interior is of 1 × 107µmol s−1 whereas the mean flow rate
is 3.56 × 105µmol s−1 and directed outwards. At both OMZ boundaries, eddy
flows tend to bring O2 into the OMZ at a much higher rate than the mean flow
removes O2 from the OMZ. At the southern boundary computed flows are higher
than at the northern boundary probably due to the longer horizontal extension of
the southern boundary. In both boundaries eddy fluxes are more than one order
of magnitude larger than mean fluxes which shows the importance of mesoscale
variability in the OMZ.

5.3.5 Cross-wavelet spectra

As an alternative methodology to quantify correlations between O2 concentra-
tions and the stirring measure provided by FSLE we conducted a cross-wavelet
analysis between the O2 concentration and backward FSLE times series from our
simulation dataset at three particular locations in order to identify the domi-
nant timescales of co-variability. The locations were: BNDNORTH, located on
the northern OMZ boundary (84oW,3oS) and 75 m depth; CORE, located in
the OMZ core (84oW,3oS) at 410 m depth; and BNDSOUTH, in the southern
boundary (84oW,16oS) at 410 m depth.

The climatological wavelet spectra consist in a wavelet decomposition of the in-
traseasonal anomaly time series followed by a calculation of the climatology of the
wavelet power coefficient at each frequency. Wavelet spectra of O2 and backward
FSLE signals were computed following [161] at the three geographical locations.
The time span of the signal is 4 years, from 1st July of simulation year 18 to
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Figure 5.13: Climatological normalized cross-wavelet spectrum of O2

concentration and FSLE time series at (A) CORE, (B) BNDSOUTH
and (C) BNDNORTH. The horizontal axis indicates the calendar month.
Units of the colorbar are 0.8 × 10−4M day−1. The white thick contour in

all panels indicates the 95% confidence level.

30 June of simulation year 22. Intraseasonal anomalies were estimated as the
departures from the monthly mean. Wavelet power was normalized following Eq.
14 of [161] in order to compare the magnitude of the wavelet power at different
frequencies. The mother wavelet used was the Morlet wavelet [161].

The climatology of the resulting cross-wavelet power is shown in Fig. 5.13. The
plots indicate where the energy is dominant, i.e. where is a significant covariance
between O2 and FSLE, as a function of calendar month. Large energy is found
in the intraseasonal frequency band with significant peak energy around 45 days.
The marked seasonality of the intraseasonal activity indicates a link with the
seasonal modulation of the baroclinic instability of the coastal currents (i.e. the
Peru undercurrent) during Austral summer and in the South during Austral
winter.

5.4

Conclusions

To conclude, in this chapter we have addressed the role of mesoscale structures
that populate the OMZ in the ETSP, which are originated from the coastal up-
welling areas of Peru and are advected offshore by a combination of mean currents
and self-propagation. We identify the relevant parts of these mesoscale eddies and
fronts as LCSs that act as barriers to transport controlling fluid interchange in
and out the OMZ. Comparison of the FSLE approach with an exit time charac-
terization supports this view. We find that mesoscale dynamics plays a dual role,
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which can be respectively associated with the average behaviour and with the
turbulent fluctuations. The northern and southern boundaries of the OMZ core
are well determined by the averaged mesoscale dynamics, in particular for depths
between 300 and 600 meters, where a good correlation between average FSLE and
O2 gradients was found. At other depths the relation between FSLE and O2 may
not hold indicating stronger O2 forcing by biogeochemical processes. Episodic
events of OMZ ventilation are produced by turbulent eddy stirring where waters
with high O2 content are entrained into the OMZ by the action of mesoscale
eddies. On the whole, between 200 and 600 m depth, eddy fluxes were found to
bring O2 inside the OMZ at both the northern and southern boundaries, while O2
mean fluxes were much smaller and in the opposite direction. The biogeochem-
ical processes occurring in the interior of the OMZ would provide the dominant
oxygen consumption sink to close the O2 budget.
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Chapter 6

Lagrangian structures in a
coastal filament

The structure and dynamics of an upwelling filament in the Iberian upwelling
system is analyzed. Three-dimensional Lagrangian coherent structures are com-
puted from finite-size Lyapunov exponent fields.

6.1

Introduction

In the Western Iberia oceanic margin, mesoscale processes, rather than the large-
scale variability, are the dominant factors controlling the ecosystem of the region.
The regional oceanography reveals, first and foremost, a series of mesoscale struc-
tures such as jets, meanders, eddies and upwelling filaments, superimposed on the
large scale seasonal patterns. At the ecosystem community level, dynamics with
spatial scales of 10-100 km are determinant for larval retention or dispersal from
general areas and more generally, for the marine plankton communities [162].

In the late Spring/early Summer, predominantly northerly winds start to blow
off West Iberia, driving an offshore Ekman transport forcing the upwelling of
colder, nutrient-rich subsurface waters along the coast. The Ekman transport
is as deep as 30 m and the upwelled waters come from 200 m in a 10-20 km
wide strip at a velocity of ∼ 10 m d-1 [163]. One month after the initiation of
the upwelling favorable winds, large filaments start to develop, associated with
strong offshore currents (∼ 0.5 cm s-1) and can extend more than 200 km offshore
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[162]. The significant offshore mass transport along the major axis of a filament
is larger than that possible by purely wind-driven Ekman dynamics [162] and
the measured carbon export is 2.5 to 4.5 times the carbon export due to Ekman
transport [164], so these features provide an important mechanism for exchange
between coastal and offshore waters, especially of organic materials [165].

Several mechanisms have been proposed for the formation of upwelling filaments:
instabilities of along-shore upwelling jets [166]; wind-stress curl [167]; meandering
of the equatorward jet [168] and topographic forcing [169]. While most of the
filaments in Western Iberia occur associated with important capes [162], there
are some exceptions where the mechanism seems to be dynamic instability or
mesoscale eddies [168].

Observations in situ have elucidated some aspects of the physical and biological
oceanography of upwelling filaments. The offshore flow was found to be limited
to a thin surface layer with substantial onshore flow occurring below 50 m in the
center of the filament, while the strongest and deepest offshore flow was found
at the boundaries [170, 171]. Within the filament, water has been found to be
relatively homogeneous but well isolated from the surroundings [171]. Weak mix-
ing in the core but enhanced at the boundaries has been reported [170]. On
one occasion, opposite rotating eddies were found at the base and tip of the fila-
ment, promoting its generation and fast offshore development. Mesoscale eddies
at the ocean side of the upwelling front, resulting from the interaction of the
poleward flow, topography and upwelling jet were indicated as contributing to
the filament development [172]. A low salinity plume has been mentioned as a
possible input of buoyancy to the filamentary structure, promoting its offshore
elongation [171, 172]. Unlike the pulsating offshore Ekman transport, filaments
provide a permanent offshore displacement of water masses and are responsible
for enhanced transport of chlorophyll [171], while surface waters within filaments
have been found to be depleted of nitrogen [165].

In this chapter we use Lagrangian tools to study the 3d structure of an upwelling
filament in a regional ocean simulation of the Western Iberian shelf and adjacent
ocean using realistic forcing. We compute 3d fields of FSLE during the late sum-
mer/early Autumn of 2007 and extract the 3d boundaries of the filament as ridges
of the 3d FSLE fields. Synthetic tracers are released and tracked numerically in
order to characterize the dynamics of the water masses inside the filament.
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6.2

Data

6.2.1 Simulation of the Western Iberian shelf

The oceanic simulation were done using the Regional Ocean Modeling System
(ROMS, http://myroms.org, [115]). ROMS is a free-surface terrain-following
model which solves the primitive equations using the Boussinesq and hydrostatic
approximations. This state-of-the-art model is highly configurable for realistic
applications and has been applied to a wide variety of space and time scales
across the world [116].

The model domain covers the Portuguese and Galician region, extending well
beyond the shelf break (13.25oW to 7.5oW and 356oN to 45oN) with horizontal
resolution of 2 km in South-North direction and 1 km in the West-East direc-
tion. The vertical discretization used 30 s-layers, stretched to result in increased
resolution near the surface and bottom. The bathymetry was interpolated from
ETOPO and smoothed to satisfy topographic stiffness-ratio of 0.2 [173]. The
minimum depth used was 3 m. The configuration used a fourth-order horizontal
advection scheme for tracers, a third-order upwind advection scheme for momen-
tum, and the turbulence closure scheme for vertical mixing by [174].

The simulations were initiated from November 2003, using realistic initial and
boundary conditions from the global model HYCOM, which provides daily data
from this date. HYCOM [175] has horizontal resolution of 1/12o and the data is
available at 33 vertical layers. This model assimilates observations from several
sources including satellite altimetry, satellite and in situ temperatures, and ver-
tical temperature and salinity profiles from XBTs and ARGO buoys. The offline
nesting procedure employed used a nudging region of 40 km along the model
boundaries. In this layer, the 3d model variables (temperature, salinity and cur-
rents) were nudged towards the HYCOM data with a time scale of 8h. The
nudging was set maximum at the boundaries, decaying sinusoidally to zero inside
the nudging layer. At the boundaries, radiation conditions [176] were used for the
baroclinic variables. Sea surface height and barotropic currents from the parent
models were imposed at the boundaries as [177] and [178] boundary conditions.

ROMS has been applied in many coastal modeling works in the region. For
example in studies of dispersion and recruitment of larvae [179], river plumes
[180] and pollution transport [181]. These studies have been typically based on
climatological open boundary conditions. In the current work, where high realism
was desired, offline nesting has been adopted. It has been shown that using an
assimilated parent model improves the ROMS skill [182], even when parent and

113

http://myroms.org


CHAPTER 6. STRUCTURE OF A COASTAL FILAMENT

child are forced with different atmospheric data [183]. Other works have used the
same nesting procedure and HYCOM as parent model, for example [184–187].

At the surface heat and freshwater fluxes from ERA-INTERIM were used [188]
with a resolution of 0.75o. As wind forcing, it was used data from the Cross-
Calibrated Multi-Platform (CCMP) Ocean Surface Wind Vector Analyses [189].
CCMP uses a variational analysis method to combine data from satellite sources,
producing 0.25o gridded winds every 6 h. This product provides high quality data
from 1987 to 2011 with a spatial and temporal resolution that makes it one the
best global wind products available.

The main rivers from Portugal and Galicia were incorporated in the modeling
configuration. River discharges were obtained from the national institutes and
estimated using the procedures described by [190]. The main rivers, like Douro
and Minho, come from measurements in the studied period, others are used as
monthly climatologies, due to absence of data. River temperatures were set as
equal to the climatological surface air temperature for the region from [191].

6.2.2 3d FSLE fields

The 3d FSLE fields were computed following the method outlined in the previous
chapters, using twice the horizontal resolution of the ROMS grid. The calculation
area of the FSLE fields is shown in Figure 6.1. The vertical resolution is variable
with 30 levels between 5 and 200 m depth, clustered near the surface. The final
distance threshold δ f was set at 100 km and the particles were integrated for 90
days with the 3d velocity field. The period of calculation of FSLE fields went
from late August to early October where filament activity is stronger [168], with
fields computed daily. Both forward and backward fields were computed.

6.3

Results

6.3.1 FSLE fields and mesoscale structures

In this section we describe the structure and distribution of the FSLE fields.
The dynamics in the FSLE calculation region is dominated by a complex pattern
of mesoscale and submesoscale features. At the 24th of September 2007, the
dominant structure is a large anticyclonic eddy located at 42°N and 10°30’ W with
a diameter of ∼100 km (Figure 6.3, top left panel). Westward of this anticyclonic
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Figure 6.1: Western Iberia domain. Black full line: ROMS simulation
domain; Red dash-dot line: FSLE fields domain; Green dash-dot line:

Ridge extraction domain.
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Figure 6.2: Backward FSLE field at 24th of September 2007. A) 9.8 m
depth; B) 17.1 m depth; C) 31.8 m depth; D) 96.8 m depth.

eddy we find a cyclonic eddy forming a dipole structure. Between these eddies, a
large straining region can be found, signaled by the concentration of high FSLE
lines. The dipole is pulling fluid from the south along its axis that is aligned in the
meridional direction. South of this second cyclonic eddy we find an additional
anticyclonic eddy forming a second dipole with the cyclonic eddy of the first
dipole, a not unusual situation, previously observed [192]. This second dipole
has an axis directed along the zonal direction and is pulling fluid towards the
shelf. The fluid pulled zonally by this second dipole is slightly colder (see Figure
6.3, top left panel) than the waters in the dipole’s eddy cores and thus shows as
a colder water tongue along the dipole axis, that is deflect southward when it
encounters the axis of the first dipole, perpendicular to it.

High FSLE lines populate the region, but are found mainly on the boundaries of
the dominant mesoscale structures. The field at the surface layers is markedly
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noisy, while the deeper levels show less small scale noise. The coastal strip (around
9°30’ W) is characterized by patches of low FSLE and zones where the FSLE is
zero. These last regions are characterized by weak dispersion of fluid elements
and the one centered around 41°30’ N and 9°30’ W at 9.8 m depth (Figure 6.2, top
left panel) can be seen to have a thin offshore extension that forms an pathway
to the transfer of coastal waters to the offshore. The fact that these regions have
zero FSLE means that the fluid particles released for those regions will evolve,
backward in time, along close trajectories with very small divergence between
particle pairs. In other words, nearby particles passing through these regions
come from nearby initial positions. Observing the lower levels in Figure 6.2, we
can see that the zero FSLE patch is present at 17 m depth (Figure 6.2, top right
panel) and at 32 m depth (Figure 6.2, bottom left panel), with smaller extension
as we move deeper. This is a signal of an upwelling center, i. e., a region
through which fluid is being raised to the surface (and moved to the offshore, as
is shown in section 6.3.2). Note that this does nor imply that the upwelled fluid
mass ultimately originates at the same region, instead, it is more likely that fluid
converges to these regions at deeper levels and then is raised to the surface along
this upwelling channel.

There are other areas where the FSLE is essentially zero. The large anticyclonic
eddy has zero FSLE in its core along all depths shown in Figure 6.2. Note however
that the eddy is not completely enclosed by high FSLE lines and at the northeast
and southwest sectors the FSLE exhibits non zero values. At the northeast sector
we find an ”avenue” of low FSLE surrounded by two lines of high FSLE. The one
to the left (further offshore), descending from the North, curves to the right
forming the North barrier to the eddy and the other descending also from the
North, forms an eastern eddy boundary. The boundaries also signal the pathways
through which fluid enters the anticyclonic eddy. The eastern boundary closer to
the shore, brings fluid from the coastal region that turns right into the eddy along
its southern boundary, while between both high FSLE lines, there is a pathway
to fluid entering the eddy from the north.

Other regions void of FSLE can be seen further offshore, indicating areas through
which the fluid is passing without significant divergence. These areas maintain
their configuration from the surface at least up to 100 m depth.

6.3.2 Formation and evolution of a coastal filament

In this section we analyse the evolution of the filament since its formation. The
filament studied in this chapter was formed around the 2nd half of September
2007 and was perfectly noticeable at the 20th of September (Figure 6.3, top right
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panel) as a cold water tongue connecting the coastal cold upwelled water above
40°30’ N with a cyclonic recirculation cell centered around 41°N and 10°30’ W.
The filament evolved from a cold water pool entrained in the warm water region
just offshore of the upwelling area. This pool is visible at the 09th of September
centered at 41°15’ N and 9°30’ W (Figure 6.3, top left panel). Adjacent to this
cold water intrusion and centered slightly to the southwest we find the cyclonic
recirculation, still in an initial stage. The formation of the filament is a result of
the interaction between the anticyclonic eddy and the coast topography. Indeed,
several observational and numerical studies of the interaction between anticy-
clonic eddies and shelf topography have showed that this interaction results in
the formation of secondary cyclonic eddies and cross-shore water exchange [193–
195]. In particular, [195] showed, through numerical simulations, the formation
of an cyclonic secondary circulation to a anticyclonic eddy, fed by shelf water
with high potential vorticity that ultimately grows until it forms a dipole with
the anticyclonic eddy.

The dynamics of the filament is determined by this cyclonic eddy but also by
the larger anticyclonic eddy located northward. At the 20th of September the
cyclonic eddy has grown and the water temperature is lower than the surrounding
waters due to the feeding of upwelled cold water by the filament. Four days later
(Figure 6.3, bottom left panel) the filament has an almost straight axis and is still
exporting colder water offshore but in to the cyclonic eddy. Remarkably, there
is a parallel offshore motion of warmer water, north of the cold water filament,
that is recirculating inside the large anticyclonic eddy. The filament is separated
from the warm water adjacent region by a line of high FSLE. While the action
of the cyclonic eddy is evident, the effect of the anticyclonic eddy is not so. It
could be also pulling cold water through the filament, but it seems to be isolated
from the cold upwelled waters by a series of barriers signaled by the high FSLE
lines that are visible around its periphery in the contact zone with the upwelling
front(Figure 6.2, top panels).

The filament dynamics continues and a few day later, at the 06th of October,
we find that a coastal dipole has been formed by the cyclonic and anticyclonic
circulations that now have approximately the same size. Meanwhile the temper-
ature differences have diminished, especially due to the cooling of the waters in
the anticyclonic eddy. This cooling is due mainly to an upwelling event occur-
ring during from the 25th to the 30th of September that supplied the filament
with cold water. The filament continues to evolve further, but its signature is
significantly reduced due to this cooling event.
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Figure 6.3: Filament evolution. A) Sea surface temperature and back-
ward FSLE contours (0.1 day-1) at 09/09/2007; B) 20/09/2007; C)

24/09/2007; D) 06/10/2007.
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Figure 6.4: Vertical section of backward FSLE taken at 10°15’ W at
the 24/09/2007. The FSLE field was smoothed and filtered to improve

clarity. The filament area is highlighted in the white rectangle.

6.3.3 Lagrangian structure and transport in the filament

In this section we look at the transport structure inside the filament. The filament
appears as a thin elongated region of zero backward FSLE, visible in Figure 6.2
at 9.8 m and 17.1 m depth (top panels). The signature is absent on deeper
levels, indicating the shallow nature of this corridor transporting shelf water
to the offshore. A vertical section through the backward FSLE field for the
24th of September 2007 (Figure 6.4) shows its vertical extent to be at most 50
m. Adjacent to the north boundary of the filament, there is a shallow strip
that constitutes the corridor through which the northern waters recirculating
around the anticyclonic eddy enter it at the south border. The boundaries of
the anticyclonic eddy intersect the figure plane northward of the filament and it
is visible that the eddy is slanted toward the north, principally at its northern
boundary that is also the strongest. The cyclonic eddy is seen south of the
filament and, contrary to the anticyclonic eddy, it’s center, at 41°N shows small
but nonzero FSLE.

A profile of the filament was taken for the same date (see Figure 6.5). FSLE,
temperature and salinity fields were interpolated linearly along the filament from
the surface to 200 m depth. The variations in FSLE, temperature and salinity
along the filament are shown in Figure 6.6.

The filament appears as a shallow feature in the FSLE field with a central portion
not deeper than 25 m. At the root, the depth increases beyond 50 m but the
width diminishes. This vertical variation is also visible in the FSLE maps of
Figure 6.2, where we can observe the progressive closing of the zero FSLE area at
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Figure 6.5: Location of the profile path taken along the filament at the
26/09/2007. FSLE map at 14.7 m depth. Brown circles are the nodes of

the profile.

the root of the filament as depth increases. To the offshore, the filament becomes
shallower until it is closed at ∼ 200 km. We can observe that before reaching
the end of the filament, the zero FSLE region has curved southward to adhere
to the cyclonic eddy that is supplied by the water flowing trough the filament.
Temperature variation in the profile indicate that the filament is supplied with
upwelled water that increases its temperature as it flows through the filament.
There is a sharp temperature gradient located 30-50 m below the surface. Salinity
in the profile shows a salient pool of fresh water located at the root of the filament
up to a depth of 50 m. The salinity gradually increases along the profile until
reaching a maximum at 140 km offshore from the filament root. Between 140
and 180 km there is a clear uplifting of isotherms caused by the presence of the
cyclonic circulation to the south, that is adjacent to the profile at this distance
range. This uplifting may also be noticed in the FSLE distribution (panel A)).

Offshore advection by the filament was further investigated by computing particle
trajectories released at the filament root at various depths. Particles were release
at 9°30’ W at the 26th of September 2007 at 7, 12, 24, 29 and 34 m depth. At
each depth, seven particles were released along a line between 41°30’ N and 41°35’
N, inside the filament root. Particle trajectories were integrated until the year’s
end. Only the particles that traveled offshore of 10°30’ W were considered in the
following analysis.
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Figure 6.7: Trajectories of particles released at the root of the fila-
ment. A) Horizontal trajectories; B) Vertical and longitudinal displace-
ment along the particles trajectories. Particles were release at 9°30’ W
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The horizontal trajectories (Figure 6.7 A)) clearly separate the particle sets in two
groups depending on the depth at which they were released: shallower releases (7
and 12 m) take the particles through the filament into the cyclonic circulation to
the south while deeper releases take the particles towards the anticyclonic eddy
north of the filament. Nevertheless, some particles released at 7 m follow the
filament but end up circulating around the anticyclonic eddy. A particle released
from 34 m depth travels northward before entering the anticyclone. Observing
the horizontal trajectories of the 7 and 12 m group of particles that flow through
the filament, it is clear that the filament is not completely vertical and possesses
an northward inclination in the vertical. Furthermore, from the horizontal trajec-
tories it is seen that the only the shallower waters from the filament root are fed
to the cyclonic circulation, while the deeper waters seem to enter the anticyclone.
This can be also observed in Figure 6.2 where at 17 m depth the filament already
is reduced in its length and does not connect to the cyclone. Another feature
of this set of trajectories is that many of them eventually return to the inshore
region through recirculation inside the eddies.

The maximum zonal displacement is ∼ 200 km (Figure 6.7 B)), similar to the
filament extension. The shallower particles, that go through the filament, expe-
rience a subduction in the initial phase and reach the deepest ∼ 60 km from the
release location. They then begin to rise briefly until the 100 km mark. After
this the ”red” particles enter the cyclonic circulation and sink, while the ”green”
particles remain approximately at the same depth. The two red particles that
enter the anticyclonic circulation eventually rise when their trajectories curve an-
ticyclonically to the north. The different behavior of the green and red particles
is most likely caused by the fact that red particles, circulating further from the
cyclone’s center will tend to follow deeper isotherms than the green particles.
The deeper particles curve anticyclonically to the north. Those released at 24
and 29 m, sink sharply in the first 20 km bu then follow a relatively horizontal
path until entering the anticyclonic circulation. The deepest set of particles show
a much greater depth variation along its path and some particles sink abruptly
immediately after the release and then are upwelled and move a short distance
towards the shore before being advected offshore.

The temperature-salinity (T-S) diagram of the particles is shown in Figure 6.8.
The T-S data for the initial locations is marked by crosses. The salinity at the
release locations varies little across the release depths, but temperature can vary
as much as 1°C. The coldest water is found at 24 m depth and the warmer at
29 m depth, warmer than the more shallow release locations. This is caused by
the location of the sharp temperature gradient at the bottom of the mixed layer
in the filament root. The temperature profile (Figure 6.6 B)) shows that this
gradient is located at the depths of the two deeper sets of particles and that the
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Figure 6.8: Temperature-Salinity (T-S) diagram of particles released at
the root of the filament. Black lines in the diagram are constant density

lines. Crosses indicate the T-S properties at the release location.

waters at these depths can be slightly warmer than surface waters (note that the
second node from shore used to define the profile is located at 9°30’ W). The
two shallower sets then evolve mainly in a path were they conserve density as
the T-S diagram shows. The remaining sets show a contrasting evolution of their
T-S relation, exhibiting relatively strong changes to their temperature. While
there are differences between the three sets, there is a general tendency to cool
when sinking (less pronounced in the ”pink” particles and stronger for the ”black”
particles) and then to warm again when they enter the anticyclone. The final
temperature is higher for the particles close to the anticyclone’s core (blue and
black) than for the pink particles that remain towards the periphery.

6.3.4 3d Lagrangian structure of the filament

The 3d Lagrangian structure of the filament was investigated by extracting re-
gions of the 3d backward FSLE field. These ridges approximately coincide with
attracting Lagrangian coherent structures (LCS) of the flow. To avoid unneces-
sary computational effort, the extraction process was limited to a subregion of
the FSLE domain between 11°20’ W and 9°30’ W, 41°N and 41°45’ N and 7 and
70 m depth, see Figure 6.1. In order to extract the ridges by the method outlined
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in section 2.10.2, the FSLE field was smoothed [196, 197] and high-pass filtered
to remove most of the small scale noise.

The relevant ridges for the 26th of September 2007, defining the Lagrangian dy-
namics at the filament area are those that make the boundary of the anticyclone,
the boundary of the cyclone and the Lagrangian structure that separates the fluid
exported offshore that enters the anticyclone from that that enters the cyclone
through the filament (Figure 6.9). Levels of the 3d FSLE field are plotted to-
gether with the 3d ridges at 20 m depth (Figure 6.9 A)) and at 45 m (Figure
6.9 B)). As was already discussed in previous chapters the ridges fall on the high
FSLE lines but the ridge strength is only indirectly linked to the FSLE field.

Fluid elements flow along attracting ridges of the FSLE field, so the blue ridge
is moving fluid offshore from the filament root. The green ridge, on the other
hand is separating the fluid inside the anticyclone from the fluid that is outside
but flows around the eddy. Note that, at least at the surface, this fluid is warmer
than the filament fluid (Figure 6.3 C)) so there should be a barrier separating
these two streams and preventing them from mixing. In the 20 m depth FSLE
map of Figure 6.9 A) there is a line of high FSLE separating these regions, but
the extraction process did not find an ridge there. It is possible that the ridge
extraction threshold was set too high for the intensity of this ridge at this depth.
On the other hand, at 45 m depth there is a ridge separating both streams.

The separating (SP) ridge shape is clearly depicted in Figure 6.10, where it can
be seen that it is connected to the anticyclonic (AC) ridge by an horizontal
“bridge” located slightly below 20 m depth. The surface section of the AC ridge
ends at this same depth and there is an hiatus until a second portion of the AC
ridge begins, the SP ridge has vertical continuity in the range of depths were
the ridge extraction was done. The hiatus is probably an artifact of the ridge
extraction process and results from a smaller intensity of the AC ridge in that
depth range. The cyclonic (CC) ridge also has continuity in the vertical except
at the root of the filament where there is an interruption between 30 m and 40 m
depth. Additionally it is clear that the extension of the CC ridge in the filament
root diminishes with depth, an effect of the contraction of the filament root pool
observed in Figure 6.2.

The thermohaline structure of the filament is depicted in Figure 6.10 where ver-
tical maps of temperature and salinity are shown perpendicular to the filament
axis. There is a clear temperature difference between surface and subthermocline
waters and, furthermore, between the cyclone where isotherms are raised and the
anticyclone where these are depressed. The 3d ridges are located in the transition
between both mesoscale structures. Contrary to what could be expected, the CC
ridge is not adjacent to the cold filament – visible in Figure 6.10 A) as a lower
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Figure 6.9: Ridges of the 3d FSLE field defining the filament. Ridges
extracted the 26/09/2007. Green: boundary of the anticyclone; Blue:
boundary of the cyclone; Red: Ridge separating the two dipoles mention
earlier in section 6.3.1. A) Horizontal FSLE field at 20 m depth; B)

Horizontal FSLE field at 45 m depth.
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Figure 6.10: Ridges of the 3d FSLE field defining the filament. Ridges
extracted the 26/09/2007. Green: boundary of the anticyclone; Blue:
boundary of the cyclone; Red: Ridge separating the two dipoles mention
earlier in section 6.3.1. A) Temperature. B) Salinity. Temperature and
salinity are shown in a vertical plane normal to the filament axis that

passes through 10°27’ W.
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temperature strip apparently coincident with the SP ridge location – but slightly
deviated. The reason for this is visible in Figure 6.3 B) and C), where a tongue of
warm water can be observed between the cyclone and the colder coastal waters.
This tongue is pulled offshore by the cyclonic circulation and forms a boundary
between the cyclone and the filament. Since both masses are flowing offshore,
their divergence is minimal and the CC ridge instead separates the cyclonic cir-
culation from the tongue of warm water that it is pulling offshore. The salinity
structure (Figure 6.10 B)) shows the distinct origins of the anticyclone and cy-
clone. The first has warm, salty water while the second has colder and fresher
waters supplied by the filament from the nearshore. The salinity front is located
at the SP ridge location.

6.4

Conclusions

Coastal upwelling filaments are ubiquitous features of coastal circulation and
they play a very important role in the cross-shelf exchange of water masses. In
upwelling regions this role assumes even greater importance due to the biological
relevance of such regions. The Iberian peninsula upwelling region is populated by
these structures, that achieve maximum activity in late summer. Using outputs
of a numerical simulation of the ocean circulation in the western Iberian coast,
we studied the 3d dynamics of a coastal filament using Lagrangian methods.

The filament was generated in September 2007 by the interaction between an
anticyclone and the shelf circulation. This interaction generated a secondary
cyclone that was fed by upwelled water from the shelf by a filament structure
with ∼ 200 km of extension. The 3d FSLE fields computed in the region show
intense mesoscale activity in the form of mesoscale eddies and submesoscale fronts
that organize transport. The high FSLE lines present in the region allowed us to
identify the major barriers and pathways of fluid transport. The filament itself
appears as a thin region of zero FSLE values, indicating that the fluid moves
unidirectionally in its interior, towards the offshore. The 3d distribution of FSLE
also showed that the water that forms the filament is upwelled from below.

Particle trajectories released at the filament root at several depths showed that
the filament is limited to the first 20 m of depth, where its waters end up feeding
the cyclonic circulation. Below, the waters flowing offshore feed the anticyclone,
but both water masses end up returning to the shelf by the circulation of the
two eddies. Waters in the filament maintain constant density, while those below
the filament cool during their advection offshore. To elucidate further the 3d
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structure and transport of the filament, 3d ridges of the backward FSLE fields
were extracted. These ridges are proxies to 3d Lagrangian structures that induce
coherent fluid motion. The filament is limited by the 3d Lagrangian boundaries of
both the anticyclone and the cyclone and by an additional barrier that separates
waters that flow around the anticyclone from those that feed the cyclone with
cold, upwelled waters. The Lagrangian structures that form the boundaries of
the eddies adjacent to the filament, provide the necessary 3d barriers to mixing
that prevent the filament water from losing its distinct characteristics during its
offshore advection.
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Chapter 7

General Conclusions

Dynamical systems theory has provided powerful tools to the Lagrangian study
of turbulence and fluid motion, especially through the concepts of chaotic ad-
vection, invariant manifolds and Lyapunov exponents. These concepts and tools
have been applied in the literature to the study of various aspects of oceanic
transport by coherent structures, but they have been mostly limited to the sur-
face, in a two-dimensional fashion. This leaves the 3rd dimension and vertical
processes out of the scope of these novel techniques. The importance of the
vertical motions in the ocean and the fact that they are deeply associated with
mesoscale phenomena that were previously successfully addressed motivated this
work where we extended the application of Lagrangian techniques, especially the
concept of coherent structures to three dimensional (3d) oceanic motions.

Measures of material stretching and dispersion in fluid flows such as the finite-
size Lyapunov exponent (FSLE) have been used to identify Lagrangian coherent
structures in flows. The rationale behind this is that maxima of these measures
identify regions of the flow where the fluid behaves coherently, i. e., it behaves
in such a fashion that lasts long enough to be observed.

In two dimensions, the maxima of the FSLE are readily identifiable as these occur
along lines in the domain of the flow, but in 3d the maxima are hidden in the
volume data and they can only be fully visualized by extraction. The concept
of ridge is very useful in this respect because it provides rigorous mathemati-
cal conditions to identify points lying on ridges of scalar fields. We have used
this concept to extract the ridges of the 3d FSLE fields and thus locate the 3d
Lagrangian structures responsible for coherent motions of fluid particles.

The first step was to identify 3d Lagrangian structures in a canonical turbulent
flow, widely studied, and whose coherent structures have been thoroughly inves-
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tigated in the Eulerian perspective. The 3d structures educed in the turbulent
channel flow studied in chapter 3 exhibited analogies with their Eulerian counter
parts and were mostly associated with 3d vortical motions. However, unlike the
Eulerian coherent structures, these Lagrangian coherent structures provided a
clear separation between the near-wall turbulent region of the flow and the more
quiescent outer region. The 3d Lagrangian structures moved with the flow and
thus had a clearly material nature and, furthermore, had a very complex shape,
evolving in all three space dimensions.

The 3d Lagrangian structures in an oceanic setting, the Benguela upwelling re-
gion, were then studied (chapter 4) and they were found to be almost vertical,
with a ”curtain”shape. This is the result of the almost 2-dimensionality of oceanic
motions, that dominate stretching of material lines and stirring of tracers in the
ocean. Mesoscale eddies have 3d barriers around them that prevent the mix-
ing of waters between the eddy interior and the exterior. These 3d barriers are
Lagrangian in nature and control the transport inside and outside of the eddy.
Both attracting and repelling 3d Lagrangian structures were found to define an
mesoscale eddy and the process of filamentation is related to the dynamics of
these barriers. A decreased in intensity of these 3d Lagrangian structures with
depth was found to occur.

The effect of stirring of oceanic tracers by the Lagrangian structures of the flow
was studied for the Oxygen Minimum Zone that develops off the Peruvian coast
(chapter 5). Large average gradients of dissolved O2 were found to be coincident
with high stirring areas, identified as regions with high average values of FSLE.
This relationship occurs more strongly at mid-depth ranges in the core of the
OMZ. The turbulent fluxes of O2 across the boundaries of the OMZ are enhanced
by the stirring caused by Lagrangian coherent structures and mesoscale eddies
with distinct O2 concentrations in their interior can penetrate the OMZ and
cause ventilation events of non-negligible magnitude. Overall, between 200 and
600 meters depth, turbulent eddy fluxes of O2 into the OMZ are one order of
magnitude higher than mean eddy fluxes.

A coastal filament in the Western Iberia peninsula was studied in chapter 6. The
cold water filament was found to be characterized by zero FSLE values, indicating
that the water mass that constitutes the filament is not subject to large straining
or divergence. The offshore transport inside the filament is dependent on depth,
with the position of the ridges of the 3d FSLE field along the depth determining
the ultimate fate of the transported water masses. The structure of the 3d FSLE
ridges show that the filament is limited by the 3d Lagrangian boundaries of
adjacent mesoscale eddies and by the overall 3d mesoscale configuration of the
flow in the region.
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Chapter A

Numerical Methods

Numerical methods used in this work are described here. The bulk of the methods
used were methods to integrate ordinary differential equations to obtain particle
trajectories (section A.1.3), to perform interpolation of 2d and 3d scalar fields
defined in regular and irregular grids (section A.1) and to differentiate such fields
(section A.2). The stretched vertical layer distribution used in some FSLE field
calculations is described in section A.3.

A.1

Interpolation in the ROMS grid

In this work extensive use was made of interpolation techniques, especially in the
particle trajectory integration. Generally speaking, interpolation was necessary
when the position of the particle did not coincide with any grid node in the
velocity grid. The velocity and scalar fields utilized in this thesis were mainly 3d
and time dependent obtained from simulations with the ROMS hydrodynamic
model so here we present the techniques used for interpolation in this kind of
data grids.

A.1.1 The ROMS curvilinear, terrain following grid

The ROMS model uses a 3d curvilinear, terrain following grid (Figure A.1).
The curvilinear horizontal grid is orthogonal and boundary fitted with laterally
variable resolution. The horizontal grid node locations are integer values of the
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Figure A.1: Left: curvilinear horizontal ROMS grid; Right: Vertical
terrain following grid.

grid coordinates (ξ,η). Thus the first coordinate of the particle position, ξ, varied
from 1 to M, where M is the maximum index of the grid coordinate in the direction
of ξ. Similarly, for the 2nd and 3rd coordinates η and σ, their values lay in the
interval between 1 and the respective grid dimensions N and L.

A.1.2 Interpolation procedure

To find the value of a scalar variable φ anywhere in the ROMS grid it is necessary
to interpolate the scalar values stored in the grid nodes. Given a point P(xP, yP, zP)
inside the ROMS grid, the interpolation proceeds by first determining the grid
nodes that sorround P, such that x(ξ, η) < x < x(ξ + 1, η) and y(ξ, η) < y <
y(ξ, η+1) (Figure A.2). Then, at each of the four horizontal grid nodes W1 = (ξ, η),
W2 = (ξ + 1, η), W3 = (ξ + 1, η + 1) and W4 = (ξ, η + 1) we compute the σ′k levels
such that z(Wk, σ′k) = zP. At each point Pk = (Wk, σ′k), the value of the scalar field
φk is computed by 1d interpolation along the water column located at Wk, i.e.,
φk = I(φ(Wk, :)), where I is a generic 1d interpolant (linear, cubic, spline, etc.).
At this moment we posses scalar values in a regular grid square with corners
Pk so that we may find the value φP by any method of 2d interpolation. If in
both interpolation steps, linear interpolation is used then the procedure reduces
to using trilinear interpolation in a regular 3d grid (ξ, η, σ).
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Figure A.2: Interpolation of scalar φ in the ROMS curvilinear grid.

A.1.3 Trajectory integration in curvilinear coordinates

In the case were the full grid information was available (the ROMS grid infor-
mation file) the particle trajectories were described using the grid coordinates
instead of the actual underlying physical coordinates (distances in meters or de-
grees). The advantage of this approach is that, in what concerns interpolation,
the particles are moving in a regular 3d grid, instead of the original curvilinear,
terrain-following ROMS grid.

In order to use this regular (ξ, η, σ) grid, the velocity components that are
computed by the model in physical units (u, v,w) must be transform to grid units
(ũ, ṽ, w̃). This is accomplished by multiplying the velocity vector by the grid
metric:

ũ = u
∂ξ
∂x

, (A.1)

ṽ = v
∂η

∂y
, (A.2)

w̃ = w
∂σ
∂z

. (A.3)

All grid metric terms are approximated as finite differences, e.g., ∂σ
∂z ≈

∆σ
∆z .
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A.2

Differentiation of scalar fields

The differentiation of scalar fields was used to obtain gradient vector components.
The scalar fields were differentiated in a curvilinear grid either in the ROMS
format or a simple latitude-longitude grid, which is curvilinear in an (x, y) frame.
Moreover, differentiation was carried out in constant depth horizontal (z level) or
in variable depth horizontal grids (σ level) such as in the case of the ROMS grid.

To differentiate a scalar field φ in the ROMS grid, i.e. to find the partial deriva-
tives ∂φ/∂x, ∂φ/∂y and ∂φ/∂z, we must first find the derivatives with respect
to the grid coordinates (ξ, η, σ) – ∂φ/∂ξ, ∂φ/∂η and ∂φ/∂σ – that are readily
available using any finite difference differentiation formula.

The relationship between both sets of partial derivatives is given by

∂φ

∂x
=
∂φ

∂ξ
∂ξ
∂x

+
∂φ

∂η

∂η

∂x
+
∂φ

∂σ
∂σ
∂x

, (A.4)

∂φ

∂y
=
∂φ

∂ξ
∂ξ
∂y

+
∂φ

∂η

∂η

∂y
+
∂φ

∂σ
∂σ
∂y

, (A.5)

∂φ

∂z
=
∂φ

∂ξ
∂ξ
∂z

+
∂φ

∂η

∂η

∂z
+
∂φ

∂σ
∂σ
∂z

. (A.6)

Using an indicial notation for simplicity, let xi be a cartesian coordinate and ξ j
a grid (curvilinear) coordinate, then we have

∂φ

∂xi
=
∂φ

∂ξ j

∂ξ j

∂xi
=
∂φ

∂ξ j

βi j

J
, (A.7)

where J is the Jacobian

J = det(Gi j) = det(
∂xi

∂ξ j
) , (A.8)

and βi j is the cofactor of Gi j. In the ROMS terrain following curvilinear grid, the
following terms are zero: ∂x/∂σ, ∂y/∂σ.

In the case of constant z levels, the differentiation is simplified by the fact that the
terms ∂z/∂ξ and ∂z/∂η vanish and the σ and z coordinates coincide (∂z/∂σ = 1).

140



A.3. THE STRECHED VERTICAL NODE DISTRIBUTION

A.3

The streched vertical node distribution

In the FSLE grid definition, a vertical level distribution with variable spacing
was used in some calculations. This distribution is defined by a clustering length
parameter hθ and clustering parameter θs such that the k level’s depths is given
by:

zk = hθσk + (zs − (zb + hθ))Ck − zb , (A.9)

where σk, k = 1, . . . ,Nz is a linearly varying variable between -1 and 0; hθ is a depth
above which the density of nodes increases and Ck is the clustering function given
by

Ck =
1 − cosh(θsσk)

coshθs − 1
. (A.10)

The surface and bottom depths are zs and zb respectively. The bottom is assumed
to be flat so that the levels are horizontal.
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coherent structures and plankton dynamics. In The Ramón Margalef Summer
Colloquia, Barcelona,Spain, July 2013. ICM.

173
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Reviewer for Physica D, Ocean Modelling and ZAMP (Zeitschrift fuer Ange-
wandte Mathematik und Physik)

Computer skills

Programming in FORTRAN90, Matlab, Python2.7
Latex
Finite-element analysis software (ANSYS Mechanical)

174



Computational Fluid Dynamics software (ANSYS Fluent)
3D CAD software (CATIA V5, NX 6)
Large dataset manipulation in NetCDF and HDF5 format
Satellite data retrieval and manipulation:
ENVISAT, JASON1, JASON2, TOPEX-POSEIDON Altimetry
SeaWiFS Ocean color

175
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