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1 Introduction and main objective

Morpho butterflies are among the largest flying insects, boasting a wing that can reach 20 centimetres in span.
Such characteristic allows these butterflies to perform flying techniques that are common in birds but not in
insects, like the gliding and flap-gliding flight style. During flap-gliding, Morpho butterlies fly at speeds of
approximately 1.5 m s−1, and thus the wings operate at Reynolds numbers of the order of 104. At this transitional
Reynolds number regime, aerodynamic performance of a wing is notoriously difficult to estimate, as turbulence
state is difficult to determine a priori (Spedding et al. [2008]). Here, we model the aerodynamics of gliding
Morpho butterflies using different turbulence models with the aim at understanding which ones can give more
realistic and reliable results.

Fig. 1: Free body diagram of a gliding butterfly,
including vectors normal and parallel to the flight
direction, body acceleration vector and vectors of
all external force acting on the animal. The ani-
mal is depicted as a lolly-pop whereby the circle is
the head. The total aerodynamic force consists of
lift and drag components, whereby drag is parallel
to the velocity vector. Applying Newton’s second
law of motion to this system, lift and drag can be
estimated from the acceleration and weight vec-
tors (Eq. 1).

2 Kinematics and morphology of a flap-gliding Morpho butterfly

The experimental data used for validating our numerical simulations is a glide section of a flap-gliding flight of a
Morpho cisseis butterfly. The flight was filmed in semi-field conditions with a stereoscopic high-speed camera
system, recording at 240 frames per second. Throughout the stereoscopic video, we tracked the position of
head, tail, and left and right wingtips, using a manual tracking program. Based on the head location data, we
estimated the velocity (v) and acceleration (a) of the animal throughout the glide (Figure 2 (a)); by combining
the wing orientation data with the velocity data, we determined the angle-of-attack of both wings throughout
the gliding flight (Figure 2 (b)).

Butterfly wings consist of a front and hind wing, that are most of the time pressed against each other, and
thus effectively operate as a single wing. Each wing consists of a flexible membrane (∼0.1 mm thick) supported
by stiffeners (∼1mm thick). These stiffeners, called wing vanes, are mostly allocated near the leading edge. The
wing surface is covered by scales that give colour to the wing, but also produce roughness on the wing surface.
The wing of a Morpho cisseis butterfly has an average width of 7.5 cm and a mean chord length of 5.2 cm.
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3 Inverse dynamics model of a gliding butterfly
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Fig. 2: Experimental kinematics data of the gliding
phase in a flap-gliding flight of a Morpho cisseis butter-
fly, determined using stereoscopic high-speed videog-
raphy and inverse dynamics modelling (Section 3). The
parameters shown are the temporal dynamics of flight
velocity (a), angle of attack of the left and right wings
(b), drag force (c), lift force (d), lift-to-drag ratio (e).

Based on the accelerations of the butterfly throughout
its gliding flight, we used rigid-body inverse dynam-
ics modelling to estimate the aerodynamic lift L and
drag D acting on the animal (Figure 1). By assum-
ing zero wind conditions, we determined the aerody-
namic force (Faero) acting on the animal using New-
ton’s second law of motion as

Faero = −mg + ma, (1)

where m is the mass of the butterfly and g is the gravi-
tational acceleration. The next step consists in pulling
the drag and lift vectors out of the Faero vector. The
drag is defined as the aerodynamic force component
in the free-stream airflow direction, and is thus calcu-
lated as (Figure 2 (c))

D =< v̂,Faero > v̂, (2)

where v̂ the normalised velocity field vector and
< v̂,Faero > is the scalar product of v̂ and Faero. Note
that this will lead to negative values for drag. The
lift was estimated as the difference between the to-
tal aerodynamic force and drag as (Figure 2 (d))

L = Faero − D. (3)

Finally, based on these results, the lift-to-drag ra-
tio (L/D) throughout the glide phase was determined
(Figure 2 (e)).

4 Numerical simulation setup

For the numerical simulations, we modelled a sin-
gle Morpho butterfly wing in gliding conditions,
whereby the wing root was positioned at a symme-
try plane ( Figure 3). The wing model consisted of a 1
mm thick rigid smooth flat plate operating at the aver-
age angle of attack (10.91◦) and average flight speed
(1.61m/s) of the digitised gliding flight (Figure 2 (a),
(b)). The wing outline was accurately traced from a
museum specimen of a Morpho cisseis butterfly; the front and hind wing were rigidly connected matching the
position that was observed to be used by this specie during gliding flight. The edges of the wing were rounded
with 0.5mm radius, except for the edge lying on the symmetry plane, which was sharply cut.

The domain of the numerical simulations consisted of a 2 × 1 × 2 metres box, with the hinge of the wing
positioned in the origin, which raises in the middle of the xz plane. An inflow condition directed in the −x
direction was set on the boundary plane x = 1 and a symmetry condition was set on the boundary plane y = 0.
All the other external surfaces were defined by a zero-pressure condition and the wing was defined by a no-slip
condition.

In order to perform a study on the uncertainty due to spatial discretization, for each case four unstructured
grids with different refinement were used (Table 1). The time step was set to 0.8 ms; with this value, the mean
flow needs more than 50 time steps to sweep the length of the wing.



(a) (b)

(c) (d)

Fig. 3: The mesh topology used for the simulations. (a) the wing surface mesh; (b) the complete computational
domain with in its centre the wing surface mesh from (a); (c) the complete symmetry plane, with two box
refinements around the wing; (d) zoomed in view of the refinement boxes around the wing, whereby the wing
is positioned in the finest cell box.

For this study, we selected five different numerical setups to test, using the following turbulence models:
Spalart-Allmaras, SST κ − ω, SST κ − ω with γ − Reθ transition modelling (with two different inlet conditions:
νt/ν = 2.5 and νt/ν = 10) and PANS.

The SST κ − ω model was chosen because it tends to provide relatively precise results, particularly in
aerodynamic applications (Menter [1993]); since previous studies suggested that insect flight is characterised
by unsteadiness of the flow (Sane [2003]), the steady results obtained with this setup left some doubts. For
this reason, we believed that, thanks to its origin and field of application, the Spalart-Allmaras model was as a
valid alternative turbulent model to check if any differences would have arisen (Spalart and Allmaras [1992]).
Moreover, since it was not possible to state a priori if and how turbulence would have been developed, we
added to the SST κ − ω model the γ − Reθ equations to investigate this topic. Since, following Menter et al.
[2004], the latter provided to be sensitive to the inlet conditions imposed, two configurations of the γ − Reθ
model where set to further investigate this aspect (see validation examples in Langtry and Menter [2005]).
Finally, PANS model was chosen as a final attempt to further study this case and to better catch the effects of
turbulence. The latter simulations are still in progress and will need further refinements both in time and space
to provide reliable data.

5 Results

To test our different numerical cases, we compared the lift, drag and lift-to-drag ratio from the numerical
simulations with those estimated from the glide kinematics (Figure 7). The error bars in Figure 7 represent
the uncertainties due to spatial discretisation for drag, lift and lift-to-drag ratio for each numerical simulation,
which are estimated following the procedure explained in Eça and Hoekstra [2014]. All the uncertainties lie
in between 2% and 12%; the estimation is not studied yet for the PANS simulations and not given for the
experimental data.
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Fig. 4: (a) L2 norm residuals for the SST κ − omega model with the finest grid, in logarithmic scale; on the x
axis the number of time steps. The Spalart-Allmaras and SST κ − ω with γ − Reθ transition model have a very
similar residuals trend; (b) L2 norm residuals for the finest grid PANS simulation, in logarithmic scale; on the
x axis the number of iterations.
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(d) Fig. 5: Heatmaps of ντ/ν around the wing at y = 0.03 m, whereby the
wing chord is shown as a grey line; the white line represents the thresh-
old for which ντ/ν = 2, specifying thus where the flow is turbulent. (a)
Spallart-Allmaras, (b) SST κ − ω, (c) γ − Reθ with ντ/ν = 2.5 inflow
condition, (d) γ − Reθ with ντ/ν = 10 inflow condition. The colorbar
ranges from 1.14e-14 to 2.649e+01.

Table 1: Number of cells of
the four grids used for each
turbulence model.

1lev 1,157,340
2lev 3,785,147
3lev 8,406,881
4lev 15,738,960

The SST κ − ω, Spalart-Allmaras and SST κ − ω γ−Reθ simulations converge
to a steady flow solution, with L2-norm residuals reaching values of the order of
10−9 (Figure 4a). Due to computational cost restrictions, PANS simulations were
run with higher tolerance on the residuals (Figure 4b).

The κ−ω, Spallart-Allmaras and γ−Reθ with both ντ/ν = 10 and ντ/ν = 2.5
inflow have a steady flow as result. The PANS simulations lead to unsteady flow
configurations, with the first three levels of refinement reaching a periodic state
(Figure 8).

6 Discussion

Our comparison of aerodynamic forces between the experiment and simulations (Figure 7) shows that all nu-
merical simulations predict larger (in magnitude) drag, lift and lift-to-drag ratio. This systematic offset between
experiments and simulations could come from the presence of air currents during the recorded flight, which
we assumed to be zero. The experiments were performed in semi-field conditions, so air currents could not be
fully controlled, and because butterflies have exceptionally low wing loading small air currents can have a large
effect on their flight.
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Fig. 6: Airflow around the wing (grey line) at y = 0.03 m, as shown
by a heatmap of air velocities in the x direction divided by the free
stream velocity (-1.61 m/s). (a) Spallart-Allmaras, (b) SST κ − ω, (c)
γ − Reθ with ντ/ν = 2.5 inflow condition, (d) γ − Reθ with ντ/ν = 10
inflow condition. The colorbar ranges from -1.982e-01 to 1.177e+00.

Fig. 7: Drag, lift and lift-to-drag ratio of experiments and numerical simulations. The values are taken from the
finest grid setups and the error bars represent numerical uncertainty due to spatial discretisation. For experi-
mental results the uncertainty is not give and for PANS is not computed yet.

We performed the SST κ − ω γ − Reθ simulations to test whether modelling of the transition to turbulent
flow has a strong effect on the resultant aerodynamic forces on the wing. The results show that the transitional
model gives values lying close the SST κ − ω without transition modelling ones (Figure 7), stating that the
transitional model has a small impact on the results. Besides, Figure 5 corroborates such conclusion, since it
shows that transition to turbulence takes place at almost the same point, roughly at 1/4 chord length for all the
four setups. This is also confirmed by the velocity field, visible in Figure 6, which is characterised by separation
on the leading edge followed by a separation bubble that sweeps the whole chord length and develops further
in the wake.

PANS simulations were run with fk = 0.2 and are the only ones to catch unsteadiness in the flow. The
oscillations are mild though, ranging to a maximum of 3.5% of the mean values. It is important to underline
that in PANS simulations, and in particular for a quite low fk as 0.2, a conspicuous amount of turbulence is
expected to be resolved. Therefore it is physically unlikely to obtain a smooth periodic solution: this suggests
that the first three grids are inappropriate for the model, whilst the finest one could be the first one to provide
plausible data. Since the size of the finest grid used is already significant, it is not within the means of this
work to accomplish a full study with this model, which would result in heavy computational costs and efforts;
therefore, PANS results reported here have to be considered as preliminary.

7 Conclusions

The present work shows a general schedule to approach the study of the airflow surrounding the wings of Mor-
pho butterflies using computational fluid dynamics. Moreover, it provides a mathematical model for computing



Fig. 8: Oscillatory aerodynamic forces for PANS simulations. Note that the coarser grids (1lev, 2lev, 3lev)
provide periodical solutions, whilst the finest (4lev) provides a non periodical one.

the aerodynamic forces acting on a butterfly during gliding flight.
This study shows that, despite the strong assumptions and approximations made due to the limited tools

available to study such delicate, small and light insects, numerical experiments can give results lying in the
range of values indicated by experimental data.

The many different turbulence models used reveal concrete difficulties in catching the unsteady phenomena
that experiments and previous literature suggest are taking place. Besides, κ−ω based models offer results that
differ from each other by quantities that are consistently smaller than the ones between the experimental data
and the numerical experiments themselves, stating how few the changes brought by transition modelling are.
PANS simulations provide an interesting alternative surely capable to catch more detailed characteristics of the
flow, even though this comes at a significant cost, which is perhaps unjustified considering the present setup,
hypothesis, assumptions and uncertainties in the experimental data.
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