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1 Introduction

At model-scale conditions (diameter-based Reynolds number below 106), laminar-to-turbulent transi-
tion plays an important role on the performance of a propeller. While at these Reynolds numbers tur-
bulent transition and its effects on the flow are difficult to simulate, current state-of-the-art transition
models (Menter et al. (2004)) provide viable means to do so. Previous studies on these new methods
(Eça et al. (2016), Baltazar et al. (2018), Lopes et al. (2018)) show that, as in reality, the results are sen-
sitive to the inlet turbulence intensity and its decay upstream of the propeller plane. In the aforementioned
studies, numerical uncertainties were reported to have been small. Therefore, it is expected that variabil-
ity of the user-specified inflow conditions will have a dominant effect on the solution.

To better understand the associated uncertainty of model-scale open-water propeller performance
predictions, Uncertainty Quantification (UQ) methods are employed in this work. Given a prescribed
range of input uncertainties reflecting typical ranges found in test facilities and RANS simulation set-
ups, a laminar-turbulent transition model is used in CFD simulations of the Duisburg Propeller Test
Case. This paper then aims to use the results in order to quantify the parameter uncertainty and obtain
the output-variable’s Cumulative Distribution Function (CDF), confidence interval and the Sobol indices
of each input variable. Together, these quantities are used to suggest suitable ways of achieving accurate
and repeatable predictions of propeller performance at intermediate Reynolds numbers.

2 Methods

In a sampling-based variance decomposition, a function, which is assumed to be a black box, is evaluated
typically a large times and, based on its input values and its response through the output value, variance
can be obtained, allowing to estimate the parameter uncertainty. However, one of the main drawbacks of
this approach is that the quality of parameter uncertainty values is related on how many samples Ni of
function f are evaluated on. This approach might become infeasible with CFD, depending on the case
studied.

An alternative approach proposed in this work is to use an approximate function f̃ as a surrogate
model, which has a considerably lower computational cost, as schematically represented in Fig. 1. In
this approach, some points N need to be sampled from CFD solution and used to construct the surrogate
model. This yields a response surface approximation f̃ which may be used for sampling thousands of Ni

points.
Subsequently f̃ is obtained, it is possible to perform the Uncertainty Quantification. Given the input

uncertainties x, each with its Probability Density Function (PDF), the sampler uses the surrogate model
f̃ to obtain the output uncertainties and Sobol indices (explained in the next section).
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Fig. 1: Algorithm proposed in this work to perform Uncertainty Quantification in a sampling-based
approach with CFD.



3 Sobol indices

Sobol indices of an output variable ym associated with an input variable i denote the variance of the
output, assuming the variable i is known (i.e., without uncertainty), divided by the variance of the output
ym, as expressed in Eq. (1). Therefore, a larger value of S i means that the uncertainty in the input variable
i has a larger effect on the variance of the output. Higher-order interaction index S i+ j has a similar
meaning: variance decomposition by the interaction of the inputs i and j divided by the variance of the
output. The sum of all Sobol indices, including the high-order terms, is equals to one. The total-order
Sobol index S Ti is the sum of all Sobol indices which contains the input variable i, Eq. (1).

S i =
Vxi

(
Ex\xi (ym|xi)

)
V (ym)

S Ti =
∑
i⊂k

S k (1)

More detail about Sobol indices and their estimation are given by Saltelli et al. (2010).

4 Surrogate model

The basic idea behind an estimator is to sample a number of points through CFD simulations, feed
the results to a regression model, thereby correlating the input and output values. The sampled points
are chosen based on a Latin Hypercube Sampling (LHS). The mathematical operation used to create
the surface response is linear interpolation between three nearest points when it is possible to create a
concave surface. Extrapolation of order zero is used in other regions. This is done to avoid overshooting
of results and ensure that the value is bounded within the range of simulated values. Figure 2 shows an
example function estimator that considers a case with two inputs, shown on the x and y axes, and one
output, plotted on the z = C f axis.
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Fig. 2: Schema of function estimator: true response and sampled points (marked as black dots) from CFD
results (left) and the surrogate model based on linear interpolation (right).

One drawback of using few points is the excessive use of extrapolation. To avoid it, sampling points
are added on the edge of input variable range, yielding a so-called Shell Distribution sampling approach.
Figure 3 shows an example of the use of Shell Distribution, LHS distribution and the combined distri-
bution, assuming two inputs x1 and x2 characterised by triangular distributions bounded in [0; 1]. Shell
Distribution also includes a point with the expected value of input variables, which may be interpreted
as the mean input to the CFD simulation.

5 Duisburg Propeller Test Case - DPTC

This study is carried out with the propeller of the Duisburg Propeller Test-Case (DPTC) model P1570 of
Ship Model Basin Potsdam (SVA). Pictures of DPTC and its CAD representation are shown in Fig. 4.
Numerical and experimental studies with DPTC are presented in details in Wielgosz et al. (2019).

The chosen operating condition is close to the maximum efficiency point, J = 0.8, resulting in
Reynolds number based on diameter of ReD = 2.43 × 105.
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Fig. 3: Shell distribution (left); LHS distribution (center); and combined LHS+Shell distribution (right)

Fig. 4: Duisburg Propeller Test Case P1570. Figures extracted from Wielgosz et al. (2019)

6 Mesh topology

Two regions are used: a cylinder, which contains the rotating propeller, and a cylindrical grid, which
represent the stationary part of the cavitation tunnel. The stator mesh is kept the same in all simulations
and includes 1.1 million cells. For rotor region, five topologically identical grids with varying refinement
levels were used. These varied between 5.2 and 31.2 million cells. Fig. 5 shows the five meshes and the
gradation of element size on the blade surface.

Fig. 5: Mesh elements on the blade.

7 Numerical Setup

Simulations are conducted using ReFRESCO (www.refresco.org), a community-based open-usage/open-
source CFD code designed for marine applications, Vaz et al. (2009). Governing equations are discretised
using a finite-volume approach and pressure-velocity coupling is solved using the SIMPLE algorithm.
For momentum transport equations, LIMITED QUICK is used for the convective fluxes. k − ω SST
2003 turbulence model (Menter et al. (2003)) is used in conjunction with the γ − R̃eθt transition model
(Langtry and Menter (2009)). This model was Verified and Validated in Eça et al. (2016). Convective



fluxes of the turbulence equations are discretised with 1st order upwind scheme. All diffusive fluxes are
2nd order and the calculations are steady and in the Absolute-reference Frame Model (AFM).

8 Input Uncertainties and Analysed Outputs

Uncertainties of three input variables are considered: powerTurbIntensity, powerEddyVisc
and pDpx2FreezeTurb.

Variable powerTurbIntensity is related exponentially to turbulence intensity at the inlet,
Tu = 10ˆpowerTurbIntensity. The PDF of this variable is assumed to be a uniform distribution.
The lower bound is -3.301, which corresponds of Tu = 0.0005, smaller than the Selig’s wind tunnel,
which reportedly has a mean Tu = 0.0007 for highest Reynolds number test (Williamson et al. (2012)).
The upper bound is -1.0, which corresponds of Tu = 0.1, chosen based on the mean value of Tu in
rivers (McQuivey (1973)). Although the variable is uniformly distributed, the effect on Tu is exponen-
tial, which resembles a log-uniform distribution.

Variable powerEddyVisc is related exponentially to eddy viscosity ratio at the inlet,
µt/µ = 10ˆpowerEddyVisc. The PDF of this variable is assumed to be a uniform distribution. The
lower bound is -1.301, which corresponds to µt/µ = 0.05. This value is chosen because it is half of
lowest value used in Eça et al. (2016). The upper bound is 3.0, corresponding to µt/µ = 1000, twice of
highest value used in Baltazar et al. (2018).

Variable pDpx2freezeTurb is not a boundary condition, but a parameter to artificially freeze the
transport equation of turbulent kinetic energy, expressed in terms of a fraction of the propeller diameter.
The PDF of this variable is assumed to be a uniform distribution, varying from 0.0 to 1.0.

It should be noted that the chosen input ranges can be considered conservative, since they are larger
than values expected in most realistic scenarios, as well as extreme values reported in the literature.
Therefore, it is expected that the computed parameter uncertainty will be considerable.

The analysed outputs correspond to typical open-water performance indicators, namely thrust coef-
ficient KT , torque coefficient KQ, torque coefficient due to shear forces only KQ, s and hydrodynamic
efficiency η0. These are expressed as:

KT =
T

ρn2D4
p
, KQ =

Q
ρn2D5

p
, KQ, s =

Qs

ρn2D5
p
, η0 =

J
2π

KT

KQ
, (2)

in which n is the rotation rate, Dp the propeller diameter, and J = va/(nDp) is the advance ratio based on
free-stream velocity, va.

9 Results: Effect of CFD Sampling

To verify if the number of samples is sufficient to represent the surrogate model, three levels of sampling
density are compared. All of them include a number of LHS samples plus 9 samples from the Shell
distribution. This sensitivity study was carried out on the medium density grid. Figure 6 shows the CDFs
of various responses for three sample sizes. The output values are divided by the mean value of output,
showing the x axis in terms of percentage deviation from the mean value.

There is little variation in the CDFs of responses when increasing the number of samples from 29 to
49, indicating that 49 samples are sufficient to correctly represent the function estimator. Furthermore,
because the studied input uncertainties were chosen to primarily affect the transition model behaviour,
it was expected that the transition location, and consequently the viscous components of the predicted
forces and moments, would see the largest response. Presented results indicate that among the analysed
outputs, thrust coefficient experiences the smallest variation due to input uncertainties. Since this quantity
is mainly influenced by the pressure distribution around the blade and not the shear forces, this trend is
consistent with the aforementioned expectations. On the other hand, the shear stress distribution has a
higher contribution to the torque than to the thrust and has been predicted to be the most affected by the
variation of the inlet conditions, as evident form its largest uncertainty.
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Fig. 6: Cumulative Density Function (CDF) of each output divided by the output expected value E[Y] as
a function of the number of elements N used to construct the respective surrogate models.

10 Results: Grid sensitivity study

Input uncertainty analysis was carried out for grids of varying densities, described in Sec. 6, using 49
sampling points. Key results of the analysis are the 95% confidence intervals of the outputs, as well as
the associated Sobol indices. These are depicted in Figures 7 and 8 for the thrust and torque coefficients,
respectively. For the latter, only the shear force contribution is considered. Left parts of the figures show
bars in which the bottom and top represent the bounds of the 95% confidence interval coloured propor-
tionally to each Sobol index. On the right-hand side of the figures, Total-order Sobol indices are shown
on an absolute scale, alongside the individual values shown using colour bars. At each mesh refinement
h/h(finest) the vertical bars are offset slightly for readability, knowing that where one Sobol contribu-
tion ends the next one starts. Subscripts 1, 2 and 3 refer to input variables powerTurbIntensity,
powerEddyVisc, and pDpx2FreezeTurb, respectively.
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Fig. 7: Thrust Coefficient KT - 95% Confidence Interval (left) and Sobol Indices with the Total-Sobol
contribution (right) for each mesh refinement. HOT indicates S1+2+3.

The results show that the confidence intervals change considerably with the mesh density for the
KT output but remains almost constant for the shear component of the torque coefficient KQ, s case. As
discussed before, KT is less affected by the parameter uncertainty, so the result may be explained by a
higher influence of the discretisation uncertainty. On the other hand, KQ, s is more sensitive to parameter
uncertainty, making the relative effect of the discretisation uncertainty less pronounced.
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Fig. 8: Torque Coefficient of Shear Stress contribution only KQs - 95% Confidence Interval (left) and
Sobol Indices with the Total-Sobol contribution (right) for each mesh refinement. HOT indicates S1+2+3.

11 Conclusions

Using a surrogate model instead of direct sampling through CFD runs has been shown to be an effective
approach for performing uncertainty quantification analysis of CFD simulations.

The results also showed that, depending on the analysed output, there is a considerable co-dependence
between parametric and discretisation uncertainties. In the future, it is considered important to couple the
uncertainty of the inputs and the grid refinement studies to obtain a combined uncertainty, taking into
account the combined effect of both sets of parameters and their covariance.

The input variables chosen for this test case were focused mainly to understand the transition effect
due to uncertainties on the boundary conditions. The proposed model can be used for other similar
applications, including other input uncertainties. For example, based on experimental uncertainties to
determine the advance velocity or rotation rate on a cavitation tunnel, the presented method can be used
to estimate the impact of these uncertainties on the main indicators of open-water propeller performance.
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