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1 Introduction

For must numerical simulations done in naval and offshore applications considering the fluids to be
incompressible is a valid and reasonable approximation. Specific phenomena like slamming, sloshing
and cavitation may require fluid compressibility to be taken into consideration. The goal of the present
development of ReFRESCO is to modify the current flow solver to accurately solve compressible two-
phase flows.

The first stage of this development was the introduction of a pressure-based single-phase flow solver.
Before continuing ReFRESCO development, it is necessary to check the numerical convergence prop-
erties, i.e., the robustness (iterative errors) and order of grid convergence (discretization errors) of the
solver. For this purpose, two test cases were used: the two dimensional zero pressure gradient turbulent
flat plate and the two dimensional flow over a bump. These test cases were selected from NASA Langley
Research Center Turbulence Modeling Resource webpage (Rumsey, 2009).

In the present work, the results, of ReFRESCO single-phase compressible flow solver are also com-
pared to the results from CFL3D and FUN3D, which are available at Rumsey (2009).

2 ReFRESCO Flow Solver

ReFRESCO (www.refresco.org) is a CFD code aimed for maritime applications. The equa-
tions are discretised using a finite volume approach with cell-centered collocated variables. A face based
implementation permits the use of grids with arbitrary cells geometries, as well as the use of grids with
hanging nodes. Equations are linearised using Picard’s method.

The flow solver used in the present work is a pressure based solver of the compressible Navier-
Stokes equations. Mass conservation is ensured by means of a pressure-correction equation based on
the SIMPLE algorithm. The pressure-velocity-density used in the derivation of the pressure correction
equation is described in Ferziger and Perić (2001) and Muralha et al. (2018). The compressible Navier-
Stokes equations require a relation between temperature, density and pressure, that in the present solver
is given by the perfect gas equation of state.

2.1 Turbulence modelling in compressible flows
In compressible turbulent flows, density and temperature fluctuations must be taken into account.

If the Reynolds average are applied to compressible flows the complexity of the closure approximations
would increase in comparison to incompressible flows, for example, a triple correlation involving density
and velocities fluctuations appears. The time-averaged equations can be simplified by applying a density-
weighted averaging procedure, known as Favre averaging (Wilcox, 1998). It is important to note that this
type of averaging procedure only removes the density fluctuations from the averaged equations, i.e., it is
a mathematical simplification.

The steady Favre averaged mean conservation equations are:
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where ui, ρ, p, T and cp represent the ith component of the velocity vector, density, pressure, temperature
and specific heat at constant pressure and τi j and q j are given by:
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with µ and κ being the dynamic viscosity, which is calculated by Sutherland’s law, and thermal conduc-
tivity coefficient. The overline denotes Reynolds average and the tilde represents mass-averaged.

The Favre averaged momentum equations take the same form as the momentum Reynolds averaged
equations and require the term τi j = −ρu′′j u′′i to be modelled. This term is modelled using Boussinesq
approximation:
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where k = (1/2) u′′i u′′i is the kinetic energy of the fluctuating field and µt is the eddy viscosity.
In the energy equation the following terms require modelling:
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The turbulent heat flux vector, first term starting from the left, is modelled using Reynolds analogy:
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where Prt is the turbulent Prandtl number that is considered constant, 0.90 for air.
The remaining two terms, molecular diffusion and turbulent transport, are usually ignored, which is

a good approximations for flows up to supersonic Mach number range.
Eddy viscosity is calculated using Spalart-Allmaras one equation turbulence model. According to

Allmaras et al. (2012), the turbulence model formulation implemented in ReFRESCO is valid for both
incompressible and compressible flows, so no significant changes were made.

3 Test Cases

As mentioned in Section 1, the two cases used to test the solver robustness are the steady state flow
over a flat plate and over a bump. These test cases are part of NASA Langley Research Center Turbulence
Modeling Resource verification case list, that provides information about each test case domain size and
boundary conditions. Results for two CFD codes (CFL3D and FUN3D) in sets of geometrically similar
grids, as well as the grid sets, are available. For both cases, the flow has an undisturbed Mach number
(M∞) of 0.2 and a temperature (T∞) of 300K. The fluid is considered to be a perfect gas with specific
heat ratio of 1.4 and Prandtl number equal to 0.72. The flow over the flat plate has a Reynolds number
based on unit length (L = 1 m) equal to 5×106, while for the flow over the bump the Reynolds number is
3×106.

Figure 1 illustrates the domain of both test cases and indicates the boundary conditions used at each
boundary. Form Fig. 1a, it is possible to see that the plate extends from x = 0 m to x = 2 m, the inlet is
situated at x = −0.3333 m and the outlet coincides with the end of the plate. The domain used for the flow
over a bump is considerably larger than for the flat plate. The inlet and outlet are located 25 meters apart
from the beginning and end of the bump and the top boundary is located at y = 5 m, giving a domain
height 100 times larger than the bump height. Although large, these type of dimensions are typical of
compressible flow simulations. The bump starts at x = 0 m and ends at x = 1.5 m.
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Fig. 1: Illustrations of the domain and applied boundary conditions used in the simulation of flow over a
flat plate (left) and over a bump (right), as specified in the Turbulence Modeling webpage.

For both cases, the inlet flow is considered to be isentropic and total pressure, pT , and total tem-
perature TT are specified, as well as the ratio between turbulent kinetic viscosity and the fluid kinetic
viscosity (νt,∞/ν = 0.214038). The implementation of the total pressure boundary condition in pressure
based solvers is fully described by Ferziger and Perić (2001). At the outlet, pressure is specified and all
other quantities are extrapolated from the interior cell, with exception of density. It is calculated based on
the specified pressure and on the extrapolated temperature values from the equation of state (Rudy and
Strikwerda, 1981). In the flat plate case a far-field Riemann boundary condition is used at the domain
top. This boundary condition specifies variables according to one dimensional Riemann invariants of the
Euler equations, see Hirsch (1991) for detailed explanation. For all remaining boundaries a symmetry
boundary condition is applied.

4 Numerical Settings

The discretisation of the convective and diffusive terms of all transport equations was performed
using second order schemes, limited QUICK for the convective term and Gauss theorem for gradient
calculation. The simulations were stopped when the L∞ norm of the normalised residuals of all solved
equations were inferior to 10−8 for the flow over a flat plate and 10−7 for the flow over a bump.

The grids are illustrated in Fig. 2. The number of cells of the grids used in the flat plate case ranges
from 816 to 208896, while on the bump case it ranges from 3520 to 901120. The maximum dimensionless
near-wall cell size, y+max, is inferior to 1.15 in the flat plate grids and 0.75 in the bump grids.

For both test cases sets of five geometrically similar grids were used to estimate the numerical un-
certainty and the order of grid convergence, p, based on the procedure introduced by Eça and Hoekstra
(2014).
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Fig. 2: Grid topology used in the simulations.



5 Iterative Convergence
Iterative convergence of the flow solver is illustrated in Fig. 3, that presents the L∞ norm of the

normalised residuals as a function of the iteration counter. The data show that the convergence of the
momentum and energy equations is noisy. The origin of the noise in the convergence is the inlet boundary
condition (specified total pressure and total temperature). In this type of boundary condition velocity,
temperature and density are calculated at every iteration to comply with specified values of total pressure
and total velocity and the perfect gas model. Figure 4 shows the iterative convergence behaviour for the
simulation run using the same grid as in Fig. 3b, but with velocity, temperature and density specified
at the inlet boundary. The change in inlet boundary condition will affect the obtained results, but as the
domain is relatively large the change in results is small (see Section 6).

(a) Flat plate, grid with 544×384 cells. (b) Bump, grid with 352×160 cells.

Fig. 3: Evolution of the L∞ norm of the residuals for the simulation of flow over a flat plate and over a
bump.

Fig. 4: L∞ norm of the residuals for the bump case simulated in a grid with 352×160 cells and specifying
velocity, temperature and density as inlet boundary conditions.

6 Grid Convergence

The select quantities of interest to determine the grid convergence properties of ReFRESCO include
force coefficients (integral quantities) and skin friction coefficient (local quantities). For all the selected
quantities, results obtained with CFL3D and FUN3D (density based flow solvers) in the same grids
are available at Rumsey (2009). Table 1 compares the friction coefficients obtained in the ReFRESCO
simulations (last line) with the results available for CFL3D and FUN3D. The friction coefficient for the



flow over a flat plate is calculated at approximately x = 0.97 m and the frictions coefficients for the bump
case are calculated at approximately x = 0.63 m (upstream from bump peak, C f ,u), x = 0.75 m (bump
peak, C f ,p) and x = 0.87 m (downstream from bump peak, C f ,d). The results obtained for the integral
quantities are presented in Table 2. These tables show that ReFRESCO results are in good agreement
with those determined by CFL3D and FUN3D.

Table 1: Results obtained using the finest grid for the local quantities of interest.

Code
Flat Plate Bump

C f ,x × 10−3 C f ,u × 10−3 C f ,p × 10−3 C f ,d × 10−3

CFL3D 2.7056 5.1852 6.1494 2.6777
FUN3D 2.7054 5.1869 6.1514 2.6808

ReFRESCO (pT and TT ) 2.7079 5.1931 6.1597 2.6870
ReFRESCO (u, T and ρ) - 5.2126 6.1614 2.6915

Table 2: Results obtained using the finest grid for the integral quantities of interest.

Code
Flat Plate Bump
CD × 10−3 CD × 10−3 CD,v × 10−3 CD,p × 10−4 CL × 10−2

CFL3D 2.8599 3.5724 3.1907 3.8170 2.4900
FUN3D 2.8525 3.5611 3.1787 3.8231 2.4942

ReFRESCO (pt and Tt) 2.8621 3.5758 3.1948 3.8102 2.4975
ReFRESCO (ui, T and ρ) - 3.5796 3.1992 3.9038 2.4981
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Fig. 5: Grid convergence of the friction coefficient, C f , and of the drag coefficient, CD

Figure 5 illustrates the grid convergence of the friction coefficient for the flat plate (left plot) and
bump (right plot) cases. Although second order convergence was achieved for manufactured solutions
(laminar flow), for these test cases observed orders of grid convergence are lower than 2, with the bump
test case leading to p = 1. The turbulence model might be responsible for the reduction of the observed
order of grid convergence. As illustrated in Eça et al. (2018), the values of p obtained with the incom-
pressible solver depend on the value of y+. Nonetheless, the error constant obtained with ReFRESCO is
smaller than those derived from the CFL3D and FUN3D data. Therefore, although observed p is larger
for CFL3D and FUN3D than for ReFRESCO, the change in the solutions with grid coarsening is smaller
for ReFRESCO than for the other two flow solvers.



7 Conclusions

This paper presents a study on the numerical convergence properties of ReFRESCO single phase
compressible flow solver. To conduct this analysis two test cases were selected from NASA Langley
Research Center Turbulence Modeling Resource webpage (Rumsey, 2009): the flow over a flat plate
and over a bump. Iterative convergence properties are illustrated for the two test cases using the L∞
norm of the normalised residuals. Observed orders of grid convergence are determined for skin friction
coefficients (local flow quantities) and force coefficients (integral flow quantities). The selected quantities
of interest are compared with the results of two density based solvers (CFL3D and FUN3D) available in
the open literature.

Iterative convergence is significantly affected by inlet boundary conditions based on total temperature
and total pressure, which originates oscillations in the convergence history and the need to use low
under-relaxation parameters. Iterative convergence is improved when velocity, density and temperature
are imposed at the inlet. However, such boundary condition requires a location of the inlet boundary
sufficiently upstream to impose undisturbed flow conditions. Results obtained for the flow over a bump
showed similar results for the two alternatives.

A good agreement between ReFRESCO, CFL3D and FUN3D solutions was obtained, but the ob-
served order of grid convergence obtained with ReFRESCO is lower than that exhibited by the other two
solvers. On the other hand, the error constant of the ReFRESCO solution less sensitive to grid coarsening.

As for the tests reported in Muralha et al. (2018) performed with manufactured solutions, the present
study suggests that the choice and implementation of the boundary conditions has a decisive influence
on the numerical convergence properties of the pressure based compressible flow solver.
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