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1 Introduction

An important application where steady free surface flows appear is the calculation of the steady resistance
of a ship. Often these flows are solved using a capturing method to represent the free surface, e.g. the
volume-of-fluid method (Hirt and Nichols, 1981) or the level-set method (Sussman et al., 1994). A time-
stepping scheme is usually employed to reach the steady state solution. This is inefficient, as transient
phenomena at the free surface may take a large number of time-steps to disappear (van Brummelen et al.,
2001).

The goal of this ongoing research is to develop a fast, steady iterative method to solve the steady
free surface problem. The free surface is represented with a fitting technique, meaning that it lies along
a deformable domain boundary. This has the additional advantage that the free surface can be accurately
represented by a relatively low number of grid points (in contrast to capturing methods). The air phase
is not taken into account, as its influence on the water phase is negligible due to its much lower density.
For convenience of use, it is required that the new method can be used with a general purpose black-box
flow solver.

Currently a 2D version of this method has been completed and its capabilities demonstrated: it gives
good results and converges in a low number of iterations (Demeester et al., ). It is based on quasi-Newton
iterations, where a surrogate model of the flow solver is used to approximate the Jacobian and a rank-one
update is performed in each iteration except the first one. The first step in extending this method to 3D
cases, is to construct a surrogate model for these flows. A strategy to construct the surrogate is outlined
in this paper, and the performance of the resulting surrogate is tested.

2 2D steady free surface method

A short overview of the 2D steady free surface method is given here, for details see Demeester et al., .
The steady free surface problem can be reduced to a root-finding problem: find the free surface height z
so that the free surface pressure p = .%(z) = 0. .% is a (black-box) flow solver in which the free surface
boundary is implemented as a free-slip wall. It takes a vector z € R"™! containing the discretized free
surface height as input, and returns a vector p € R™! containing the discretized free surface pressure as
output.

This root-finding problem is solved iteratively with a quasi-Newton method:

J Az =—p/ (1)

with superscript j the iteration’s index and Az/ = z/*! —z/. The approximate Jacobian J of the flow solver
¥ consists of two parts: a full-rank surrogate model J ¢, and a low-rank least-squares approximation Jgs
based on input-output pairs of ¥ of previous iterations. The least-squares approximation is based on the
IQN-ILS algorithm used in partitioned fluid-structure interaction (Degroote et al., 2009). Js. and Jys
are combined in such a way that there is no overlap between them.

A surrogate model J, is required, which gives a relation between perturbations of the free surface
height and pressure: Jg, Az = Ap. For this purpose, a perturbation analysis in the Fourier domain was
performed analytically on a basic free surface flow (Demeester et al., 2018). The result was a relation
between sinusoidal perturbations of the free surface height and pressure (zx(x) ~ px(x) ~ sin(kx + 6)):

L(k) - z(x) = pe(x)  with  L(k) = pg (Fr2 2
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Fig. 1: Factor L(k) from Eq. (2) for Fr = 0.4, Fig. 2: Some examples of mother wavelets, from
p=g=h=1 top to bottom: Haar, Daubechies 2, Coiflets 2,
Biorthogonal 3.5 (see also PyWavelets, 2019).

with k the wavenumber, p the density, g the gravitational acceleration, / the depth of the flow, Fr =
U/ \/g_h and U the average velocity of the flow.

If both z and p were transformed to the frequency domain (with the Discrete Fourier Transform,
DFT), a surrogate model based on Eq. 2 would be a diagonal matrix. Getting J g, in the spatial domain
takes more effort: two methods based on the Fourier decomposition were proposed. Demeester et al.,
describes a J g, for uniform free surface grids based on orthogonal projectors while Demeester et al.,
2019 describes a J g, for stretched free surface grids based on the convolution theorem.

Fig. 1 plots L from Eq. (2) as a function of k, for subcritical flow conditions (Fr < 1). The curve
of L has a zero at a certain wavenumber. This is the steady gravity wave, which has a phase velocity
equal (opposite) to the flow velocity and therefore appears to be stationary. This wave can appear with
arbitrary amplitude and phase in the solution, so that the steady free surface problem has infinite so-
lutions. Correspondingly, the surrogate model becomes singular. In order to find a unique free surface
solution, additional conditions are added which force the free surface to be flat at the flow inlet. These
extra equations are solved simultaneously with Eq. (1) for Az/ using a least-squares solver.

3 Switching to the wavelet domain

For extending the current method to 3D free surface flows, the first requirement is a new surrogate
model which describes perturbations of a 3D free surface. This adds two difficulties: new physics (effects
perpendicular to the flow direction, see Sec. 3.3) and an additional dimension. The latter is a problem
if a surrogate would be constructed in the same way as for 2D flows: due to the much larger number of
unknowns at the free surface, it would be very expensive to construct the surrogate model and perform
matrix operations on it. This can be seen as follows: imagine a free surface with r grid points in each
direction. For a 2D flow, this would give z € R™! and J € R™". For a 3D flow, this would give z € R” 1
and J € R™ " Matrix calculations for a 2D case on a fine mesh (e.g. r = 1000) pose no problems, but
would be infeasible for a 3D case, even for coarser meshes. A different approach is required.

Waves are typically very smooth for steady free surface flows: it should be possible to make good
approximations of the free surface height and pressure using m smooth basis functions, with m much
smaller than the number of free surface grid points 7.

The Fourier basis may seem the obvious choice: it uses sines of varying wavenumber to represent
signals, it can be calculated efficiently with the FFT (complexity O(nlogn)) and the high wavenumber
components can be removed to get a low-dimensional representation. However, the Fourier basis has a
serious disadvantage: its base signals correspond to a single wavenumber and are consequently not at all
localized in space. As a consequence, local phenomena like a single standing wave are hard to represent
and problems occur at the boundaries of the domain. If a discontinuity is present between boundary
values, high frequency components appear. When the n — m highest modes are removed, an oscillation
appears in the reconstructed low-order signal due to the Gibbs phenomenon. As an alternative to the
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(a) Original signal z. (b) Wavelet basis signals. (c) Low-dimensional signal zj,,.

Fig. 3: Making a low-dimensional approximation of a signal z by decomposing it into the Biorthogonal
3.1 wavelet basis and removing the smallest scale.

Fourier basis, a wavelet basis is chosen.

3.1 The Discrete Wavelet Transform

For a thorough mathematical description of wavelets, the reader is referred to the reference book by
Mallat, 2008, here only the relevant concepts are explained qualitatively. Wavelets are “small waves”,
which are localized in both the spatial and wavenumber domains. This makes wavelets very suitable
for describing local phenomena, e.g. in image compression.! The Discrete Wavelet Transform (DWT)
can be computed very efficiently using cascaded filter banks, giving a complexity of O(n). An orthogonal
wavelet basis can be formed by translating and dilating a single well-chosen mother wavelet.” The choice
of mother wavelet depends on the application, as they can have very different properties. Some examples
are given in Fig. 2.

Fig. 3 gives an example of the 1D DWT to explain which basis signals are removed to reduce the
number of free surface variables. In Fig. 3a an arbitrary signal z is shown. Calculating the DWT of z
means that z is decomposed with respect to the basis signals shown in Fig. 3b. These are discretized
versions of the dilated and translated mother wavelet. Three scales are used here: the basis signals of
scale 0 are shown at the top, those of scale 1 in the center and those of scale 2 at the bottom. By dilating
the mother wavelet each time with a factor 2, the basis signals of different scales will correspond to
different frequency-bands. The coefficients of z with respect to the basis vectors of scale 0 are collected
in a vector Zg € R¥!. Analogously the coefficients corresponding to scale 1 and scale 2 are collected
in respectively Z; € R*! and Z, € R>*!. The vector Z = [Zy Z; Z,]" is then the DWT of z. The
coefficients of the smallest scales can be set to zero to get a low-dimensional approximation of z. In this
example Z;,,, = [0 Z; Z,]" for which the inverse DWT is z;,,,, shown in Fig. 3c. Note that only three
scales are used here and that boundary effects are not taken into account.

3.2 A wavelet-based surrogate

The DWT is introduced in the quasi-Newton iterations to solve the steady free surface problem. For a
non-uniform free surface grid, the pressure p/ is first interpolated to a uniform grid. The DWT is then
calculated, giving the array of coefficients P/ = [P{) P{ ---]17. The s smallest scales are then removed,
reducing the number of variables from »n to m. This also eliminates most interpolation errors, as these
are mainly present in the small scales (high wavenumbers). The low-dimensional pressure in the wavelet

domain [Pg Pi R 1" is then used in the quasi-Newton equation of Eq. (1), which is solved for the new

'The well-known JPEG format uses the Discrete Cosine Transform (closely related to the Discrete Fourier Transform)
for lossy image compression. The newer JPEG 2000 format instead uses the Discrete Wavelet Transform. It was devel-
oped to improve compression performance, but never became widely adopted. https://blog.ansi.org/2018/07/
why—-jpeg-2000-never—-used-standard-iso-iec/

%In fact, wavelets cannot form a complete (bi)orthogonal basis: a wavelet always has average value 0, i.e. it corresponds to
a frequency band which does not include k = 0. The smallest wavelet scale corresponds to the grid size, the largest wavelet
scale depends on the number of scales used in the DWT. To capture all wavenumbers between 0 and the largest wavelet scale, a
scaling function is introduced. These are very similar to wavelets, but have a non-zero average. A dilated and translated mother
wavelet in combination with a translated scaling function, can give a complete (bi)orthogonal basis.


https://blog.ansi.org/2018/07/why-jpeg-2000-never-used-standard-iso-iec/
https://blog.ansi.org/2018/07/why-jpeg-2000-never-used-standard-iso-iec/
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Fig. 4: Example of steps to construct J g, for scale s = 2.

free surface height [Zfrl Zﬁ : ---17. The resulting array is padded with zeros, transformed back with
the inverse DWT and interpolated to the original grid to get z/*!.

As the quasi-Newton equation is now solved in the wavelet domain for a 3D surface, as opposed to
in the spatial domain for 2D, the surrogate model J g, must be adapted to this low-dimensional basis (no
adaption is required for the least-squares approximation Jyg). The detailed construction of the surrogate
model does not fit in the scope of this paper, but an overview of the required steps is given, accompanied
by an example in Fig 4. Construction of the 3D surrogate follows the same procedure, but is even more

cumbersome to describe.

1. The Biorthogonal 3.5 wavelet basis is used, see Fig. 2. This wavelet is smooth, odd, compact in the
spatial domain and well localized in the wavenumber domain. The basis signals are not orthogonal,
but using the DWT and inverse DWT, signals have a unique decomposition and reconstruction in
this basis.

2. Eq. (2) describes the behavior of sinusoidal perturbations of z with wavenumber k. On the other
hand, in the wavelet domain there may be sinusoidal perturbations of Z; with wavenumber k.
It has been observed that each sinusoid with wavenumber k; in the wavelet domain, corresponds
approximately to a sinusoid with wavenumber k in the spatial domain. As a consequence, for each
scale a function Lg(ky) can be derived from L(k). This Lg(k) relates sinusoidal perturbations Z
and P;. In Fig. 4a the relation k(ky) is shown for scale s = 2 of a case corresponding to Fig. 4b. In
that picture, L(k) is shown with the range of wavenumbers corresponding to scale 2 emphasized.
From the curves in Figs. 4a and 4b follows L;(k;) in Fig. 4c.

3. In theory, with # the DFT operator, P, can be calculated for an arbitrary Z; by making a detour
through the Fourier domain: Py = WLy - F(Z,)). However, going through the Fourier domain
is not very practical. Instead, it is possible to replace the multiplication in the Fourier domain by a
convolution in the wavelet domain, using the convolution theorem: F~'(L, - F(Z,)) ~ F(Ly) *
Z ;. The left and right hand sides are equal up to a constant factor which depends on the definition
of the applied DFT.

4. The inverse transform of L; is not known. However, each wavelet scale corresponds to only a small
band of wavenumbers £, so that all L; are close to linear functions of k. Replacing L by a linear
approximation Ly, the inverse Fourier transform can be calculated analytically. ' (L,) damps out
with 1/x%, so a good approximation can be made using only the 7 or 11 central points. Fig. 4c
shows the linear approximation L (k>) and Fig. 4d its inverse DFT, restricted to 11 points.

5. The discrete convolution F~'(Ly) * Z, can be seen as a window F (L) moving over the signal
Z ;. This process can be described by a matrix product J - Z; where the window is inserted in each
row of J g, centered around the diagonal.

6. This process must be done for each wavelet scale which was not set to zero. The individual matrices
J s are put in one big matrix Jg,, € R™.
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Fig. 5: The function L(k) as defined in Eq. (3) for Fr = 0.4,p = g = h = 1. Two approximations used in
constructing J g, are also shown. The zero-contours are shown in white.

3.3 Testing the new surrogate model

In the last step before the surrogate model can be constructed, the relation of Eq. (2) between perturba-
tions of the free surface height and pressure must be extended to 3D flows. Sinusoidal perturbations now
have components in the flow direction (k,) and perpendicular to the flow direction (k). Two notations
are introduced to make the equations more compact: k = (k,, k,) and k> = k2 + k%. For a sinusoidal height
perturbation zx(x,y) ~ sin(kyx + kyy + 6), the linearized Euler equations can be solved (with suitable
boundary conditions), yielding the relation:

kX kh
. = 1 = 2_x —
L(k) - zi(x,y) = pr(x,y)  with  L(k) = pg (Fr 12 anh i 1) 3

Notice that for k, — 0, Eq. (3) reduces to Eq. (2). An example of this relation is plotted in Fig. 5a.

The 3D surrogate model is tested as follows: a height perturbation z = sin(k,x+kyy+6) is transformed
to the wavelet domain, the small scales are omitted, then it is converted to a pressure using J g, and finally
transformed back to the spatial domain. The obtained pressure p can be compared to the theoretically
correct pressure L(k) - z. This process is illustrated in Fig. 6 for k = (3,5). The original domain has
n = 250000 free surface grid points, which is reduced to m = 7747 coefficients in the wavelet domain
by removing the 3 smallest scales.

From Fig. 6¢, the effective factor Ly, (k) obtained using the surrogate model can be estimated. This
should be as close as possible to the correct factor L(k). An interesting way of comparing L and Lg,, for
a given test, is by looking at the amplification factor u = z/*'/z/. This factor expresses how an error
component z will converge/diverge, if only the surrogate model J, is used as approximate Jacobian in
Eq. (1). It can be shown that u = 1 — L/Lg,,. In theory, iterations will converge for a certain error mode
z when |u| < 1 for that mode. The amplification factor is calculated for a whole range of values of k and
the result is shown in Fig. 7a.

In the region where L is close to zero, the result is not good. The reason can be found in Fig. 5b: the
approximation L which is used for constructing J . is not everywhere a good approximation of L, due
to the important non-linearity in L at small k,. In order to get a better amplification factor, a different
approximation of L is made. The original L is a bi-linear interpolation from a number of sampled points
of L. A new approximation L* (see Fig. 5¢) is obtained by adapting the values in some of these points so
that there is a better correspondence between the zero-lines in L and L*. As a consequence, the difference
between L and L* may be larger than between L and L in places, but overall x is much better as can be
seen in Fig. 7b.

4 Conclusion

In this paper, wavelets were used to make a low-dimensional approximation of smooth signals. Fur-
thermore, for biorthogonal wavelets a relation was found between the frequency content of a signal in
the spatial domain and in the wavelet domain. Using this relation, it is possible to construct surrogate
models to approximate the behavior of 2D and 3D steady free surface flows. In 2D the surrogate model
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Fig. 6: Testing the surrogate model for a wave with k = (3, 5).
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Fig. 7: |u(k)|, the absolute value of the amplification factor.

performed very well when solving steady free surface flow with a quasi-Newton method (not discussed
in the paper). For 3D, some first tests were done to check the validity of the surrogate model.

In the near future, more extensive testing of the 3D surrogate model will be done, by applying it to
non-sinusoidal signals and comparing the result to CFD simulations. When the surrogate model performs
satisfactorily, it will be used to extend the 2D steady free surface method to 3D.
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