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1 Introduction

During the transport of Liquefied Natural Gas (LNG) in LNG carriers sloshing can dangerously interfere
with the ship motion through violent breaking-wave impacts with the container walls. The role of free
surface instabilities during these impacts is not well understood [Lafeber et al., 2012]; we will study
it via computer simulation. Its numerical modeling involves dealing with multi-phase flow, featuring a
multitude of jumps (discontinuities) of fluid properties across the interface separating the fluids. The
thin shear layers around the interface usually are numerically underresolved and result in unphysical
interaction between the two fluids. Such an underresolved layer is numerically better described by a
velocity field which has a (contact) discontinuity in the tangential direction.

2 Mathematical model

The equations for incompressible Euler flow describe the conservation of mass and momentum in each
of the phases π = l, g (liquid and gas) in an arbitrary control volume ω = ωl ∪ ωg

d
dt

∫
ωπ
ρπ dV +

∫
∂ωπ\I

ρπuπη dS = 0 (1)

d
dt

∫
ωπ
ρπuπ dV +

∫
∂ωπ\I

ρπuπuπη dS = −

∫
∂ωπ

(pπ − ρπg · x)η dS , (2)

where η denotes the face normal, uπη the face normal velocity component, pπ the pressure, g the gravi-
tational acceleration and ρπ the density per phase. We consider incompressible flow for which the mass
conservation equations result in a volume constraint on the evolution of the interface

d
dt
|ωl| +

∫
∂ωl\I

ul
η dS = 0, where |ωπ| denotes the volume of ωπ. (3)

The influence of surface tension, relevant in this application, is included via Laplace’s law

[[p]] := pg − pl = −σκ. (4)

Here κ denotes the interface mean curvature and [[p]] denotes the jump of p over the free surface. We
assume immiscible fluids without phase change, and therefore [[uη]] = η · (ug − ul) = 0. Together with
appropriate boundary conditions on uπ and a contact angle boundary condition on κ, this results in a
closed system of equations. Note that this model does not impose any smoothness on the tangential
velocity component uτ = τ · u, where τ denotes the interface tangent.

Addition of the mass conservation equations, when divided by their respective densities, yields∫
∂ω

uη dS =

∫
∂ωl\I

ul
η dS +

∫
∂ωg\I

ug
η dS = 0, (5)

thus showing that the mixture velocity field is divergence free. Taking the time derivative of the diver-
gence constraint, substituting the momentum equation and using [[uη]] = 0, yields∫

∂ω

1
ρ
∂ηp dS = −

∫
∂ω
η · (u · ∇)u dS . (6)

We supplement the aforementioned equation with Laplace’s law (4), a homogeneous Neumann boundary
condition on the pressure along the side walls, and a jump condition on the normal pressure gradient at
the interface which is necessary for well-posedness:[[1

ρ
∂ηp

]]
= −

[[
η ·

Du
Dt

]]
. (7)

It follows directly from the strong form of the Euler equations.



3 Numerical model

Notation The cells in the staggered rectilinear (Arakawa C) grid constitute the set C, with faces F (c) for c ∈ C. A
time-dependent subset FI of the faces is cut by the interface I(t) ⊂ Ω; these are split into their liquid and gaseous
parts: f = f g∪ f l. This defines the set F̂ π of all the (possibly cut) faces which are entirely contained in the π-phase;
let F̂ = F̂ l ∪ F̂ g(Fig. 1a). The functions defined on C form Ch, with e.g. p ∈ Ch : c 7→ pc ≈ p(xc), where xc is
the center of cell c. Similarly, we have the space Fh defined in the center x f of the face f with normal η f , whereas
α : C × F → {1,−1} encodes the orientation of the face normals, with αc, fη f pointing outward.

3.1 Momentum equations
In the interior of each of the phases, the momentum equations are discretized using the symmetry-
preserving finite-volume method of [Verstappen and Veldman, 2003]. Near the interface we choose to
discretize the momentum equations in strong form, thereby sacrificing exact momentum conservation but
alleviating difficulties faced with arbitrarily small cells |cπ|(t) and non-smooth-in-time face areas | f π|(t).
At the interface we use a first-order upwind convection scheme per phase, which relies on linear ex-
trapolation of velocities. The interface is represented using the volume fraction field χ̄ = |cl|/|c| ∈ Ch as
per the Volume-of-Fluid method. Advection of the interface is performed using the Lagrangian-Eulerian
Advection Scheme (LEAS) [Zinjala and Banerjee, 2015].

The time integration is performed under a CFL constraint of 0.5 using a second-order accurate ex-
plicit method, followed by a pressure correction step

u∗f − u(n)
f

∆t
= R

(
3
2

u(n)
f −

1
2

u(n−1)
f

)
f
, u(n+1)

f = u∗f −
∆t
ρ

(Gp) f , ∀ f ∈ F̂ . (8)

Here R denotes the convection and gravity terms, and G : Ch → F̂h is the gradient operator.
The pressure implicitly couples the two phases. To make the velocity field divergence free, the

Laplace operator is decomposed in a divergence D̄ : F̂h → Ch and a gradient G:

D̄
(
1
ρ

Gp
)

c
= D̄

(
u∗

)
c , ∀c ∈ C. (9)

The gradient G contains the value jump due to capillarity, as well as the jump in the normal derivative.
At the interface the velocity field is discontinuous, and the divergence operator needs to be modified.

A finite-difference Ghost Fluid Method (GFM) [Liu et al., 2000] will result in an incompatible discretiza-
tion of the pressure Poisson problem. As there will be functions u ∈ F̂h

0 , i.e. vanishing at the boundary,
which are not solenoidal, hence do not all satisfy a discrete Gauss divergence theorem. A consequence
of this incompatibility is that the resulting pressure Poisson equation has no solution.

A finite-volume approach naturally preserves the flux cancellation property which a divergence op-
erator should satisfy, and hence all solutions in F̂h

0 do satisfy a discrete Gauss theorem. We choose the
cut-cell method [Udaykumar et al., 1997]. Face apertures A f ∈ Fh are computed (from the PLIC recon-
struction) as the fraction of the face f ∈ F contained in the reference fluid l, so A f = | f l|/| f |. This gives
the divergence operator

|c|D̄ (u)c =
∑

f∈F (c)

αc, f | f |ū f , (10)

where we define the mixture velocity ū f = A f ul
f + (1 − A f )ug

f (Fig. 1a).
In the interior of the phases we define the gradient G as a standard finite difference operator. Near

the interface the gradient needs modification to sharply capture the imposed jumps, as will be described
next.

3.2 The Ghost Fluid Method
We consider a finite-difference approximation for the gradient at a face f ∈ FI near the interface. The
pressure p ∈ Ch is defined point-wise according to the liquid indicator χ ∈ Ch (χ = 1 in liquid and
χ = 0 in gas). Now, consider a face f which connects two nodes C( f ) = {c, c′} from different phases



(a) CCM: Each face is split into its liquid
and gaseous part f = f l ∪ f g. Shaded region
corresponds to the liquid parts cl, c′l.

(b) GFM: The pressure values de-
noted by p̃ are ‘ghost’ pressures and
not actually part of the solution.

Fig. 1: Illustration of the cut-cell method (CCM: left) and the ghost fluid method (GFM: right).

(so χc , χc′). Hence we know the liquid pressure pl
c on one side of the face and the gas pressure pg

c′

on the other side of the face. Also, we can evaluate the value jump a f = −σκ f (with κ calculated via a
generalized local height function [Popinet, 2009]) and gradient jump b f . The unkown scaled gradients
are denoted by gπf (Fig. 1b).

The scaled mixture gradients, as per the Ghost Fluid Method [Liu et al., 2000], are then given by

ḡ f =
1
ρ̄ f

(Ḡp) f =
1
ρ̄ f

(Gp) f +
δ f a f

ρ̄ f h f
− b f

ρ̂ f

ρ̄ f
, (11)

where ρ̄ f , ρ̂ f are average densities depending on the face aperture A f and the distance to the interface.
The difference between the liquid indicators at opposite sides of the face f is denoted by δ f = h f (Gχ) f ∈

{−1, 0, 1}. If the value jump a f is known at second order accuracy, it follows that the resulting gradient
will be at most first order accurate in h f .

The jump in the pressure gradient occurs only in the component normal to the interface. In [Liu et al.,
2000] it is assumed that the jump component tangential to the interface vanishes: b f = αi f , f [[u

∗
η]], where

αi f , f = ηi f
· η f is the face normal component of the interface normal ηi f

. We refer to this approach as the
‘one-dimensional’ GFM (1d-GFM).

Whenever the interface is not aligned with the face f (hence |αi f , f | , 1), the 1d-GFM is inconsistent.
A multi-dimensional GFM (Md-GFM) has been developed, in which we replace the expression for b f by
a formula which consistently imposes the normal derivative jump condition on the gradient (7). As (7)
involves the dot product of the full gradient with the interface normal, for the interpolation to the face f
of interface tangential pressure derivatives will be required. The interface configuration, defined by the
indicator χ as well as the face apertures A ∈ Fh, defines two types of interface faces where the gradient
will be modified:

– If a face f connects two nodes C( f ) = {c, c′} from different phases (so χc , χc′) we call this an
interface normal face ∈ FIη (Fig. 2a).

– On the other hand, if a face f connects two nodes from the same phase, but with a nontrivial aperture
(so A f < {0, 1}) then we call this an interface tangential face ∈ FIτ (Fig. 2b).

For the discretization of the gradient operator for an interface normal face we choose two faces
f̂ g ∈ F̂ g, f̂ l ∈ F̂ l whose face normals are orthogonal to η f . From here we define the jump interpolant as
(Fig. 2a)

(Ju) f = η f [[u f ]] + η f̂ gug
f̂ g − η f̂ lul

f̂ l , (12)

Using this jump interpolant we can consistently impose (7)

ηi f
·
[
(Jg) f − (Ju∗) f

]
= 0. (13)

Combining (12) and (13), and solving for [[g f ]], yields the jump across the face f

bηf =
ηi f
· (Ju∗) f

αi f , f
−
αi f , f̂ g

αi f , f
gg

f̂ g +
αi f , f̂ l

αi f , f
gl

f̂ l . (14)



(a) Interface normal face f ∈ FIη . (b) Interface tangential face f ∈ FIτ .

Fig. 2: Examples of Md-GFM gradient stencils.

The faces f̂ g, f̂ l should be chosen such that the evaluation of the interpolant can be done explicitly, hence
f̂ π < F̂Iη . Moreover, the interpolant should result in a compact 6-point stencil for the Md-GFM gradient.
Ensuring |αi f , f̂ π/αi f , f | ≤ 1 greatly improves the quality of the Md-GFM operator. For faces f ∈ FIη for
which this ratio exceeds 1 we interpret the face as an interface tangential face instead.

For an interface tangential face f ∈ FIτ we select two faces f̂ g, f̂ l (one of which coincides with f
itself) with the same face normal direction but each in a different phase to be used for computing the
gradient jump (Fig. 2b). This results in the following gradient jump

bτf =
1
ρg (Gp) f̂ g −

1
ρl (Gp) f̂ l . (15)

Composition of the CCM divergence operator with the aforementioned modified gradient operator
defines our Laplace operator, with a stencil fitting in 3 × 3. It is no longer self-adjoint but can still be
shown to be negative semi-definite with only the constant pressure in the null-space.

4 Verification and validation

4.1 Poisson problem
We first compare our proposed method to the Immersed Interface Method (IIM) [Leveque and Li, 1994]
which sharply imposes jump conditions directly on the Laplacian. Hereto, we consider ‘Problem 3’ as
given by [Leveque and Li, 1994] (with β = ρ−1):

∇ ·

(
1
ρ
∇p

)
= f , x ∈ Ω = (−1, 1)2. (16)

The right-hand side f , the Dirichlet conditions, as well as the jump conditions at the interface correspond
with the exact solution p = exp(x) cos(y) when x ∈ Ωl, whereas p = 0 when x ∈ Ωg. Here Ωl is the
interior of a circle with radius 1

2 centered at the origin. Note that p is discontinuous and has a jump in the
normal as well as tangential derivative.

N IIM 1d-GFM Md-GFM
20 4.38 × 10−4 7.78 × 10−3 2.67 × 10−3

40 1.08 × 10−4 6.48 × 10−3 6.15 × 10−4

80 2.78 × 10−5 6.47 × 10−3 1.56 × 10−4

160 7.50 × 10−6 3.20 × 10−3 3.36 × 10−5

320 1.74 × 10−6 1.49 × 10−3 9.11 × 10−6

ρg/ρl || 1
ρ
∇p − 1

ρ
Gph||L∞

106 3.14 × 10−2

103 3.14 × 10−2

100 3.24 × 10−2

10−3 2.14 × 10−2

10−6 2.14 × 10−2

Table 1: (Left) The error ‖p − ph‖L∞ for the Poisson problem defined by (16) (IIM results from [Leveque
and Li, 1994]). (Right) Dependence of the scaled gradient error on the density ratio ρ for the Md-GFM.

We first let ρl = ρg = 1 and vary the mesh-width as h = 2/N where N = 10 × 2l for l = 1, . . . , 5.
The resulting L∞ errors in the pressure are shown in Table 1a. As expected, the 1d-GFM is first-order
accurate, whereas the Md-GFM is second-order accurate, and of comparable accuracy to the IIM. The
main advantage of using the Md-GFM is that the Laplace operator itself follows from the composition of



a divergence operator and a gradient operator which is required in the context of solving incompressible
two-phase problems.

To asses the dependence of the errors on the density ratio we fix the mesh-width h = 2/80, and
vary the density ratio. The resulting gradient errors are shown in Table 1b. We note that the accuracy of
the gradient is independent of the density ratio. Hence the proposed method can be used to accurately
simulate near the one-phase limit ρg → 0.

4.2 A dambreak problem
The proposed discretization has been implemented in our in-house two-phase Navier-Stokes solver Com-
FLOW [Wemmenhove et al., 2015]. Local, adaptive mesh refinement is used, as in [Van der Plas, 2017].

A dambreak problem is studied in a rectangle of size 20 × 12m with an elliptic bathymetry of
half lengths 18 and 2.8 m whose center lies in the left-hand side bottom corner. Slip boundary con-
ditions are imposed. The liquid density is given by ρl = 103 kg/m3, the gas density varies and will
always be indicated. Both fluids are initially at rest and separated by the interface profile y(x) = 7.6 +

3.6 tanh (0.36 (x − 12.5)) . This will result in a flip-through impact (FTI) [Etienne et al., 2018] in which
the wave trough and crest reach the wall at the same time instance, resulting in a violent impact. The
gravitational acceleration is g = −9.81 m/s2 and the surface tension σ = 0.072 J/m2 with static contact
angle of 90◦.

Our base mesh is uniform with Nx = 80 and Ny = 48 cells in the x- and y-direction respectively.
We consider several levels of mesh refinement, where we refine the mesh near the interface using blocks
of size 16 × 16. The refinement level at the interface l ∈ {2, 3, 4} will always be indicated, the resulting
interface mesh-width is given by h = 2−(l+2)m.

(a) Standard two-phase model. (b) Proposed two-phase model.

Fig. 3: The absolute velocity |u| at t = 0.75. The interface is shown at t = 0 and t = 1.47.

We first demonstrate the efficacy of the proposed model when compared to the standard two-phase
model for ρg = 1 and l = 3. For this case, Fig. 3 shows the resulting absolute velocity as the initial
interface profile (dashed) and at a later time t = 1.47 (solid). Note that the standard two-phase model has
a thin region at the interface in which the velocity transitions from gas to liquid. Our proposed model
captures this transition in a discontinuity, which allows the breaking wave to develop properly, as seen
by the interface profile at t = 1.47.

To show the dependence of the solution on the gas density, we vary it as ρg = 10−3, 1, 3 and 5 kg/m3.
For the latter three cases a reference exists by CADYF [Etienne et al., 2018]. Figure 4(top) shows a fair
agreement in terms of the interface profile. The maximum tangential velocity jump increases as the gas
density decreases, which may be expected (Fig. 4(bottom)). For larger gas densities, oscillations in the
tangential velocity jump can be observed just before impact, suggesting that free surface instabilities are
about to develop. Such oscillations are not present for ρg = 10−3, meaning that we successfully approach
the one-phase limit in which no free surface instabilities due to shearing gas flow are present.

5 Conclusion

We presented a discretization approach for capturing contact discontinuities in two-phase flow, with
emphasis on the discretization of the pressure Poisson problem. It imposes smoothness of the velocity
field only in the interface normal direction. A novel combination of our proposed Md-GFM and the CCM



Fig. 4: Interface profiles (top) and velocity dis-
continuity (bottom) for gas densities ρg = 10−3

(black), 1 (blue), 3 (red) and 5 kg/m3 (yellow) at
t = 1.47 and 1.67. The grid-refinement level was
l = 3. Reference solutions by CADYF (colored
markers) [Etienne et al., 2018].

was used to achieve this. We demonstrated that this approach is able to capture contact discontinuities
sharply and accurately, even at high density ratios (demonstrated up to 10−6) close to the one-phase limit.
After adding the effects of compressibility and viscosity, we want to use this model to study the effects
of free surface instabilities in sloshing of LNG and its vapor.
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