
UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

An Algorithmic Framework for the Design, Optimization, and Fabrication of Facades

Inês Alexandra do Côrro Caetano

Supervisor: Doctor António Paulo Teles de Menezes Correia Leitão

Co-Supervisor: Doctor Francisco Manuel Caldeira Pinto Teixeira Bastos

Thesis approved in public session to obtain the PhD Degree in

Architecture

Jury final classification: Pass with Distinction and Honour

2023

UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

DrAFT 2.0

An Algorithmic Framework for the Design, Optimization, and Fabrication of Facades

Inês Alexandra do Côrro Caetano

Supervisor: Doctor António Paulo Teles de Menezes Correia Leitão

Co-Supervisor: Doctor Francisco Manuel Caldeira Pinto Teixeira Bastos

Thesis approved in public session to obtain the PhD Degree in

Architecture

Jury final classification: Pass with Distinction and Honour

Jury

Chairperson: Doctor Teresa Frederica Tojal Valsassina Heitor, Instituto Superior Técnico,

University of Lisbon

Members of the Committee:

Doctor Maria Gabriela Caffarena Celani, School of Civil Engineering, Architecture and Urban

Design, University of Campinas, Brazil

Doctor José Pedro Ovelheiro Marques de Sousa, Faculty of Architecture, University of Porto

Doctor José Nuno Dinis Cabral Beirão, Lisbon School of Architecture, University of Lisbon

Doctor Sara Eloy Cardoso Rodrigues, ISCTE-IUL School of Technology and Architecture

Doctor Francisco Manuel Caldeira Pinto Teixeira Bastos, Instituto Superior Técnico, University of

Lisbon

Doctor Patrícia Isabel Mendes Lourenço, Instituto Superior Técnico, University of Lisbon

Funding Institutions

Foundation for Science and Technology

2023

I

Título DrAFT 2.0: Metodologia Algorítmica para a Exploração, Otimização e Fabricação de

Fachadas de Edifícios.

Nome Inês Alexandra do Côrro Caetano

Doutoramento em Arquitetura

Orientador Doutor António Paulo Teles de Menezes Correia Leitão

Co-Orientador Doutor Francisco Manuel Caldeira Pinto Teixeira Bastos

Resumo

A arquitetura tem continuamente explorado os avanços tecnológicos para melhorar a

representação e produção de soluções arquitetónicas. Ultimamente, as abordagens de Design

Algorítmico (DA) têm tido um papel importante na prática da arquitetura, permitindo

ultrapassar várias das limitações encontradas na resolução de problemas mais complexos.

Contudo, o DA não é trivial de usar pois requer experiência em programação. No sentido de

facilitar a resolução de problemas arquitetónicos complexos e não convencionais, esta tese

propõe uma metodologia e um framework para sistematizar o uso de DA, avaliando a sua

aplicação no desenvolvimento de soluções de fachada.

Para tal, são identificados os problemas e estratégias recorrentes que são relevantes incluir

na metodologia, os quais são posteriormente categorizados numa estrutura modular e

formalizados numa perspetiva matemática. O objetivo é tornar a aplicação da metodologia o

mais universal possível, sendo assim capaz de responder a diversas práticas e problemas de

projeto e ao mesmo tempo adaptar-se à variabilidade e singularidade dos processos

arquitetónicos.

Para avaliar a validade e rigor da proposta, a metodologia é implementada no framework

algorítmico DrAFT 2.0 e usada para reproduzir um conjunto de soluções já existentes. De

modo a provar a sua aplicabilidade e mais-valia para a prática arquitetónica, o framework é

usado num conjunto de casos de estudo reais respondendo a diversas intenções criativas e

problemas projetuais.

A análise dos resultados e do feedback obtido nestas experiências permite responder às

questões de investigação, provando a capacidade da proposta em simplificar o uso de DA na

resolução de problemas complexos e ao mesmo tempo aumentar a flexibilidade e a eficiência

dos processos de projeto. A análise anterior também revela a capacidade da proposta em

II

potenciar o pensamento criativo e crítico dos arquitetos, aumentando não só as possibilidades

de projeto consideradas, mas também a probabilidade de se obterem melhores soluções.

Palavras-chaves: Projeto Algorítmico; Processo Criativo; Análise e Otimização de Projetos;

Fabricação Digital; Projeto de Fachadas.

III

Title DrAFT 2.0: An Algorithmic Framework for the Design, Optimization, and Fabrication of

Facades

Abstract

Architecture has always explored the latest technological advances in terms of design

representation and production. Nowadays, Algorithmic Design (AD) approaches play a

critical role in the conception and production of architectural solutions, overcoming many of

the practice’s limitations in solving more complex design problems, such as those of facade

design. Nevertheless, AD is a complex design approach that requires programming skills and

deviates from the visual nature of architecture. This research addresses this problem by

focusing on the field of facade design, proposing a methodology and framework that reduces

the complexity of AD in solving complex facade design problems.

To that end, the thesis examines recurrent problems and strategies in facade design,

identifying the existing design patterns, formulating their underlying principles, and

organizing them in a categorical way. To generalize the proposal and facilitate its application

in different design practices and briefs, the thesis adopts a mathematical approach and

organizes the formulated principles in a modular way. Since the aim is to support design-to-

fabrication AD workflows, it is important to ensure the adaptability of the proposal to the

context-specificity and variability of architectural practice, as well as to the various methods

and tools used.

To assess the proposal’s validity and accuracy, the mathematical methodology is

implemented in the algorithmic framework DrAFT 2.0 and is used to reproduce an existing

set of building facades. Then, to evaluate the proposal’s applicability and usefulness for

architectural practice, the framework is applied in a set of application studies involving

architects with different AD skills and responding to various design intents and problems.

After reflecting on the research findings, the thesis concludes that the proposal simplifies

AD, increasing the flexibility and efficiency of facade design processes and thus the design

space considered. It also demonstrates how the proposal enhances creative and critical

thinking processes, increasing the likelihood of achieving better solutions.

Keywords: Algorithmic Design; Creative Process; Design Analysis and Optimization; Digital

Fabrication; Facade Design.

V

Acknowledgements

First of all, I would like to thank my supervisors, Professor António Menezes Leitão and Professor

Francisco Teixeira Bastos, for guiding this thesis and for their availability, tireless support and,

above all, their enthusiasm for this research. This work would not have been possible without

their endless contributions and therefore much of its merit is theirs as well. I am also grateful for

the trust they have placed in my work and in my ideas. They provided me with total freedom in

the selection of the research methods, as well as in the development of the research solutions,

which helped, if not the research itself, at least my personal growth as a researcher. I also

sincerely appreciate the numerous opportunities provided throughout these years of research,

both in terms of theoretical contributions and practical collaborations. In particular, I owe a

special thanks to professor António Menezes Leitão for all the time he dedicated to this research

and, above all, to my journey as both a PhD student and a junior researcher at INESC-ID. He

continuously invested in my educational and technical growth while relentlessly mentoring me

throughout this challenging process.

I also give a special thanks to my parents, my family, and my close ones, who had a critical role

in this long journey and made this thesis possible. I thank them particularly for all their emotional

support and, above all, their understanding and companionship.

I am also extremely grateful to the members, and ex members, of the Algorithmic Design for

Architecture (ADA) research group, headed by Professor António Menezes Leitão, for all their

feedback, fellowship, knowledge sharing, and collaboration, particularly to Catarina Belém, Inês

Pereira, Luís Santos, and Renata Castelo Branco. I strongly value their multiple research

contributions, their tireless support, and the time and effort spent on final improvements and

revisions.

I also want to thank my close friends, who directly or indirectly made part of this journey,

especially for their understanding and patience.

Lastly, I would like to thank INESC-ID for the support and recognition given to this research, as

well as the design studios Atelier dos Remédios and FOR-A for their collaborations.

VI

Institutional acknowledgments

This work was supported by national funds through Fundação para a Ciência e a Tecnologia

(FCT) with references UID/CEC/50021/2013, UID/CEC/50021/2019, UIDB/50021/2020, and

PTDC/ART-DAQ/31061/2017, by the PhD grant under contract of FCT with reference

SFRH/BD/128628/2017, and by the PhD grant under contract of University of Lisbon (UL), Instituto

Superior Técnico (IST) and the research unit Investigação e Inovação em Engenharia Civil para a

Sustentabilidade (CERIS).

IX

Table of Contents

Resumo I

Abstract III

Acknowledgements V

Part I | Introduction 1

1. Introduction 3

1.1. Research Problem 3

1.2. Research Assumptions 4

1.3. Research Questions 5

1.4. Research Goals 6

1.5. Challenges and Contributions 6

1.6. Research Methods 7

Methodological Approach 8

Identifying Design Problems 10

Selecting the Design Corpus 10

Proposing a Framework 10

Defining the Mathematical Approach 11

Organizing the Modular Structure 11

Implementing the Framework 11

Developing Application Studies 12

Assessing the Research 13

1.7. Thesis Structure 13

1.8. Terminology 15

1.9. Acronyms 17

Part II | Literature 21

2. Architectural Facade 23

2.1. A Brief History of Building Facades 24

2.2. The Role of the Facade 26

2.3. The Role of Ornament 27

2.4. Contemporary Building Facade Design 30

3. Architecture Meets Computation 33

3.1. The Evolution of Computational Design 33

3.2. Computational Design Tools 34

X

3.3. Computational Design Methods 35

3.4. Computational Design Theory 36

3.4.1. Scientific Events 37

3.4.2. Scientific Production 38

3.5. Computational Design Terminology 44

3.5.1. Computational Design 44

3.5.2. Parametric Design 44

3.5.3. Generative Design 45

3.5.4. Algorithmic Design 46

4. Sketching Through Algorithms 48

4.1. The Birth of Algorithmic Design 49

4.2. Algorithmic Design Paradigms 50

4.3. Algorithmic Design Tools 52

4.4. Algorithmic Design Patterns 59

5. Facing New Design Challenges 63

5.1. The Role of Design Analysis 63

5.1.1. Growing Environmental awareness 64

5.1.2. Assessing Building Performance 65

5.2. The Role of Design Optimization 66

5.2.1. Architectural Design Optimization 67

5.2.2. Early Design Stages Optimization 69

5.2.3. Improving Building Facades 70

5.3. The Role of Collaboration 72

6. Making Digital Real 78

6.1. Digital Fabrication 79

6.2. Design Strategies for Digital Fabrication 85

6.3. Geometric Optimization Strategies 89

6.3.1. Design Rationalization 90

6.3.2. Surface Paneling 95

6.4. Materializing Architectural Creativity 99

Part III | Framework 109

7. Mathematical Representation of Facade Designs 109

7.1. Framework for Algorithmic Facades 109

7.2. Categorical Structure 111

7.3. Mathematical Formulation 115

7.3.1. Geometry 116

XI

7.3.2. Distribution 119

7.3.3. Pattern 121

Shape 122

Two-dimensional elements 122

Three-dimensional elements 128

Stripe-based elements 131

Transformation 134

Affine transformations 134

Rule-based Transformations 140

Continuous Transformations 159

7.3.4. Optimization 167

7.3.5. Rationalization 174

7.3.6. Fabrication 180

7.4. Chapter Overview 185

Part IV | Evaluation 189

8. Framework Application 189

8.1. Study 1 191

8.1.1. Algorithmic Implementation 192

8.1.2. Performance-based Geometric Exploration 192

8.1.3. Structural Optimization 193

8.1.4. Revision and Decision 197

8.1.5. Discussion 198

8.2. Study 2 201

8.2.1. Geometric Exploration 201

8.2.2. Daylight Optimization 203

8.2.3. Discussion 205

8.3. Study 3 207

8.3.1. Geometric Exploration 208

8.3.2. Design Improvement 209

8.3.3. Design Rationalization 209

8.3.4. Discussion 213

8.4. Study 4 215

8.4.1. Design Exploration 215

8.4.2. Design Improvement 217

8.4.3. Design Rationalization 218

8.4.4. Discussion 220

8.5. Study 5 223

XII

8.5.1. Design Exploration 223

8.5.2. Manufacturing-related information 224

8.5.3. Design prototyping 226

8.5.4. Aesthetical Consideration 228

8.5.5. Discussion 230

9. Discussion 231

9.1. Applying the Framework 231

9.2. Comparing AD and non-AD Workflows 235

9.3. Answering the Research Questions 237

Sub-question 1 238

Sub-question 2 238

Sub-question 3 239

Research Question 240

9.4. Addressing the Research Goals 241

Part V | Conclusion 245

10. Final Considerations 245

10.1. Research Overview 245

10.2. Research Findings 246

Mathematical Framework 246

Design Workflow 247

Algorithmic Implementation 247

10.3. Thesis Contributions and Merits 248

Theoretical: Mathematical Framework 248

Methodological: Algorithmic-oriented Methodology 248

Practical: Supporting Facade Design Processes 249

10.4. Limitations and Future Work 249

Research limitations 249

Suggestions for Future Research 250

Relevant publications by the author 253

References 255

Introduction

3

PART I | INTRODUCTION

1. INTRODUCTION

Although being designed as a whole, architecture has always been the result of a composition of different

elements of varying shapes, functions, and materialities. With the field’s tendency to constantly explore the

latest technological advances both in terms of architectural representation and fabrication, the process of

designing and constructing grew in complexity. Not only is the use of more specific and specialized design

approaches required, but the need to independently address the different parts that constitute the

architectural whole also increased.

This investigation focuses on one of these parts, the building envelope, due to its relevance in

materializing conceptual and creative intents and in improving the quality of the built product. Indeed, as

threshold elements between indoor and outdoor, facades have a critical role in mediating the buildings’ indoor

and outdoor environments. More specifically, this thesis proposes a mathematical framework to support the

geometric exploration, evaluation, optimization, and construction of building facades, implemented as the

DrAFT 2.0 algorithmic library. This chapter first presents the motivation behind this investigation and the

research assumptions and questions that guide it. It then elaborates on the research goals, as well as on the

challenges and outcomes of the investigation. Finally, it describes the research methods adopted in this thesis

together with its structure organization.

1.1. RESEARCH PROBLEM

Architecture has always used the latest technological advances in terms of design representation,

development, and construction. The emergence of Computational Design (CD) approaches in the last decades

facilitated the process of searching for design solutions that best meet the existing requirements, and the

production of non-conventional shapes by allowing the use of computation in the design process. Algorithmic

Design (AD) is one such approach that describes designs through algorithms. AD brings several advantages

to architectural practice, such as automating different design procedures and analysis and manufacturing tasks,

increasing design freedom, and facilitating design changes, providing the required flexibility to coordinate

multiple conceptual, performance, and constructions requirements. Among AD’s potential applications, the

design of building facades stands out because of its aesthetic, structural, and environmental relevance. AD’s

4

greater design efficiency and flexibility allowed the design of increasingly complex building facades, being the

resulting solutions often characterized by their unconventional shapes and intricate geometric patterns.

Despite its multiple advantages, there are still barriers to the widespread adoption of AD, the most

evident ones being its technical complexity and high level of abstraction. In addition to requiring programming

skills, which most architects do not usually acquire, AD has an algorithmic nature that greatly deviates from

the visual and tactile nature of architectural design, which is heavily based on iterative feedback loops where

architects evolve their designs. Nevertheless, AD has the potential to solve many of the limitations of current

architectural design practice, particularly in responding to the complexity that results from its (1) variability and

unpredictability, (2) multiple and context-specific constraints, (3) ever-shorter deadlines, and (4) the need to

respond to contemporary social and environmental concerns. Given the amount of time and effort required

to develop and evaluate new design solutions using traditional design approaches, only a restricted design

space, i.e., the set of possible design solutions, is often considered, not only restraining the architects’ creative

potential, but also compromising the quality of the resulting solutions. These limitations are especially evident

in facade design due to the complexity of this architectural element in terms of design conception and

production.

So far, most of the solutions proposed to facilitate the use of AD in architecture resort to visual

programming, which describes algorithms through interconnected graphical elements containing data,

forming dataflow graphs. Visual programming is more popular among designers because of its graphical

nature and higher interactivity and intuitiveness when compared to textual programming. Modern Integrated

Development Environments (IDE) supporting visual programming for Computer-Aided Design (CAD) and

Building Information Modeling (BIM) have increased the adoption of AD by allowing architects to take

advantage of it without having almost any programming experience.

However, the features that make visual programming so appealing, namely its simplicity and

intuitiveness, are also the ones that hinder its application in larger-scale designs. In these cases, visual programs

become very complex and difficult to understand and manipulate. To deal with higher levels of design

complexity, programming languages need to provide abstraction mechanisms, but these are usually only

available for textual programming. Since this thesis addresses complex design problems requiring higher levels

of abstraction, it will focus on the use of text-based AD strategies.

1.2. RESEARCH ASSUMPTIONS

This research assumes that AD is a powerful design approach, opening new opportunities to architectural

practice by improving the flexibility, efficiency, and accuracy of design processes. Nevertheless, it also

recognizes that using AD is not trivial, especially in a field so heavily based on visual and physical elements,

5

such as sketches, plans, mock-ups, among others, as architecture. However, as evidenced in the study

presented in Part II of this thesis, the use of AD has been growing in recent years, mostly because of the new

social, cultural, and environmental needs to which architecture must respond. According to this study,

architects are becoming more aware of AD’s potential to address the growing complexity of architectural

design problems, facilitating performance evaluation and optimization of buildings as well as the coordination

of structural and manufacturing constraints. The growing integration of AD in several architectural studios and

university curriculums worldwide reflects this. As such, this research assumes that the area demands for

methodologies and tools supporting AD will visibly increase in the next few decades and thus it proposes to

address this need in the field of facade design. Based on the previous assumptions, this thesis formulates the

research questions and goals, which are presented in the following sections.

1.3. RESEARCH QUESTIONS

To make AD more accessible to architects, we need to answer the following research question:

How can we reduce the complexity of AD to address intricate design problems?

Considering that the effort of developing algorithms has been addressed in other fields, such as computer

science, through the creation of frameworks facilitating specific applications, this thesis proposes a similar

solution for architecture. Given that these frameworks derive from the systematization of a particular domain

of application, it is possible to reformulate the previous question, while narrowing its scope to the field of

facade design:

How can we systematize AD to address intricate design problems, particularly

those of facade design processes?

Given the scope and diversity of the concepts covered, the previous question is decomposed into sub-

questions focusing on specific aspects.

How to structure AD according to the specificities of each facade design stage, while

smoothing the transition between them?

How to convert conceptual design criteria into algorithmic strategies that respond to

different creative intents and design briefs?

How can the provision of a framework reduce the time and effort spent in AD tasks, while

handling several design criteria since early design stages?

6

These questions guide the investigation, not only helping to identify the challenges of the use of AD in different

design stages, but also making it easier to understand its implications in the architects’ design practice,

particularly when addressing facade design problems. They were also useful to assess the validity and relevancy

of the thesis contributions.

1.4. RESEARCH GOALS

As an architect with an AD background, the author is conducting this research to support architects that intend

to use AD in their design practices, particularly to solve large- scale or unconventional facade design problems.

To that end, this thesis proposes an algorithmic-based methodology addressing the geometric exploration,

analysis, optimization, and fabrication of building facades. To generalize its application, the thesis adopts a

mathematical approach. Additionally, to facilitate the methodology’s use and its continuous extension, it is

organized in a modular, categorical structure. This allows the methodology to be independent of specific

design methods and tools, as well as capable of responding to the context-specificity and variability of

architectural problems.

Through the implementation of the proposal in an algorithmic framework, this work expects to reduce

the technical complexity of AD and facilitate its use in the solution of large-scale facade design problems,

allowing architects to:

Goal 1. Enhance their creative and critical thinking processes.

Goal 2. Articulate different design constraints, tools, and tasks since early stages.

Goal 3. Improve design space exploration and the chance of finding better solutions.

Goal 4. Materialize their solutions through different manufacturing strategies.

The next section elaborates on the challenges of this investigation, as well as on its potential contributions.

1.5. CHALLENGES AND CONTRIBUTIONS

AD is based on algorithms, which are abstract means of representation. This poses several challenges to

architectural practice, the first being that AD approaches will always be less intuitive than traditional design

ones. No matter how much experience an architect has in programming, using AD will always be less intuitive

and technically more complex.

The second challenge results from the fact that architectural practice has a strong visual and tactile

nature, therefore making the integration of AD far from trivial. AD requires architects to think in a way that

largely deviates from the visual nature of the practice.

7

The third challenge is the need to express tangible building elements and abstract creative intents as

algorithmic descriptions. Given the complexity of this conversion, it is often the case that architects spend more

time in algorithmic-related tasks than in design exploration.

Although the number of professionals using AD within the architectural community is increasing, the

challenges of integrating AD in architectural practice are still substantial. It is therefore critical to address these

challenges and provide relevant contributions to the architectural theory and practice, such as:

• Simplifying the development of design solutions.

• Increasing the flexibility and expressiveness of design processes.

• Facilitating the coordination of creative intents with performance criteria since early stages.

• Promoting wider and simultaneously more informed design space explorations.

• Automating the transition from design to manufacturing.

1.6. RESEARCH METHODS

To achieve the enumerated research goals, this thesis proposes a mathematical methodology and framework

to support AD processes within the scope of facade design. To that end, it adopts the research approach

shown in Figure 1.1, which articulates the research question(s), goals, and steps according to the Design

Inclusive Research (DIR) methodology [1], integrating design as a means of knowledge collection and synthesis

[2]. As such, the selection of the research methods in each step considers knowledge from multiple domains

and aims to generate design know-how and problem-solving strategies that fit the context of the problem

addressed while responding to its needs [1].

Figure 1.1. Conceptual representation of the research approach.

8

METHODOLOGICAL APPROACH

To successfully respond to the research questions and goals, this investigation adopts the five-stage

methodology of Figure 1.2, which encompasses the following research steps:

1. Data Collection – This step involves the literature review of several research topics within the scope

of building facades, computational design methodologies and technologies, performance

evaluation and optimization, and fabrication. It also encompasses the collection of a large corpus

of contemporary building facades (named the design corpus) with different geometries and

materialities. The aim is to understand the existing challenges, as well as to collect relevant design

knowledge, particularly in the fields of AD and facade design.

2. Data Analysis – This step entails the analysis of the design corpus and the identification of recurrent

design problems, common design constraints, and applied design strategies. Based on the patterns

found, it then organizes the collected design knowledge by type and role in facade design

processes and studies how such patterns can be mathematically expressed. The goal of this step is

to establish the strategy adopted by the proposal, as well as to define both its structure and content.

3. Proposal – With the goal of simplifying AD in handling larger-scale facade design problems, this

step focuses, first, on the conversion of the collected design knowledge into mathematical

formalisms targeting facade design processes; second, on the modular organization of the

proposed principles into six main categories; and, finally, in the algorithmic implementation of the

resulting facade-oriented theoretical framework.

4. Evaluation – To assess the expressiveness and applicability of the framework in architectural

practice, particularly in the design of building facades, this step imparts, first, the testing of the

proposed mathematical principles in reproducing examples from the design corpus; second, their

application in a set of novel architectural examples developed in practice-based design scenarios;

and, finally, the analysis of the results in terms of implementation accuracy as well as the

framework’s flexibility and ability to generate a corpus of novel facade designs in real-world

scenarios.

5. Discussion – The last step encompasses the critical reflection on the proposal’s ability to (1) simplify

the use of AD within the scope of facade design, (2) reduce the time and effort spent in AD tasks,

(3) increase the design freedom and efficiency of facade design processes, and (4) respond to

different design problems and workflows, whether AD-based or not. The aim is to identify the

merits and limitations of the proposal, as well as potential improvements and extensions that may

be relevant to consider in the future.

9

The first two steps fit into the pre-study phase of the DIR methodology [1], which consists of the collection and

critical analysis of knowledge within the research context and the definition of possible strategies to respond

to the research problem. The third step frames within the DIR’s study phase, which encompasses the

formulation of the research proposal. Finally, the last two steps match the post-study phase of DIR [1], which

addresses the assessment of the research proposal as well as the generalization of its findings.

Additionally, given the practical-reflective nature of most of the research methods adopted in these

phases, the thesis also adopts Practice-based Design Research [1], which involves the use of theoretical

principles in practice to learn from it while informing and improving it: for example, the information gathered

in the first research step is both theoretical and practical and encompasses specific design processes and

contexts; the strategy definition in the second step is mostly reflective and directed towards the abstraction

and generalization of practical knowledge; and the assessment of research is mostly based on practical tests

and design applications.

Figure 1.2. Methodological approach: the five main steps of this investigation (on the left) together with the research

methods adopted (in the middle) and the reasons for their adoption (on the right).

10

The next sections further elaborate on the research steps and methods adopted in this thesis together with

the reasons for their adoption.

IDENTIFYING DESIGN PROBLEMS

To gain a better insight into current architectural design practice and identify the existing gaps, this

investigation starts with the literature review of the field’s last decades, placing particular emphasis on the

emerging computation-based design approaches and fabrication technologies and the current environmental

and social challenges. As the scope of the thesis is building facades, the background of this architectural

element is also studied to understand its historical evolution in terms of function, symbolism, and architectural

expression, and a wide range of contemporary building facades is analyzed to identify recurrent design

problems and collect relevant design knowledge.

SELECTING THE DESIGN CORPUS

The aim of this thesis is to harvest, organize, and build upon prior design knowledge regarding facade design

processes to facilitate the generation of new design knowledge through an AD approach. Therefore,

establishing the framework’s basic structure requires collecting and analyzing a large corpus of building

facades (the design corpus) to identify (1) recurrent design problems and constraints, (2) common design

solutions and strategies, and (3) the different design scenarios and practices that currently exist. The collected

data is important to enumerate the principles to include in the framework as design knowledge, as well as to

guide their future application, therefore generating new design knowledge. The premise is that, although the

proposed framework is based on prior design knowledge (the design corpus), it allows reusing such knowledge

in numerous ways, naturally leading to novel results [3–5]. Moreover, the collected data is also important to

guide the framework’s overall structure and the organization of its principles, resulting in a multidimensional

space where both the collected design knowledge and principles are classified according to their type and

role in facade design processes.

PROPOSING A FRAMEWORK

AD is a powerful but complex design approach that is unlikely to achieve the same ease of use and

understanding of traditional design approaches. One possible solution to simplify AD is through the use of

frameworks, which is already common practice in other research fields, such as computer science [6]. By

providing a conceptual structure supporting and guiding specific applications, not only is the time and effort

spent in algorithmic-related tasks reduced, but the quality of the results is also improved. Moreover, the

provision of frameworks also promotes code reuse, avoiding repeated reinvention and leading to better

structured and optimized results. Given the possibility to create frameworks systematizing specific tasks from

11

various domains, this thesis proposes the use of frameworks in architectural design practice to facilitate

algorithmic-based facade design processes.

DEFINING THE MATHEMATICAL APPROACH

Architectural design is highly dependent on the specific circumstances of the design brief, as well as on the

way architects approach it. Therefore, it is unlikely that the exact same approach can be used in different

projects, whether in an AD or non-AD context. As this investigation addresses the former context, it considers

the variability and unpredictability of architectural design processes in a computation-based perspective. Thus,

it adopts the formalism and modus-operandi of computational tools, which follow a set of instructions

expressed through programming languages. Considering that the most used programming languages are

increasingly approximating the language of mathematics, this research considers the latter’s formalism in

defining the facade design principles and establishing the framework’s structure. Using this notation is critical

to make its application universal across different design briefs and practices, allowing its principles to be (1)

understood and usable by the widest possible audience, (2) independent of the design methods and tools

used, and (3) adaptable to the context-specificity and variability of architectural design processes.

ORGANIZING THE MODULAR STRUCTURE

Architectural design depends on multiple global and context specific design constraints, which makes its

practice a complex and unique process. This thesis focuses on the limitations found during this process,

particularly in solving more intricate and larger-scale facade design problems using AD. Given the endless

variety of possible design scenarios, it is only natural that the principles provided do not cover all possibilities

and thus it is important to structure the framework so that it can be continuously extended with additional

design knowledge and categories of design principles as the need arises. Considering the ability of modular

programming, i.e., software design techniques that separate the programs’ functions into independent,

interchangeable pieces, to embrace a wide range of problems by combining finite sets of solutions [7], this

thesis adopts a similar strategy, organizing the proposed principles categorically to facilitate their selection

and combination. As a result, although the design knowledge available is finite, the framework can respond

not only to the most common design problems, but also to more specific ones, while incorporating them in

its structure whenever the need arises, becoming thereafter available for future cases.

IMPLEMENTING THE FRAMEWORK

Regarding the implementation of the framework, two main approaches are considered: a grammar-based

implementation, such as (1) shape grammars [8], which constitute sets of shape rules whose step-by-step

application originates sets of designs, and (2) a purely algorithmic-based one, such as AD, which encodes

12

shapes and both combination and transformation rules in a parametric way. While the former is often more

intuitive to apply, it is also more difficult to implement and control [9]. The latter, in turn, requires more

technical expertise but is more flexible and expressive [10]. As the goal of the framework is to support facade

design processes, where architects have full control over the course of the project and its expected results, this

thesis adopts the latter approach. The importance of supporting a procedural and deterministic design process

is to enable a conscious and informed design space exploration that allows critical thinking and the

achievement of useful results. Moreover, the algorithmic implementation approach also allows the automation

of repetitive and time-consuming design tasks, as well as the integration of different analysis, optimization,

and fabrication routines, which are critical in facade design processes.

To assess the success of the algorithmic implementation and understand the usefulness of the collected

design knowledge in the context of AD, the framework is then used in the reproduction of part of the design

corpus, proving its ability to reproduce already existing facade designs in a procedural and structured way.

DEVELOPING APPLICATION STUDIES

To assess the applicability of the proposed framework in real design scenarios and thus understand its benefits

and limitations for architectural design practice, its principles are applied in a set of architectural application

studies. Applying the proposed mathematical principles in real-world design scenarios helps build the bridge

between the generality and universality of the theoretical framework and the context-specificity of architectural

design practice. Given the practical purpose of the framework, this method seems to be the most appropriate

to (1) identify the strengths and weaknesses of the framework, (2) acquire and compare practice-based design

knowledge, and (3) identify new design knowledge and requirements that are relevant to include in the

mathematical methodology.

To ensure the heterogeneity of the evaluated sample, the application studies present varying levels of

design complexity and respond to different design intents and constraints. Moreover, while some of them are

entirely developed by architects with AD skills, others are the result of collaborations between architects with

different levels of AD experience. In the end, the application of a practice-based evaluation method makes it

possible to assess the ability of the framework to:

1. Use the collected design knowledge to generate novel facade designs responding to different

design briefs.

2. Simplify the associated AD tasks by guiding the reuse and combination of algorithmic strategies.

3. Integrate different design practices involving different creative processes and tools.

4. Extend the freedom and efficiency of facade design processes, increasing the design spaces

explored while smoothing the transition between design stages.

13

ASSESSING THE RESEARCH

This thesis assesses the validity and feasibility of its outcome using a qualitative approach [11] because it

provides the flexibility needed to adapt to the variable, non-measurable, and innovative nature of the research

problem [11], while allowing capturing real-world processes and information that may be relevant to solve it

[1, 11]. Therefore, the assessment of the research involves two main stages: the first evaluating the accuracy

and the viability of the research methods and the second assessing the merits and limitations of their

outcomes.

The first stage comprises the testing of the proposed strategies in small procedural examples to check

if they (1) entail the expected results and (2) are able to reproduce some of the design corpus examples. The

result is a circular process where the research methods are being iteratively applied, evaluated, and improved

according to their results [1].

The second stage involves critical reflection on the feedback received from the application studies,

which contributes to the framework’s incremental refinement in terms of content and structure, either

integrating new methods or adjusting the existing ones to meet new design needs, and to identify the research

merits and limitations. The aim is to assess if the proposed generalization of design knowledge can successfully

(1) represent real-world design processes and information, (2) solve practice-based design problems, (3) adapt

to different design contexts and problems, and finally (4) improve the flexibility and efficiency of design

processes.

1.7. THESIS STRUCTURE

This thesis is structured into five main parts.

Part I (Introduction) presents the research motivation, questions, and goals, as well as the methods

adopted to address them (chapter 1).

Part II (Literature) reviews the existing literature on the topic, organizing it into five main chapters:

Architectural Facade (chapter 2), Architecture Meets Computation (chapter 3), Sketching Through Algorithms

(chapter 4), Facing New Design Challenges (chapter 5), and Making Digital Real (chapter 6).

Part III (Research) presents the proposed mathematical principles together with their organization and

application in the framework for facade design (chapter 7).

Part IV (Evaluation) describes the application of the algorithmic framework in five application studies

responding to different design briefs (chapter 8). Based on the results, it then discusses the merits and

limitations of the research, while answering the research questions (chapter 9).

Part V (Conclusion) elaborates on the previous analysis, drawing some final considerations and outlining

relevant future research directions (chapter 10).

14

15

1.8. TERMINOLOGY

3D Viewer Computer application specialized in the visualization of 3D objects.

Abstraction The removal of features to keep only the relevant ones.

AD Workflow Sequence of design steps and tasks adopted in an AD approach.

Affine Transformation

The mapping of an affine space onto itself, while preserving the spatial relations

between its points, straight lines, planes, and sets of parallel lines, and the length

ratios of parallel segments.

Algorithmic Analysis The use of AD to perform design analysis routines.

Algorithmic Design
The use of algorithms to generate designs where there is a correlation between

the parts of the algorithm and those of the generated design.

Analysis Process
Evaluation procedure of a design or a design process according to a well-defined

performance criterion.

Architectural Design Model
Digital model containing the project’s geometric and sometimes construction

information.

Attractor
Geometric entity (e.g., point or curve) influencing one or more properties of its

surrounding entities.

Computational Design The use of computation to develop designs.

Design Concept
Creative response to a design brief that integrates the design intent and the

reason/directions to the end product.

Design Intent The set of ideas, goals, concepts, and criteria to consider in the design process.

Design Knowledge Strategies and solutions resulting from prior design experience.

Design Pattern Generic description of a solution to a recurrent design problem.

Design Space The set of possible design solutions.

Design Space Exploration
The process of finding one or more design solutions that best meet the existing

requirements.

Design Thinking Cognitive and practical processes that generate design concepts.

16

Design Tool Tool used to develop architectural design solutions.

Digital Design The use of digital tools in architectural design processes.

Digital Fabrication Manufacturing processes controlled by computers.

Discretization Converting a continuous function, sample, or domain into a discrete one.

Empty Function A function with an empty set as domain.

Expressiveness Ability to describe an idea or to convey visual and sensorial experiences.

Game Engine

Software application including a rendering engine for 2D and/or 3D graphics with

real-time graphical capabilities that is typically used as a framework for computer

games.

Generative Design The use of algorithms to generate designs.

Identity Function A function that returns its argument.

Indoor Environmental Quality The set of conditions inside a building (e.g., thermal, lighting, and ergonomics).

Khepri An AD tool tailored for architectural design.

Metaprogramming The creation of programs that create or manipulate other programs.

Modeling Tool Software application that can represent and manipulate 3D shapes.

Modular Programming
Software design techniques where the program’s functions are separated into

independent interchangeable pieces.

Optimization Process
Finding the value(s) in a domain that yield the best result(s) for a given objective

function.

Parametric Design Describing designs through parameters.

Pattern General solution to a recurring problem or a repeated arrangement of shapes.

Performance-based Design The use of performance criteria to guide design processes.

Randomness The apparent lack of predictability in a sequence of events.

Rationalization Geometric simplification of a design for manufacturing purposes.

Recursion Rule or procedure defined in terms of itself.

Traceability The relationship between parts of the program and those of the model.

17

1.9. ACRONYMS

AD Algorithmic Design GUI Graphical User Interface

ASE Annual Sun Exposure HOF Higher-order Function

BIM Building Information Modeling IDE Integrated Development Environment

CAD Computer-aided Design MF Matrix of Functions

CAM Computer-aided Manufacturing MP Matrix of Points

CD Computational Design MI Matrix of Integers

CNC Computer Numerical Control PD Parametric Design

DD Digital Design sDA Spatial Daylight Autonomy

DF Digital Fabrication sUDI Spatial Useful Daylight Illumination

DGL Descriptive Geometric Language TI Textual Input

DGP Daylight Glare Probability TPL Textual Programming Language

DIR Design Inclusive Research VI Visual Input

DP Design Pattern VIM Visual Input Mechanism

GD Generative Design VPL Visual Programming Language

GDL Geometric Description Language

19

Literature

21

PART II | LITERATURE

Architecture has always explored the latest technological advances both in terms of design methods

and representation and building technology and fabrication. Nowadays, new digital tools and, more

importantly, new computational design approaches play a relevant role in the conception, analysis,

and production of architecture. These include Algorithmic Design (AD), a design approach that

creates designs through algorithms and whose flexibility brings several advantages to architectural

design practice, such as (1) automating time-consuming and repetitive design tasks; (2) facilitating

design changes; (3) providing higher levels of design freedom; (4) increasing the chances of finding

better performing solutions; and (5) facilitating the manufacturing of nonstandard solutions.

Nevertheless, and despite its advantages, AD is not yet widespread, mainly due to its complexity and

required specialized knowledge, such as having programming experience. The challenge, then, is to

make AD more accessible to architects, particularly in solving more complex or unconventional

design problems.

This thesis addresses this challenge by investigating the application of AD strategies in the

design and manufacturing of building facades. The focus on this architectural element is due to its

relevance in terms of building aesthetic, performance, and urban role, and the complexity and

exigency of its design, which often requires responding to multiple, and context-specific, design

constraints, such as creative intents, local climate, building regulations, performance requirements,

among others. It is also motivated by the growing interest in exploring the tectonic potential of

unconventional building facades and achieving solutions with high-quality inside spaces and low

environmental impact.

This Part II presents the state-of-the-art of the main research topics addressed in this

investigation, which are organized in the following chapters:

Architectural Facade, which studies the historical evolution of building facades in terms of

role and expression.

Architecture Meets Computation, which presents the technological and scientific

background behind computational design approaches and their impact on architecture.

Sketching Through Algorithms, which describes the evolution of AD strategies and tools and

their application in architectural practice.

22

Facing New Design Challenges, which elaborates on contemporary environmental and social

concerns and their impact on architectural practice.

Making Digital Real, which analyzes the emerging digital fabrication technologies and

strategies and their increasing application in building facades.

23

2. ARCHITECTURAL FACADE

The architectural facade is the “public face of architecture” [11, p.227] and its design is unique for a

particular project and context [13]. This building element is often defined as the outer layer of a

building that separates the inside from the outside, providing protection from the weather, while

maximizing the indoor environmental quality [13–15]. Architectural facades play an important role in

the design of buildings, having several functions:

• Environmental performance [13–19]: mediating the indoor and outdoor by acting as

environmental filters and shaping the building’s energy performance and indoor

environmental quality [20].

• Structural [13, 14, 18, 19, 21]: often integrating structural elements and thus contributing

to the buildings’ physical stability.

• Safety [14, 15, 22]: providing both protection against external elements and privacy to the

users.

• Aesthetic [14, 15, 19, 22]: contributing to the buildings’ visual expression and identity.

• Cultural [14, 15, 23–25]: expressing both cultural and social values and thus documenting

the architectural and technological evolution.

• Urban role [15, 17, 22, 26–28]: causing feelings and transmitting values to urban dwellers,

while engaging and being part of their surroundings.

The way these functions have been addressed throughout time depends on several factors, such as

cultural and social context, local weather, and available resources [22]. Therefore, cultural changes

and technological developments are among the main contributors to the ever-varying expression

and conception of building facades over time [15]. Recently, the use of computational design tools

and methods, such as Algorithmic Design (AD), has largely influenced architectural practice, affecting

not only the buildings’ visual expression, cultural function, and urban communication, but also the

way designers engage and shape their environmental and structural functions. Using these methods,

a wide variety of design approaches has emerged, being the design of building facades one of their

main applications. While some approaches are more performance-oriented, others place particular

emphasis on the buildings’ visual expression, and others on their integration and communication with

24

the surroundings [15]. In either case, the result is an increase in the design diversity and complexity

of building facades.

2.1. A BRIEF HISTORY OF BUILDING FACADES

When mankind became sedentary, the need to build permanent shelters arose [22]. Handmade

shelters were made from local materials and had as main function weather protection. With time, the

exterior walls that separated the inside from the outside of buildings became commonly known as

facades. Despite their initial goal being protection, it was not long until this building element gained

other functions, such as structural, acting as wall, environmental performance, improving the

buildings’ indoor environmental quality, and aesthetic and visual communication [14, 15], being either

sculped, painted, or covered with wood, mud, straw, or other materials. By acquiring a more

expressive and visual role, this element became responsible for conveying the main governing

semantics of buildings, communicating “hierarchies of values and claims of power” [28, p.66], while

representing their culture and history. The word facade itself reflects the visual importance of this

architectural element: adopted from the French, façade or facade derives from the Italian word

“facciata” that means face [22]. In fact, it works as the building’s face, communicating with the

surrounding environment, while covering the inside spatial structure.

From many centuries, the expression of building facades was highly linked to the local culture

and available resources, therefore presenting quite different material and geometric characteristics.

With the European Maritime Expansion of the 15th century and the resulting intercultural relationships

that occurred more and more since then, the diverse geographically separated cultures ended up

gradually influencing each other. Gutenberg’s invention of the printing press around 1440 also

facilitated this interchange, allowing the dissemination of several architectural treatises written at the

time [30–32], promoting a wider sharing of knowledge and ideas [33] and, consequently, the

widespread of architectural thought.

Throughout this and the following centuries, several social, cultural, and technological changes

occurred worldwide, having an impact on architectural practice and, consequently, on the visual

expression of building facades. One example is the influence of the Renaissance humanist theories

on the architecture of the 15th and 16th centuries, which inspired several architectural treatises, such

as Alberti’s De re Aedificatoria [30], Serlio’s Regole generali d'architettura [34], and Palldio’s I Quattro

libri dell’architettura [32], while shaping the architectural production and thus the way the design of

building facades was addressed. Another example is the Catholic church’s reaction to Luther’s

Reformation movement in the 16th and early 17th centuries, which gave rise to Baroque art and in turn

25

to highly ornamental and visually complex building facades. The last example is the importance of

the scientific and technological developments of the Age of Enlightenment in the Industrial Revolution

of the 18th and 19th centuries, causing one of the most pronounced turning points in architecture and

thus considerably affecting the visual expression of building facades. It brought new manufacturing

methods and materials, such as glass and iron, that allowed for new design opportunities [14], such

as the dematerialization of building facades into visually lighter, regular elements that could be free

of any structural role [14].

The first half of the 20th century witnessed several architectural movements that addressed

ornament in different ways, originating building facades with different geometric configurations and

visual expressions that took advantage of new materials, such as concrete and steel. While some of

these movements adopted new forms of ornamentation that expressed the cultural and social

contexts lived, such as Art Nouveau1 and Art Deco2, others began to gradually avoid the use of

ornament towards a purely functional architecture devoid of any decoration or historical association,

such as Rationalism and International Style. The result was non-ornamented, austere facades [35, 36]

that broke with the classical compositions of the past and existing traditions [14].

Reactions to the simplicity, uniformity, and repetition of buildings facades occurred from the

mid-sixties onwards, causing drastic and quite distinct changes to the buildings’ visual expression. As

an example, while Postmodern architecture gives prominence to the building facades, adopting

historical design references and nonconventional materials in the search for a highly communicative

and iconic architectural expression, High-tech architecture pursues highly technological building

facades with no connection to the past, visually exposing the buildings’ underlying structure and

function while extensively using new building materials and technologies. Another example is the

apparently fragmented and discontinuous facades of the Deconstructivism architectural movement,

whose unconventional shapes and compositional unpredictability creates visual chaos. Nevertheless,

they all shared the same goal of recovering the identity of the architectural facade [14].

More recently, the need to express the prevailing information age and respond to current

cultural and social contexts has led to the adoption of new design strategies and technologies, such

as computational design3 and performance-driven design exploration4 strategies, which in turn

affected, once again, the expression of building facades. Some examples include the digital/media

1 An architectural style reacting against the eclecticism and historicism of the 19th century that used modern materials and

was often inspired by natural elements.
2 An architectural style reacting against Art Nouveau that explored the compositional potentialities of using simple geometric

ornaments, such as squares and triangles.
3 Design approaches based on the use of computation to develop designs.
4 Computation-based design strategies where the design exploration process is mostly guided by performance-related

principles.

26

facades [27] made of lights, images, and texts [37, 38] that catch the urban dwellers’ attention and

trigger different visual experiences, and the parametric [39], responsive [40], and kinetic facades [41]

made of either freeform surfaces, complex geometric patterns, intelligent materials, or even

responsive devices reacting to human interactions or environmental stimuli.

2.2. THE ROLE OF THE FACADE

Already in Ancient Rome, Vitruvius mentioned three essential qualities of Architecture [42]: firmitas

(strength), which ensures that buildings stand up; utilitas (utility), which targets the effective use of

space; and venustas (beauty), which provides buildings aesthetic qualities. Throughout time, the

relationship between architectural theory and the first two characteristics has been quite peaceful,

but the same did not happen with the third, which has been more controversial. This might be

explained by the close relation of beauty and the concept of ornamentation, a quite unstable

problematic in architecture [43] that ranged over time from being widely accepted [44–47] to totally

rejected [35]. As a result, the role of beauty in architectural design has also oscillated, as also did the

buildings’ visual expression. Nevertheless, the recognition of beauty as an essential quality in

architecture demonstrates the importance of the architectural facade in terms of building aesthetics

and its impact on both human experience and urban image [48–50]. This perspective has been

supported by several authors, who have recognized the importance of this architectural element in

the buildings’ composition due to its protective, aesthetic, and cultural functions [14]. Pedersen, for

instance, acknowledged the role of the facade in accommodating the building to its surroundings

[51]. Le Corbusier, in turn, addressed the design of the facade in one of his five points of architecture

[36]. Venturi defended the return to the emphasis on the facade, stating that it allows urbanity and

the revaluation of the street [27], and Koolhaas regarded the facade as one of the fifteen key elements

of architecture [52].

Despite the important role facades have played in architecture throughout time, the modern

movement between the two world wars progressively changed the way this architectural element

was addressed, minimizing the use of ornamental elements, which had previously defined its identity.

Functionalism defended an architecture based only on the purpose and function of buildings.

Together with the massification of construction that came after World War I, Functionalism gave rise

to geometrically regular and clean architectural facades through which the buildings’ functions were

exhibited. The resulting geometric rigidity and monotony of building facades was later criticized by

some architects and theorists, such as Frank Lloyd Wright [53], Gordon [54], and Venturi [55], who

pointed out the buildings’ lack of identity and contextualization, and often resulting lack of ability to

27

convey emotions and create architectural memory, as well as to relate with both local culture and

environment [55, 56].

In the last quarter of the 20th century, the compositional, visual, and symbolic aspects of

building facades were again valued in a perspective that expressed the cultural and social needs of

contemporary societies. More recently, architects have been addressing these aspects by increasingly

resorting to the emerging digital means and computational design approaches, which allow them to

explore new facade design possibilities that fit the needs of the new information age by playing with

various textures, patterns, materials, and shapes in a highly graphical and expressive way [57].

2.3. THE ROLE OF ORNAMENT

The relationship between ornament and architecture goes back a long way, with the former being

mainly associated with the latter’s beauty quality. This section discusses the historical evolution of

ornament. To that end, it first presents the definition of ornament within the scope of this research.

The word itself derives from the Latin word ornare, which means to adorn. In the literature,

the term is often regarded as a synonym of decoration [58], but it should not be confused with it.

Pattern is another term that is frequently associated to ornament, although often expressing a

different meaning that is closer to geometry [59]. For McNicholas, decoration is the temporary

distribution of objects or adorns for embellishment purposes, whereas ornament is inherent to objects

and provides them with beauty [59]. Similarly, Moussavi and Kubo describe ornament as something

necessary and inseparable from the object that unintentionally transmits affects and meaning [47].

According to Ghada, ornament is a detail, which can be a geometry, color, or even texture, that grabs

the attention of the observer [60]. For Mitrache [61] and Miller [62], it is the composition of elements

intentionally added to an object to improve its aesthetic attributes and highlight its symbolism.

In this thesis, we regard ornament as a part of buildings that has an aesthetic and sensorial

function, causing different visual and tactile experiences, as well as a semantic and symbolic function,

connecting buildings to their cultural and temporal contexts. Decoration, in turn, shares the same aim

but achieves it through the addition of temporary elements.

Ornament has long existed in architecture as a means of expression and differentiation of

buildings. It resulted from the perception and interaction of the human being with its environment

[63] and the search for visual pleasure [60]. Since the beginning of its existence, mankind instinctively

added qualitative features to its creations to communicate values or traditions [63], as well as to

enhance their aesthetic characteristics [60, 61]. Similarly, we added ornaments to our constructions

28

to provide them with individuality and meaning, unconsciously creating links between them and the

surrounding society and culture [25].

According to Moussavi and Kubo, with cultural evolution comes architectural progress, which

often results in new materialities and aesthetic compositions. For the authors, architecture needs to

be connected with both its culture and society in order to have meaning and be successfully

integrated with its surroundings [47]. As this connection is historically linked to the buildings’ visual

expression, it has given ornament the ability to convey the historical and cultural values over time,

while expressing the symbolic and aesthetic meaning of, for instance, some constructive elements

[43, 60].

As communication is one of the main roles of ornament [47], its application has, since ancient

times, primarily targeted the most visually exposed building elements. The architectural facade is one

of such elements, which explains its tight relationship with ornament. As mentioned in the previous

section, this relationship has, however, changed throughout time, mostly influenced by the way

ornament was used in architecture at that time.

Ornament in architecture has evolved from simple carving or painting decorations to the

differentiation of buildings according to their function or cultural context or even to an expression of

power [63]. This evolution is therefore reflected in the expression of buildings’ facades along history,

which ranges from simple reliefs, to colored tiles, or elaborated frescos. As an example, in ancient

Egyptian architecture, ornament was mostly used to express religious, political, and social principles

[15], whereas in Greco-Roman architecture it pursued beauty and harmony through the use of both

geometric proportion and plant-based elements. Islamic architecture used geometric, calligraphic,

and plant-based elements in the pursuit of symmetry and visual complexity, while conveying meaning

and hiding the buildings’ inner functions and spaces [15]. Finally, while the International Style

minimized the use of ornament in the search for transparent, smooth surfaces that clearly reflected

the buildings’ structure and functions, High Tech architecture visually exposed the buildings’ structural

and technological systems, making them compositional elements of facades [15].

The role of ornament has long caused debate in architectural theory and practice [62].

Literature on this topic is vast and goes back to the 1st century BC. In the Roman period, Vitruvius was

one of the first authors to address ornament in his writings, although in an indirect way. For him,

ornament aims at pursuing visual pleasure and beauty, i.e., to achieve the venustas quality, making

it an integral element of architecture that cannot be separated from it [42, 59]. Much later, in the 15th

century, Leon Battista Alberti theorized the concept of ornament in a similar way, i.e., as an element

29

that enhances beauty5, which for the author was one of the most important requirements in

architecture [30]. A century later, Wendel Dietterlin stated that ornament is more than an element

attached to a surface; it is an architectural element itself that has evolved from the classical times [64].

In the 17th century, Christofer Wren defended that the relationship between architecture and

ornament had a social and psychological context in which buildings should be regarded as individual

ornaments [63]. Already in the 18th century, James Gibbs argued that architectural beauty depends

on proportion and not on the richness of its materials and details, and thus, it can be reached through

plain, unornamented surfaces [63, 65].

The following two centuries were marked by controversial theories on the relationship between

ornament and architecture, from which two main and opposite perspectives stood out: one

defending that ornament is part of architectural expression and the other stating it is superfluous and

thus should be avoided [43].

In the 19th century we find authors like Alexander Heideloff, who claimed that ornament is

inseparable from architecture but it must pursue harmony and proportion and it must not be applied

randomly [63]; Augustus Pugin and George Aitchison, who defended an unornamented architecture

because, according to them, architectural beauty lies on a purely functional design where ornament

plays a secondary role; Gottfired Semper, who stated that ornament is an integral part of architectural

practice, coordinating both functional and structural requirements of a building [25, 66]; and John

Ruskin and Owen Jones, who regarded ornament as the essence of architecture and the reflection of

its beauty and spiritual values. Similarly, Louis Sullivan believed ornament played an important role

in providing buildings with liveliness and identity [63, 67], growing from the materials’ organization

and organicity and thus being inseparable from buildings [47].

In the early 20th century we have, on the one hand, Hans Poelzig’s perspective, which defended

an architecture that was not controlled by nor hidden beneath ornament, and, on the other hand,

Frank Lloyd Wright’s ideas, which regarded ornament as part of buildings and their structure [53]. A

more radical point of view was adopted by Adolf Loos, who pursued an architecture without

ornament [35]. This idea of transparency as representative of space, structure, and function greatly

influenced well known architects of the first half of the century, such as Naum Gabo, Antonie Pevsner,

Mies van der Rohe, and Le Corbusier, who adopted the anti-ornament movement [25, 63].

The second half of the 20th century was marked by the return to ornament [63]. From this era,

the contrasting perspective of Robert Venturi stands out, which radically replaced the Modernism

5 According to the author [30], beauty is the perfect balance between all parts, where nothing can be added, removed, or

changed without making it worse.

30

austerity with ornament in a highly expressive form of communicating architecture that separated

the building’s function from its representation [41, 49]. More recently, ornament has been theorized

as a building element that can have multiple roles, namely functional, aesthetic, tectonic,

environmental performance, or even performative, i.e., dynamically interacting with urban dwellers

by either moving or changing its physical characteristics [62].

Nowadays, architects are addressing ornament in new ways that express the prevailing social

and cultural context [57], which is dominated by technology, information, and real-time

communication [60], while benefiting from the latest technological developments in the design,

manufacturing, and assembly of new forms of ornamentation [57]. In an era where visual

communication is the governing factor [60], these new technologies have facilitated the development

of novel surface textures, geometries, and patterns that catch the urban dwellers’ attention [57], as

well as the inclusion of digital- or computation-based ornamental elements, such as digital screens

or dynamic devices, that interact with external stimuli [43]. While in some cases the main concern of

ornament is to express the buildings’ functions, in others it is to integrate the urban space in a more

scenographic perspective, originating building facades with an autonomous function.

In sum, ornament remains a controverse topic in architectural practice and theory, particularly

in terms of role, semantics, and aesthetic standards. It is nevertheless expected that it continues to

evolve in new directions, reflecting the social and cultural needs of future societies and integrating

the new technological developments emerging from them [63].

2.4. CONTEMPORARY BUILDING FACADE DESIGN

With the technological evolution of the last decades, the increase in design constraints, such as tight

deadlines, environmental concerns, and economic restraints [68], along with the architects’ ever-

present ambition to go beyond conventional shapes, the process of designing building facades grew

in complexity [69]. Not only does it have to deal with multiple and often context-specific design

requirements and different information sources simultaneously, such as structural information,

manufacturing guidelines, and clients preferences, but it also has to meet the growing need for better

solutions in terms of environmental performance [70, 71]. Combined with the variability and diversity

of architectural design problems [13], the result is a laborious, time-consuming, and error-prone

design process [68] that requires architects to use multiple design tools that often do not directly

interoperate with each other [72].

With the aim of minimizing the complexity of contemporary facade design processes, some

authors focused on structuring the intricacy of building facades, classifying them according to

31

different criteria. Moussavi & Kubo [47], for instance, categorized building facades according to their

material expression (or ornament) and how this expression relates to culture by creating sensory and

emotional experiences, which the authors name as architectural affects. Three main classifications

were suggested, the first one being Depth, which categorizes buildings according to the way

ornament is integrated in them in four subcategories, namely Form, Structure, Screen, and Surface;

the second Material, which addresses the way material forces influence the structuring of ornament;

and the third one Affect, which is the result of the interaction of the previous two.

Another example is the classification proposed by Otani & Kishimoto [73] for fluctuating

facades, i.e. facades whose elements, such as windows, panels and ornaments, differ from

conventional ones in terms of size, shape, and frequency of use. After identifying the most frequently

changed facade elements and grouping them by similar types, the authors proposed a classification

composed of 33 categories, such as window shape and size, panel shape, size, and both vertical and

horizontal repetition, etc.

Pell [45] categorized facades according to (1) their means of production and type of surface

distribution, dividing them into four main groups, namely Applied, when the facade is treated as a

neutral plane on which different material compositions are applied, Perforated/Cut, when its surface

is submitted to scoring, cutting, or perforation processes, Layered, when it results from material

superpositions, and Stacked/Tiled, when it is the result of a composition of multiple individual

elements creating a whole; and (2) how they articulate their material and content, organizing them

in terms of integration, materialization, contradiction, and disinterest.

Wassef & El-Mowafy [74] organized responsive kinetic facades, i.e., facades composed by

elements that either move or change their physical characteristics to respond to environmental

stimuli, in two groups: Configuration, which classifies facades according to the type of geometric

transformation creating the kinetic movement and the pattern shape, surface form, and material of

the facade; and Function, which categorizes facades into three main functions, namely aesthetic,

energy generation, and environmental control.

The last example is Velasco et al.’s [75] classification for dynamic facades, i.e., facades whose

physical elements move, based on two main criteria. The first one is Movement, which categorizes

dynamic actuators according to the type of movement allowed in (1) mechanism-based, if the

movement is based on rotation, translation, or hybrid, and (2) material deformation, if it results from

environmental stimuli (self-changing) or artificially controlled forces (direct external input). The second

criterium is Control, which can be local, when the actuator is autonomous, or central, when it is linked

to a single control system.

32

Still, despite helping architects understand the current variety and complexity of building

facades, most of these works do not help in the modeling of new solutions, particularly if they are

modeled algorithmically. Inspired by works confirming that sets of algorithms can be reused in the

exploration of new designs [7, 76–78], Caetano et al. [79] presented a classification addressing the

algorithmic development of facade design patterns, providing sets of ready-to-use algorithms

organized according to different modeling needs and design configurations. Nevertheless, the

proposal is restricted to initial design stages, focusing mostly on the geometric exploration of different

facade design solutions, not considering other relevant design stages such as analysis, optimization,

and fabrication.

33

3. ARCHITECTURE MEETS COMPUTATION

Architecture has always embraced innovative ideas, materials, and techniques and contemporary

architecture is no exception. It has been exploring the latest technological advancements, namely the

new computational means of conception and production that offer new possibilities for architectural

design and manufacturing. The emerging computation-based design approaches differ significantly

from the previous design approaches since, instead of grounding architectural design representation

in its geometric aspects, they base it on its computational logic. These have been addressed by

several authors under the name of Computational Design (CD) and applied in several design studios

to increase both the creative exploration and feasibility of their projects. CD is causing considerable

changes in both design theory and practice, but most architects are not yet aware of its potential.

This chapter traces the course of CD from its origin until today and clarifies some of its related

terms and design perspectives. It starts by explaining the evolution of CD since the early 60s and then

discusses the advancements in CD tools, while presenting scientific events that addressed it. It

continues with a chronology of the literature on CD and, finally, a clarification of the most relevant

CD-related terms. It concludes that, similarly to past architectural experience, technological

developments continue to shape both architectural theory and practice and are simultaneously

guided by their needs and aspirations.

3.1. THE EVOLUTION OF COMPUTATIONAL DESIGN

It was the combination of programmable computers, CD, and numerically controlled technology that

gave rise to the development of the well-known Computer-Aided Design (CAD), Building Information

Modeling (BIM), and Computer-Aided Manufacturing (CAM) tools, among others. The use of these

tools has been causing changes in architectural practice since the 60s due to increasing the ability to

handle complex geometries with greater precision and efficiency [80].

Ivan Sutherland disseminated the concept of CAD in 1963, with the creation of Sketchpad. This

innovative system was considered by many authors [81–84] as the first parametric tool for

architectural design, proving that engineers and designers could communicate with a computer and

use it as a medium for thinking and making [85]. For Kalay [86], Sketchpad marked an important

turning point in architectural practice, allowing the replacement of hand-based design tasks with

digital-based ones. Until then, architects designed by hand directly on paper and, in the event of a

34

mistake, part (or the entirety) of the design had to be erased and redone. Designing on a computer

made it easier for architects to erase and redraw parts of a design and obtain more precise results

more efficiently. In the next decades, Sutherland’s ideas [87] were further explored and adopted by

other authors, such as Eastman [88], Leler [89], and Gross [90].

The biggest shift in the field, however, happened in the early 80s with the commercialization

of CAD tools for architectural design, such as AutoCAD and MicroStation. These tools massified the

conversion of the paper-based design process into one based on the computer, which brought

several advantages to architectural practice, such as greater design precision, easier correction of

design errors, and the ability to reuse parts of a design. In the late 90s, digital design tools were fully

integrated in architectural practice, resulting in a ‘computational turn’ in which architects already used

computational processes as a means of design exploration [91].

3.2. COMPUTATIONAL DESIGN TOOLS

In the 21st century, the use of digital technologies was already part of architectural practice. For Rocker

[91], CD processes have become a means for design exploration, extending the capability of

traditional processes, while challenging and, therefore, changing the design conventions and praxis.

In this scenario, the development of digital tools for architectural design, namely CAD, BIM,

simulation, and analysis tools, played an important role.

Regarding CAD tools, in 1982 Autodesk released AutoCAD, a 2D digital drafting tool suitable

for architecture, project management, and engineering. In 1985, it was extended to integrate 3D

modeling. In the same year, BentleySystems launched MicroStation, an application with a limited

interface supporting only basic 2D drawings; 3D modeling was incorporated a decade later. Another

important development occurred in 1987, with Pro/ENGINEER, a tool developed by Samuel Geisberg

for mechanical engineering that allowed users to create 3D parametric components, reducing the

cost of design changes, while overcoming the lack of flexibility of 3D modeling at the time [92]. In

1998, Robert McNeel & Associates launched Rhinoceros 3D, a commercial 3D CAD tool based on

NURBS (non-uniform rational basis spline) [93] that targeted the generation of mathematically precise

representations of curves and freeform surfaces. In 2000, @Last Software developed the 3D modeling

software SketchUp, an easy-to-use tool that gave architects more design freedom. In 2006, Google

acquired the company and extended the tool under the name of Google Sketchup. In 2012, Trimble

Navigation (currently known as Trimble Inc.) purchased the tool and continued its development.

Regarding BIM tools, in 1982 Graphisoft started developing ArchiCAD, making it available to

architects in 1987. This tool produced 3D models whose elements were parametrically connected and

35

embedded with their corresponding construction information. In the mid-90s, Gehry Technologies

adapted the aeronautics design software CATIA, which they used for many years for architectural

design [94], originating Digital Project. In 2000, Revit Technology Corporation released Revit, a tool

that supports the design and documentation of buildings by creating parametric models that contain

both geometry and construction information. In 2002, Autodesk purchased the company and

continued to develop the tool, extending it with Revit Structure in 2005, Revit MEP in 2006, and the

visual programming tool Dynamo in 2011. Further BIM tools used in architecture include

BentleySystems’ AECOsim and Tekla Corporation’s Tekla Structures.

Alongside CAD and BIM tools, the use of analysis tools, to model the behavior of buildings

and evaluate their performance, and optimization tools, to search for the best solutions, has also

been noticeable in architecture. Examples of commonly used tools include EnergyPlus and Green

Building (both for energy simulation), Robot (for structural analysis), Radiance (for lighting simulation),

ClimateStudio (for thermal, daylighting, and energy analysis), and Galapagos (for optimization).

Finally, Integrated Development Environments (IDE), i.e., programming interfaces to help the

development and debugging of algorithmic programs, to automate design tasks and extend the

tools’ modeling capabilities were also proposed early on. An early example is Autodesk’s AutoLISP

released in 1986. Later examples include Bentley’s Generative Components launched in 2007, and

the visual programming tool Grasshopper added to Rhinoceros 3D in 2008, which became very

popular among architects due to its ease of use and ability to create complex parametric models.

3.3. COMPUTATIONAL DESIGN METHODS

According to Aish and Bredella [95], CD evolution involves the progression from 2D drawing to 3D

BIM and, then, to design computation. After several years of effort developing digital design tools

targeting non-programmers, the design field increasingly felt the need to integrate programming

capabilities into such tools to satisfy the need for design automation and parametrization, which was

only possible by allowing the tools to support user-programmable features.

Computational tools and methods evolved through different generations, which reflected their

capabilities and the way these were used by architects. According to Dorst and Dijkhuis [96], the first

generation started in the early 1960s and fostered more detailed descriptions of the design activity,

while regarding design as a rational problem solving process. The search for a design process based

on logic and mathematical principles resulted in CD methods and tools with several shortcomings

for architectural practice, such as a deterministic and linear design approach and the lack of a

36

Graphical User Interface (GUI) [97]. These drawbacks, along with the steep learning curve and large

cost of these methods and tools, demotivated architects from using them.

With the spread of personal computers and the improvements in GUIs, CAD software became

accessible to a larger architectural community. The resulting association between computation-based

processes and design processes rapidly matured as a design medium and, for the first time, most

computer users were non-programmers [98]. According to Asanowicz [99], this scenario lead to a

second generation, which, for Reffat [97] was marked by the improvement of user-computer

communication: the available software already allowed designers to draw directly on computer

screens without having programming knowledge. Some authors named this generation as 2D

Drafting Era [95], Electronic Drawing Board Era, or even first generation in the architectural offices

[100], characterizing it as the use of advanced technology to emulate traditional design processes. In

practice, architects replaced traditional drawing tools with more efficient and precise ones but they

often did not take advantage of their computational power [101], resulting in a scenario where CAD

tools and the idea of Computer Aided Drafting were closely related [99, 102]. Nevertheless, Reffat [97]

recognized that, even so, the use of computational approaches was advantageous for architectural

design, facilitating the exploration and documentation of more complex solutions.

The 21st century brought new advancements in 3D modeling design tools, improving the

architects’ creative exploration, visualization, and documentation processes. This evolution reached

two important periods: first, the BIM era, in which architects created and extracted technical drawings

and construction information from 3D models but still resorted to craft-based or mechanically-

assisted construction processes, and then, the algorithmic and generative design era, in which

architects resorted to programming strategies to overcome the limitations of their design tools and

smooth the transition between design representation and construction [95]. According to Achten,

the use of computers has caused several changes in the architects’ design workflow, going “beyond

the first round of imitating and supporting traditional practices” [99, p.507]. For Leach [103], the role

of the architect has evolved from the simple ‘form-giver’ to the controller of generative processes,

i.e., processes based on a few a rules that can generate several unpredictable results, originating

design solutions that result from the combination of human creative potential with the computers’

generative capabilities.

3.4. COMPUTATIONAL DESIGN THEORY

The scientific events of the last decades stimulated important debates on theoretical and practical

issues, such as the architectural practice situation, the impact of new tools and methods, and the

37

practical application of scientific research, as well as social concerns, such as the increasing

environmental problems and emerging living needs. These, in turn, influenced the application of CD

in architecture in different ways, which is further elaborated in this section.

3.4.1. SCIENTIFIC EVENTS

Considered the field’s embryonic conference, the Conference on Design Methods was held in 1962 to

discuss topics like (1) designing better by understanding the design process, (2) externalizing the

design process to allow collaborative work from early to later stages, and (3) using the computer to

automate design tasks [104].

A decade later, in 1972, the 1st International Congress on Performance introduced a new design

perspective that resulted from the interest of computer scientists in both systematic design methods

and design science and the use of such principles to evaluate building performance as a means to

scientifically justify design decisions.

The next decade witnessed a large increase in the number of international conferences, among

which stand out the north-American Association for Computer-Aided Design in Architecture (ACADIA)

annual conference, founded in 1981 by Mitchell, Eastman, and Yessios with the aim of discussing the

role of computation in architecture and encouraging innovation in the architectural design practice

[104]; the annual conference Education and Research in Computer Aided Architectural Design in

Europe (eCAADe), held for the first time in 1983, introducing education as a research topic; the

biannual Computer-Aided Architectural Design Futures (CAADFutures) conference, founded in 1985

by Tom Maver, Rik Schijf, and Harry Wagter with the aim of fomenting CAD advancements that

envisioned the quality of the built environment; the biannual conference Artificial Intelligence in

Design (Design Computing and Cognition since 2004), settled in 1985 to focus on the use of artificial

intelligence techniques in design; the biannual International IBPSA Building Simulation conference,

also established in 1985 with the aim of improving the design, construction, operation, and

maintenance of buildings; and, lastly, the International Conference on Computational and Cognitive

Models of Creative Design, held in 1989 to explore the advancement of designers’ understanding of

computational and cognitive models of creative design.

The 90s brought conferences like the Association for Computer-Aided Architectural Design

Research in Asia (CAADRIA), founded in 1996 to promote teaching and research in CAD in Asia, and

the Sociedad Iberoamericana de Gráfica Digital (SIGraDi), settled in 1997 with the aim of debating the

application and potentialities of the new digital technologies.

Already in the 21st century, the Arab Society for Computer Aided Architectural Design (ASCAAD)

conference was established in 2001 and, two years later, the Smart Geometry Conference, targeting

38

the integration of CD in architecture [105], and the Performative Architecture Symposium, studying

the gap between design and analysis and the influence of performance in architectural design, were

held. The Advances in Architectural Geometry (AAG) conference was organized for the first time in

2008 to study the emerging geometric developments in architectural design and engineering and,

in 2009, the Digital Architecture London Conference was held to discuss the role of technology in

society. Lastly, the Symposium on Simulation for Architecture and Urban Design (SimAUD) was settled

in 2010 with the aim of establishing a collaborative simulation workflow supporting sustainability.

3.4.2. SCIENTIFIC PRODUCTION

In addition to the scientific events, scientific journals also contributed to the dissemination of CD

approaches in architecture. Some of them already existed but started to embrace the subject of CD

in architecture, such as Design Studies (1979) and Architectural Design (AD), whereas others were

created specifically to address it, namely Automation in Construction (1992), Journal of Architectural

Engineering (1995), Nexus Network Journal (1999), Construction Innovation (2001), International

Journal of Architectural Computing (2003), Journal of Building Performance Simulation (2008), Building

Simulation (2008), and Frontiers of Architectural Research (2012). Finally, journals with a high impact

factor on building science and technology fields often incorporate articles exploring CD techniques,

especially those on building simulation, e.g., Solar Energy (1957), LEUKOS: The Journal of the

Illuminating Engineering Society (1972), Building and Environment (1976), and Energy and Buildings

(1977). These are temporally organized in Figure 3.1 together with the international conferences.

The increasing number of scientific events and journals on CD therefore reflects its growing

importance in the field of architecture. To evaluate its evolution from a theoretical point of view, the

timeline in Figure 3.2 organizes the literature on CD into three generations of thought (colored in

different grey tones) and presents important technological and construction milestones, which are

further discussed in chapters 4 and 5.

39

Figure 3.1. Timeline of CD-related scientific journals (left) and conferences (right).

40

Figure 3.2. Timeline on CD literature (on the left) and innovative tools and iconic buildings (on the right).

The first generation embraces literature from the 60s to the early 90s. The early integration of

computation-based methods in architecture has since long caused transformations in design theory.

According to Koutamanis [106], the first steps happened in the 60s and were inspired not only by

41

modernism thinking, but also by the technological explorations at the time and by theories from

other scientific fields, namely artificial intelligence and mathematics. The resulting literature regarded

architectural design as a thinking before acting activity [107] that handled design problems in a rational

perspective. Important works from this decade include Banham’s Theory and Design in the first

Machine Age [108], Alexander’s writings on design processes [109], Negroponte’s Towards a

Humanism Through Machines [110], and Sutherland’s ideas on design variation methods, design

constraints, and parametric instances [111, 112].

The number of scientific publications and the popularity of some generative systems, such as

space allocation techniques [113] and shape grammars [8], increased in the following decades. The

70s are marked by works like Computer-Aided Architectural Design [114] and A Pattern Language [4],

as well as by the first Ph.D. theses on CD [115, 116] and by overviews on CD expectations at the time

[114, 117, 118]. The 80s are characterized by works like Introduction to Shape Grammars [8], How

Designers Think [119], and Computational Compositions [120]. Finally, the early 90s, a period marked

by an increase in the popularity of computers due to the design efficiency improvements they

provided, witnesses an explosion of conferences, journals, and theoretical works on CD, from which

the following stand out: The Electronic Design Studio [121], Logic of Architecture [122], Digital Design

Media [123], and Visions Unfolding [124].

The second generation includes literature produced from 1993 to 2000. The works from this

period are characterized by (1) a discursive integration of philosophy and mathematics, (2) an attempt

to define the emerging architectural production, and (3) a concern in stimulating the correct

application of CD methods in architectural practice. It starts in 1993 with Lynn’s Folding in Architecture

[125] and his proposal for a new design paradigm based on “smooth transformations” that aim at

replacing Post-Modernism and Deconstructivism in a visual and mathematical perspective. Several

works on CD followed, among which stand out Frazer’s Evolutionary Architecture [126], which extends

the Anticipatory Architecture of Cedric Price [127] and advocates for an architecture acting as a living

evolving system; Lynn’s Animate Form [128], which proposes using animation software to enhance

form generation processes; and Kolarevic’s Architecture in the Digital Age [129], which explores the

impact of CD in both the architecture and the construction fields and presents some of its related

terms, including performance-based design and morphogenetic design.

The third generation embraces literature from the 21st century and witnesses the most

accentuated paradigm shift of the three. According to Terzidis, while the formulation of new design

theories in the past resulted from the understanding and reinterpretation of prior concepts, the

emerging design paradigms at the time had no precedent [130]. The evolution of design tools and

the increasing concern with environmental and social problems are probably among the driving

42

forces that motivated the perspective of design as research [131]. In this perspective, design becomes

a medium for knowledge production that follows a more scientific, computation-based direction

where human intuition is the starting point of design exploration and CD is the provider of the means

to augment it, potentiating human creativity instead of replacing it [130]. According to Oxman [132],

design processes are increasingly embracing techniques like scripting, optimization, and digital

fabrication, resulting in new related terms, such as Parametric Design [83], Generative Design [133],

Performative Design [134], Performance-based Design [135], and Biomimetic Design [131]. This variety

of terms reflects the growing ramification of CD literature during this period into multiple

perspectives, which are described in the following paragraphs.

The first perspective is the idea that intelligence can inform and guide the design process and,

for some authors, even replace theory as a guiding architectural principle [136]. According to Speaks,

even though in the past theory changed architectural practice, currently it “no longer has any

consequences for the practice of architecture” [136, p. 209]. Authors embracing this perspective

include, for instance, Oxman [138], Picon [139], Carpo [140], and Oxman and Oxman [141].

Another perspective is the use of performance to inform and guide design exploration

processes. Despite the fact that the notion of performance-based design had already gained some

visibility in the 40s and 50s with the performative turn movement [142], its popularity visibly increased

in the early 2000s. Authors like Kolarevic [143], Tschumi [144], Kronenburg [145], Oxman [135],

Leatherbarrow [146], and Picon [147] address the use of simulation, analysis, optimization, form-

finding, and evolutionary methods in architectural practice to investigate how the environmental

context can inform the design process.

A third perspective is the idea of natural morphogenesis, which involves the use of biological

principles behind the development of organisms to guide design processes [112]. This perspective

was inspired on the term morphology introduced by Goethe [148] when studying form-guiding

methods inspired by natural processes, which distinguished form from formation; an idea later

extended by Thompson [149] when investigating the geometric rules behind organic structures and

transformations. Currently, this idea has inspired new design perspectives like morphogenetic design,

evolutionary design, and biomimetics, as well as several authors, including Migayrou [150], Hensel,

Menges, and Weinstock [151], Menges [152], and Oxman and Oxman [131].

The adoption of methods from the computer science field was proposed by Terzidis in his

Algorithmic Architecture [101], given the advantages the use of algorithmic techniques brought to

architectural design in automating tedious tasks and exploring generative processes, among others.

This perspective was then adopted by several other authors, such as Burry [102], Woodbury [83], Jabi

[153], and Schumacher [154, 155].

43

The study of the relationship between architectural forms and tectonics, i.e., its structural and

material properties, also gained significance in the field. Examples of authors addressing this design

perspective include Picon [156], Scheurer [157], Bechthold [158], Oxman [159], and Gramazio & Kohler

[160].

The use of CD methods to address the growing sophistication of fabrication technologies is

another design perspective recently explored by authors like Iwamoto [161], Willmann et al. [162],

Oxman [163, 164], and Oxman et al. [165], as well as by different design studios, such as Design to

Production, Gehry Systems, and Zaha Hadid Architects.

The quest to create designs that interact with both users and the environment, either by using

responsive materials or parametrically controlled mechanisms, inspired design perspectives known

as responsive, interactive, and dynamic design. This idea was already addressed in the past by Chareau

and Bijvoet (Maison de Verre, 1932); Fuller (Dymaxion houses, 1930 and 1945); Archigram’s utopian

projects (1964); Rogers and Piano (Centre Pompidou, 1977); Nouvel (Institute du Monde Arabe, 1988);

and Toyo Ito (Tower of Wind, 1991). Recent examples of authors include Beesley, Hirosue, and Ruxton

[166] and Oosterhuis [167].

The last perspective defends the study of mathematics, geometry, and computer science to

create design knowledge [168]. The increasingly complex requirements of current architectural design

and construction have motivated the growing use of mathematical strategies, such as rationalization,

to adjust geometrically complex designs towards feasible solutions – an idea addressed by, for

instance, Andrade, Harada, and Shimada [169], Eigensatz et al. [170, 171], Flöry and Pottmann [172],

Fu and Cohen-or [173], and Son et al. [174]; and design patterns, to promote the reuse of known

design strategies or solutions in solving design problems [5] – an idea explored by Woodbury, Aish,

and Kilian [76], Qian [7], Woodbury [83], Hudson [77], Larson [175], Chien, Su, and Huang [176], Yu

and Gero [177], and Su and Chien [78], among others.

The interdependency between CD and technology is expected to continue in the future. As

such, it is likely that current technological advances will cause new developments in architecture and,

at least, force architects to adapt to new design techniques and processes, as it happened with the

introduction of CAD in the 80s [178]. Robotics, for instance, deeply changed the automotive and

aerospace industries and the same will probably happen in architecture when similar technology

becomes more accessible and widespread in the field [160]. Another emerging field is machine

learning, whose impact is increasing in different fields and activities and it is predictable that it will

also affect architectural practice [179, 180].

44

3.5. COMPUTATIONAL DESIGN TERMINOLOGY

The dissemination of CD in architecture challenged traditional design processes, which were heavily

based on manual drafting tasks, causing a turn in architectural design [91]. The increasing popularity

of CD in the last decades is mostly due to the improvements it brough to the architects’ design

practice, allowing them to explore different design strategies and research paths. This scenario

promoted the emergence of new design paradigms and, consequently, new related terms. Due to

their newness and scope overlap, some of these terms have received ambiguous definitions that

often embrace two or more conflicting ideas or overlap with other terms. Algorithmic Design (AD),

Generative Design (GD), and Parametric Design (PD) are popular examples of still ill-defined terms

that are widely used throughout this investigation. To avoid misinterpretations of the terms, this thesis

adopts the taxonomy proposed by Caetano et al. [181], which results from the analysis of the use of

some relevant CD-related terms in the literature, namely PD, GD, and AD. The next sections briefly

describe the theoretical evolution of these terms, as well as the adopted definitions.

3.5.1. COMPUTATIONAL DESIGN

In the literature, CD is often regarded as an approach based on the use of digital tools to develop

design solutions [182–184], which is similar to Digital Design (DD). However, for some authors, CD is

different from DD because it requires taking advantage of the computers’ computational capabilities

in the act of designing [101, 132, 185–189]. This thesis adopts the second perspective, which

distinguishes the design processes that use computers only for drafting or other representational

purposes from those that use algorithmic or computational-based procedures.

This thesis considers DD as the use of computational tools in the design process and CD as

the use of computation to develop designs. This perspective makes these two terms orthogonal,

which means that it is possible to use CD without taking advantage of DD, e.g., Frei Otto’s minimal

surfaces experiments based on analogue computation [190], use DD without following a CD

approach, e.g., using a CAD tool as a drafting device and not explicitly using computation, or using

both, e.g., Mark Burry’s work in Sagrada Familia [191].

3.5.2. PARAMETRIC DESIGN

According to the Oxford Dictionary, a parameter is either “a numerical or other measurable factor

forming one of a set that defines a system or sets the conditions of its operation”, or “a limit […] which

defines the scope of a particular process or activity”. The word parametric, in turn, means being

related to or expressed in terms of one or more parameters.

45

The literature on PD goes back several decades. In 1971, Moretti [192] defined parametric

architecture as the study and definition of relationships between the dimensions of a design based

on parameters. In the following decade, Kalay [193] defined parametric modeling as the

computational representation of geometric relationships that are automatically updated upon

parameter change. Already in the 21st century, Kolarevic [129] described PD as a process capable of

instantiating several solutions in a consistent way by declaring the parameters of a particular design

and not its shape [129]. This was followed by several similar definitions in the ensuing decades [39,

80, 138, 152, 189, 194–199], as well as by some different ones that consider PD either a process

involving optimization to find a solution with an acceptable performance that satisfies the existing

constraints [200], or a “contemporary architectural style that has achieved pervasive hegemony within

the contemporary architectural avant-garde” [199, p. 1]. There are still other definitions of PD that

narrow its scope to the exclusive use of algorithmic processes [202, 203].

Despite the existing divergences, the literature shows a predilection for the definition of PD as

a design process based on algorithmic thinking that uses parameters and rules constraining those

parameters [80, 83, 129, 153, 177, 192, 196, 197, 199, 204–209]. In most cases, its definition also

embraces the BIM paradigm due to the latter’s close connection with concepts of associative

geometry and topological relationships [7, 132, 189, 210] that establish dependencies between

different design elements. The definition adopted in this investigation considers PD a design

approach based on the use of parameters to symbolically describe a design.

3.5.3. GENERATIVE DESIGN

According to the Cambridge Dictionary, the word generative means the “capacity to produce or

create something.” In the literature, some authors define GD as a design process that involves

evolutionary techniques in both the creation and production processes of design solutions [211–213],

whereas others do not restrict GD to evolutionary processes, considering it a design approach based

on algorithmic or ruled-based processes that generate multiple and, possibly, complex solutions [133,

138, 214–221]. As such, for several authors, approaches like algorithmic generation, cellular automata,

evolutionary methods, generative and shape grammars, L-systems, self-organization, agent-based

models, and swarm systems, are examples of GD [133, 138, 215, 217, 222–225].

Regarding these two perspectives, the first one excessively narrows the definition of GD,

excluding other methods, beside evolutionary ones, that also generate designs, whereas the second

one is often difficult to differentiate from other terms, namely PD. Therefore, this investigation adopts

a third perspective that defines GD as a design paradigm that employs algorithmic descriptions that

are more autonomous than PD. It involves methods that can generate complex outputs even from

46

simple algorithmic descriptions but where it is often difficult to correlate the algorithm with the

generated output. It is, however, this lack of traceability between GD descriptions and the generated

designs that allows GD methods to produce unexpected results, such as the “happy accidents”

mentioned by Chaszar and Joyce [224, p. 168].

3.5.4. ALGORITHMIC DESIGN

The Cambridge Dictionary defines an algorithm as a “set of mathematical instructions or rules that

[…] will help calculate an answer to a problem.” This universal applicability of algorithms to any

(computable) problem makes it difficult to distinguish AD from GD, which explains the tendency to

consider these terms as synonymous [130, 188, 220, 227, 228]. This investigation places AD within the

boundaries of GD, however, it argues that it should have a stricter definition to distinguish it from

GD.

Regarding the literature, AD is the most recent term of the three, dating from the beginning

of the 21st century. In 2003, Terzidis [130, 228] defines AD as an approach that involves the description

of computer programs that “generate space and form from the rule-based logic inherent in

architectural programs, typologies, building code, and language itself.” [226, p. 70] For the author,

AD allows designers to incorporate the “computational complexity and creative use of computers”

[226, p.70] within the design workflow. For Bukhari [220], AD is a design approach that embraces

both GD and evolutionary design approaches. For Queiroz and Vaz, AD allows “the user to design

directly through code manipulation” [227, p. 797], therefore reducing the limitations of the existing

modeling applications. Similarly, Humppi and Österlund [219] described AD as the process of

controlling building form through user-created textual or graphical programs. Oxman [132] defined

AD as the coding of explicit instructions to generate digital forms.

Within the context of this thesis, AD is regarded as a subset of GD, since it uses algorithms to

generate models, but where it is possible to correlate the algorithm with the generated models (i.e.,

AD has traceability). In this view, AD produces fewer surprising results but provides a finer degree of

control regarding the generated outcome that facilitates both debugging and maintenance tasks.

In short, this thesis regards DD and CD as two orthogonal terms, wherein the former is the use

of computational tools in the design process and the latter the use of computation to develop

designs. It considers that the other three terms GD, AD, and PD are within the scope of CD (Figure

3.3), defining GD as the explicit use of an algorithm to generate designs; AD as a subtype of GD that

satisfies the traceability property; and PD as a design dependent on a set of parameters. Given that,

typically, algorithms are parametric, it is not surprising to observe that AD can also be used to achieve

PD.

47

Figure 3.3. Conceptual representation of scope of the terms AD, CD, GD, and PD.

48

4. SKETCHING THROUGH ALGORITHMS

In the last two decades, Algorithmic Design (AD) has gained prominence in both architectural theory

and practice [130, 132, 188, 194, 202, 220, 227–229]. A new generation of architects has been

increasingly adopting the Integrated Development Environments (IDE) of their design tools due to

the flexibility, automation, and accuracy it provides that, according to Terzidis, allows them to “go

beyond the mouse, transcending the factory-set limitations of current 3D software” [129, p. 203].

However, despite overcoming traditional design possibilities, AD requires architects to learn new skills,

such as programming, which is far from being trivial.

Currently, there are two main paradigms for AD, textual and visual, with the main difference

between them being the way algorithmic descriptions are represented (Figure 4.1): in the first one,

using textual programs prescribing the operations the computer needs to execute, whereas in the

second, through an arrangement of interconnected iconic elements, forming dataflow graphs. The

development of intuitive and easy-to-use visual programming IDEs made the latter paradigm more

popular within the architectural community but current practices have evidenced several limitations

that make it inappropriate for the development of large AD programs [202, 230, 231]. This explains

why most software applications in existence, whether for architecture or not, were developed using

textual programming [232].

Figure 4.1. Text- and visual-based IDEs: Atom (on the left) and Dynamo (on the right) [233].

This chapter elaborates on the emergence of AD in architecture and the reasons behind its increasing

use. It presents the strengths and limitations of the currently existing AD paradigms and tools, while

identifying the main barriers that still hinder their widespread use.

49

4.1. THE BIRTH OF ALGORITHMIC DESIGN

Algorithms are everywhere and they are a fundamental part of current technology. Most of the

design tools released since the late 70s support AD approaches, integrating their own IDEs to satisfy

the users’ need to automate design tasks and deal with more complex design problems.

Unfortunately, the development of algorithms is an abstract and unfriendly task and, thus, some of

the first design tools tried to hide the algorithms from their target users, providing them with mostly

Graphical User-Interfaces (GUIs) containing ready-to-use menus of operations and supporting point-

and-click interactions with the tool’s interface. Sketchpad [234] is one prominent example: it allowed

users to visualize and manipulate geometry on a computer by creating digital representations of

points, lines, and shapes in a manual and intuitive way. Sketchpad was followed by many other tools

with increasingly sophisticated GUIs that replicated, in the digital medium, the typical modus operandi

of architecture professionals.

Interestingly, it soon became evident that, independently of the sophistication of the GUI, the

interaction process itself was relatively slow and, instead of moving a mouse to select an item in a

menu, it was faster to just press a few memorized keys for, e.g., copying and pasting. Similarly, instead

of searching in a myriad of menu items and sub-items for an intended action, it was much more

practical to just write the name of the action. This fact prompted vendors to support textual

commands, including the ability to provide command arguments and then sequences of commands,

in what became known as macro commands. Despite being relatively simple, these macros allowed

users to automate design tasks by describing the sequence of commands that was needed to perform

each of the tasks. Having this possibility, the designers’ temptation to automate increasingly more

complex tasks started to grow, not only requiring more advanced control features, like conditional

structures and loop/while iterations, but also stressing the limits of these command-line interfaces.

To address the users’ ambition, the tools’ developers focused on evolving the available automation

mechanisms to make them more programmable and customizable. As a result, most tools started to

provide their own programming languages, two important examples being ArchiCAD’s Geometric

Description Language (GDL) and AutoCAD’s AutoLISP, announced in 1983 and 1986, respectively. In

most cases, an IDE was also added to facilitate the programming task, incorporating features that

increased its intuitiveness and reduced its abstractness, such as syntax highlighting. CAA (1998) for

CATIA and Visual LISP (1997) for AutoCAD are two examples. This scenario opened the opportunity

for AD approaches to emerge, as designers could now automate design tasks and explore a wide

range of design solutions by resorting to algorithms.

50

Unfortunately, the programming languages that were being proposed suffered from several

problems, the most serious one being the fact that they were tool-specific, thus locking-in users to

that tool: for instance, AutoLISP could only be used with AutoCAD, GDL with ArchiCAD, and

RhinoScript with Rhinoceros 3D. This was an advantage for the tool’s vendor but a serious

disadvantage for the designers, as they could not reuse their AD programs on a different design tool.

A second problem was the obsolescence of the proposed programming languages. For

example, GDL was based on BASIC, a programming language that was already considered very

limited at the end of the 80s but continues to be the main user-accessible programming language

of ArchiCAD more than thirty years later. In the same vein, when AutoLISP was presented, advanced

Lisp dialects, such as Scheme and Common Lisp, had already solved some of the problems affecting

their predecessors; however, AutoLISP did not benefit from the lessons learned and, to avoid

breaking the numerous user-developed programs already in existence, the language did not evolve

and is nowadays an obsolete programming language.

To address these problems, while facilitating the learning process of architects, several tools

started to support modern, easy-to-use programming languages, with which architects quickly

became familiar. Python is one such example, which is currently available in several design tools, such

as 3D Studio Max (2013), Revit (2009), Rhinoceros (2011), ArcGIS (2004), and City Engine (2010).

Another strategy adopted was the integration of visual programming environments targeting both

experienced and non-experienced users in AD, such as Generative Components (2003), Grasshopper

(2007), and Dynamo (2011). Nevertheless, it is ironic that what was initially meant to reduce the

architects’ initial investment when adopting AD approaches and simplify their modeling experience,

sooner became more complex and abstract due to their tendency to innovate and go beyond the

boundaries already explored.

4.2. ALGORITHMIC DESIGN PARADIGMS

Despite the cutting-edge aura that surrounds it, AD emerged as the natural consequence of a design

process that fully automated modeling tasks. In AD, instead of manually modeling the design in a

design tool, the designer develops algorithms whose execution creates the intended model [181]. This

has several advantages over traditional digital modeling processes, including precision, repeatability,

and ease of change. A more relevant advantage comes from the almost unavoidable parametrization

of algorithms, which makes designs intrinsically parametric, allowing the architect to explore their

implicit design spaces, i.e., the set of possible solutions, by simply changing their parameters.

51

Initially, only the textual paradigm was allowed in most AD tools. The technology available at

the time was not powerful enough to support a more graphically demanding approach like visual

programming. With the technological evolution, new features were incorporated in the already

existing text-based AD environments and, later, new visual-based AD tools emerged. While in the

textual paradigm efforts were made to improve the development and debugging of text-based AD

programs, the focus in the visual paradigm was to bring programming as close as possible to the

visual nature of design thinking and thus make it less abstract and more intuitive for non-experienced

programmers. Among the two, the latter paradigm became more popular in architecture due to (1)

the greater intuitiveness and user-friendlier graphical-based appearance of its related tools, (2) the

ease with which users can obtain results after learning just a small set of programming techniques

[202, 231], and (3) the available features that facilitate the development and manipulation of AD

programs, such as traceability, i.e., the relationship between parts of the program and those of the

generated model, to improve program comprehension, maintenance, and debugging [218]; real-

time feedback, to immediately display the impact of program changes; and user-interaction

mechanisms (e.g., sliders, toggles, and button devices), to represent and manipulate the design’s

parameters in real-time.

Unfortunately, the features that make visual programming languages (VPLs) more attractive

than textual programming languages (TPLs) for the development of simple programs become serious

shortcomings for the development of large programs, the first one being their lack of scalability,

which is essential to deal with more complex design problems [230, 235]. Another limitation regards

the intelligibility of the resulting AD programs, whose large number of nodes and even larger number

of connections make their understanding and manipulation difficult [82, 231, 236, 237]. The lack of

user-programmable features of most VPLs is another common limitation, often confining users to

the predefined functionalities available in each VPL and thus hindering the development of solutions

that need more advanced features [202]. Another shortcoming is their accentuated drop in

performance when executing large AD programs, often making the tools loose interactivity or even

crash [218, 238, 239]. Lastly, the lack of version control mechanisms, i.e., mechanisms responsible for

managing and tracking program changes, of most VPLs is another important limitation, making it

difficult to support the division of labor typical of collaborative design processes [236, 240]. As a

result, despite their attractiveness, VPLs prove to be only advantageous to solve simple design

problems; in the remaining cases TPLs are preferable [238, 241, 242]. The inability of VPLs for long-

term use [243] motivates the transition from the visual to the textual paradigm [241]. Nevertheless,

this process is not trivial, particularly when the user is accustomed to VPLs’ interaction mechanisms,

which rarely exist in TPLs, and tends to lack the consolidation of important theoretical bases, such as

52

variable declaration and flow control structures, a drawback that gets even worse when addressing

more complex design problems.

Given the limitations of VPLs, it is not surprising to verify that they were eventually extended

to also support textual programming and, thus, benefit from its expressiveness and scalability. The

need to learn textual programming has therefore become increasingly evident in the field but,

unfortunately, it still takes time to achieve the level of proficiency needed to deal with large scale

designs.

Based on the idea that learning a VPL first can facilitate learning a TPL later [243], some hybrid

programming approaches were proposed, combining both textual and visual programming features

in a single programming language. DesignScript [244] and KhepriGH [245] are two relevant

examples. Another solution proposed to smooth TPLs’ learning curve focuses on the incorporation

of the most desired VPLs features in the textual paradigm to make TPLs more intuitive and more

suitable for teaching purposes [246]. Lastly, the provision of ready-to-use algorithmic libraries and

strategies addressing different design problems and scenarios was also proposed with the aim of

facilitating and accelerating the development of AD solutions of varying complexities [4, 5, 7, 76–78,

83, 176, 177, 247], allowing users to choose and combine predefined AD program fragments in a

guided way.

4.3. ALGORITHMIC DESIGN TOOLS

Since long, design tools have incorporated their own AD environments, initially mostly text-based, to

extend their modeling capabilities and allow the development of AD solutions. Design Augmented

by Computers (DAC-1), developed by General Motors and IBM and released in 1964, was one of the

first CAD tools to include a custom programming language intended for users, the Descriptive

Geometric Language (DGL), to allow them to create new modules that could be called from within

the interactive environment [248].

Regarding the field of architecture, in 1983, ArchiCAD started to incorporate a text-based IDE

to allow users to create their own architectural objects using the GDL programming language [249].

Despite being easy to use, the latter lacked good abstraction mechanisms [250], making it very

difficult to create large programs. Moreover, the IDE was a simple text editor that did not provide

sufficient support to reduce the difficulty of the programming task.

Three years later, in 1986, AutoCAD started to incorporate its own TPL, AutoLISP, to allow

users to algorithmically manipulate AutoCAD’s entities and extend its modeling capabilities. Still,

writing AD programs was a difficult task that was only facilitated in 1997 with the integration of the

53

text-based IDE Visual Lisp in AutoCAD Release 146, which considerably improved their readability

through syntax highlighting7 (Figure 4.2-A) and their debugging by identifying and locating existing

errors.

Figure 4.2. Examples of text-based IDE features: A. syntax highlighting (Rhino.Python)[251]; B. code

autocompletion (Atom); C. Error highlighting and debugging support (Visual Studio Code).

In 1997, 3D Studio Max was also extended with an IDE for a new TPL, MAXscript, an object-oriented

programming language with a simple syntax suitable for non-programmers. In addition to providing

advanced programming mechanisms, such as higher-order functions8 and automatic broadcasting9,

MAXscript allowed users to easily develop GUIs for their own AD programs.

In the ensuing two decades, several design tools followed this trend, integrating similar text-

based IDEs. Rhinoceros 3D’s Rhino.Python and RhinoScript IDEs are two examples that, in addition

to the previous features, already supported code auto-completion10, albeit in a limited way. Another

example is Bentley’s GCScript, which presented a more advanced version of code auto-completion,

displaying suggestions of variables and functions in the active scope, together with their description,

e.g., the parameter list and type of input received (Figure 4.2-B).

6 First, as a paid add-on but then included in AutoCAD 2000.
7 The use of different colors or fonts to display the different program elements.
8 A function that either receives one or more functions as argument or returns a function as outcome.
9 The mapping of a function over an array or a matrix by element.
10 The ability to display possible completions for the word the user is typing in.

54

Despite all the progress made, most text-based AD tools currently available only provide

limited support for the programming task, especially when compared to other professional IDEs, such

as Atom, Eclipse, and Visual Studio Code. In addition to being free of charge, these IDEs include

important features such as (1) IntelliSense code completion, displaying smart completions based on

the variables type and function definitions (Figure 4.2-B); (2) advanced debugging support,

suggesting possible solutions to solve the identified errors (Figure 4.2-C); (3) refactoring mechanisms,

i.e., mechanisms to improve the algorithmic structure of a program while preserving its semantics,

increasing the programs readability and maintainability; and (4) version control, facilitating the

detection and correction of program errors and the adoption of collaborative work practices. It is

therefore not surprising that some tools have opted to use these independent IDEs instead of

developing their own, such as ArchGIS, Unity, and Unreal. In almost all cases, however, the available

AD tools lack real-time feedback and traceability, two important features to make the manipulation

of text-based AD programs more intuitive and closer to the architects’ visual nature, while reducing

the programming experience needed for their use.

Regarding visual-based AD tools, Generative Components is a pioneer example, a tool

released in 2003 to extend the modeling functionalities of MicroStation. To facilitate the programming

task, this tool provides users with several interface views [198], allowing them to interactively

manipulate design variables through number sliders and automatically see the results. It also supports

(1) real-time feedback, immediately displaying the results when connecting nodes or changing input

values, (2) bidirectional traceability between the program and the model, highlighting the generated

part of the model when selecting a component in the AD program (Figure 4.3-A) and the other way

round, and (3) the automatic generation of visual-based code from manually created geometry.

Another example is Grasshopper, a tool released in 2007 that had the advantage of being free

of charge and being constantly further extended with an increasing number of plugins. Besides

supporting visual input mechanisms, i.e., mechanisms that allow using manually created geometry in

the modeling tool as input to the AD program, this tool also provides debugging features,

automatically changing the color of the AD program’s graphical components according to their status

and providing information about the existing problem (Figure 4.3-B).

Dynamo is another popular example, which was released in 2011 to extend the modeling

capabilities of Revit. Besides having features similar to those of the previous tools, Dynamo has the

novelty of supporting the development of AD programs in the same environment where the resulting

geometry is displayed.

Examples of other, less-used visual-based AD tools include VectorWorks’ Marionette, Unreal’s

Blueprint, and CATIA’s xGenerative Component. The first two have the newness of providing

55

functionality highlighting, coloring the available components according to their function (Figure 4.3-

C). The latter, in turn, supports two ways of developing AD programs, by either dragging and

dropping the graphical elements in the canvas and connecting them, just like it is done in other

competing tools, such as Grasshopper and Dynamo, or manually modeling the geometry in the

modeling environment, with the AD program describing it being automatically updated accordingly.

Further examples of AD tools are chronologically presented in Figure 4.4.

Figure 4.3. Examples of visual-based IDEs features: A. one-direction traceability (Grasshopper); B. debugging

support (Grasshopper); C. functionality highlighting (©2018 Vectorworks, Inc).

Given the limitations of VPLs for large-scale architectural problems, most visual-based AD tools were

extended with further functionalities aiming at solving part of the existing problems, one of them

being the poor intelligibility of the AD programs. Different modularization11 techniques were

integrated to improve both the structure organization and readability of AD programs, allowing users

to either group graphical elements by task or create new ones hiding other arrangements of graphical

elements. Grasshopper’s clusters and Dynamo’s code blocks are two examples. These techniques,

however, are rarely used by architects, the resulting AD programs therefore remaining difficult to

understand in most cases.

11 Software design techniques that separate the programs’ functions into independent, interchangeable pieces.

56

Figure 4.4. Timeline on text-based (left) and visual-based (right) AD tools.

57

To solve the lack of scalability of most VPLs, textual programming extensions were made available

for VPL’s to benefit from TPLs’ basic programming mechanisms, such as loop iterations, recursive

functions, and higher-order functions, which are critical for more complex designs problems [230,

235]. Unfortunately, even with these textual components, it is often difficult to develop large-scale

AD programs in these tools: Grasshopper, for instance, provides components for textual

programming using the languages VB.net, C#, and Python, but these are intended for small AD

programs as it hardly supports large-scale development, namely, division of programs in multiple

files.

Lastly, to address the poor interoperability between most visual-based AD tools and the design

tools commonly used in architecture, some of them were extended with further functionalities

embracing different analysis, optimization, and fabrication strategies. Relevant examples include

Grasshopper’s plugins for structural analysis and form finding, such as Kangaroo12, Karamba3D13,

Millipede14, and Peregrine15; for lighting and thermal analysis, which include Ladybug16, Honeybee17,

DIVA18, and ClimateStudio19; for design optimization, namely Galapagos20, Goat21, Octopus22, and

Opossum [252]; to export models into BIM tools, such as Hummingbird23, Lyrebird24, GHRevit25,

Rhino-Grasshopper-ArchiCAD26, and RhinoBIM27; and for manufacturing and assembly, which

include HAL28, FabTools29, BowerBird30, OpenNest31 and Kuka|PRC32. Other examples include

Dynamo’s structural and energy analysis packages, and its addons for daylighting and

thermodynamic analysis (e.g., Honeybee), optimization (e.g., Optimo), and fabrication (e.g.,

DynaFabrication, Fabrication API, 3BMLabs.DigiFab, and ParametricMonkey). However, despite

12 D. Piker. ‘Kangaroo’ (2015).
13 C. Preisinger and B. und G. Z. GmbH. ‘Karamba3D’ (2014).
14 Panagiotis Michalatos. Millipede (2014).
15 LimitState 3D. ‘Peregrine’ (2019).
16 M. Roudsari (Ladybug Tools LLC). ‘Ladybug’ (2013).
17 M. Roudsari (Ladybug Tools LLC). ‘Honeybee’ (2014).
18 Solemma. ‘DIVA’ (2019).
19 Solemma. ‘ClimateStudio’ (2021).
20 D. Rutten. ‘Galapagos: Evolutionary Principles Applied to Problem Solving’ (2010).
21 S. Floery. ‘GOAT’ (2013).
22 R. Vierlinger. ‘OCTOPUS’ (2012).
23 M. Guttman and T. Meador. ‘Hummingbird’ (2012).
24 LMN Architects. ‘Superb Lyrebird’ (2014).
25 S. Davidson. ‘GHRevit’ (2012).
26 GRAPHISOFT. ‘Grasshopper-ARCHICAD’ (2017).
27 Virtual Build Technologies LLC. ‘RhinoBIM’ (2015).
28 T. Schwartz. ‘HAL | ROBOT PROGRAMMING & CONTROL’ (2017).
29 Florian Frank. ‘FabTools’ (2013).
30 Thomas J. Oberbichler. ‘BowerBird’ (2015).
31 Petras Vestartas. ‘OpenNest’ (2021).
32 RobotsInArchitecture. ‘KUKA|PRC’ (2011).

58

solving part of the existing interoperability issues, they continue to suffer from most of the limitations

typical of VPLs, often failing to respond to the complexity of current design processes.

Regarding the focus of this thesis, building envelopes, there are already some tools available

to facilitate the algorithmic development of facade design solutions. One example is ParaCloud

Gem33 (Figure 4.5-A), a 3D pattern modeler that contains features to (1) map 3D elements on a mesh,

(2) subdivide and edit surfaces, (3) integrate performative requirements, and (4) allow the rapid

prototyping of the solutions through 3D printing. Other examples are Dynamo’s packages for (1)

surface paneling, (2) mapping elements on a surface, and (3) pattern creation and manipulation, such

as Quads from Rectangular Grid (Figure 4.5-B), Ampersand, Clockwork, LunchBox, MapToSurface,

Pattern Toolkit, and LynnPkg. Further examples include several extensions for Grasshopper, namely

PanelingTools34, which includes surface paneling functionalities and rationalization techniques for

analysis and fabrication; LunchBox35, which has functionalities to explore mathematical shapes,

surface paneling, and wire structures; Weaverbird36, which contains mesh subdivision procedures and

mechanisms to help prepare meshes for fabrication; Parakeet37 (Figure 4.5-C), which provides

functionalities to develop algorithmic patterns resulting from tiling, geometric shapes and grids

subdivisions, edge deformation, etc.; and SkinDesigner38 (Figure 4.5-D), which includes mechanisms

to produce facade design solutions made of repeating elements.

In addition to being easy to use and intuitive, these tools facilitate typical modeling procedures

of facade design processes, such as the generation of point-grids on a surface, mapping elements in

different ways, applying attractors39 to control elements size, rotation, among others. However, their

use is mostly manual, requiring the user to interact directly with the tool’s environment instead of

using algorithms, thus favoring iterative user-driven processes that can be tiresome and error-prone.

Moreover, they are mostly based on VPLs and thus suffer from their limitations [231, 241], particularly

scalability. Lastly, most of the above-mentioned tools are limited by the available predefined

operators, which can hardly be configured by the user to respond to more specific problems [202].

33 ParaCloud. ‘ParaCloud GEM’ (2011)
34 R. Issa. ‘PanelingTools for Grasshopper’ (2013).
35 N. Miller. ‘LunchBox’ (2011).
36 G. Piacentino. ‘Weaverbird’ (2009).
37 Esmaeil. ‘Parakeet’ (2019).
38 Sgaray. ‘SkinDesigner’ (2017).
39 Elements acting like virtual magnets.

59

Figure 4.5. Paracloud GEM (©paracloud.d.e.s.i.g.n.e.r via blogspot); Quads from Rectangular Grid package

[233]; Parakeet plugin (©Esmaeil Mottaghi); SkinDesigner (©sgaray).

4.4. ALGORITHMIC DESIGN PATTERNS

AD has been used in architecture for various purposes, one of them being the design of building

envelopes. According to Kolarevic and Malkawi [143], AD is advantageous for their design exploration

and optimization due to automating and, thus, accelerating the generation of several design

variations, while allowing their iterative evaluation regarding multiple criteria, which are typical of

facade design processes. Moreover, AD has also proved to be useful for material exploration

strategies, as evidenced by Menges [253], and fabrication processes, as explored by Iwamoto [161],

Dent & Sherr [254], and Gramazio & Kohler [160]. To benefit from it, however, architects have to

learn new skills, such as programming, and know how to control them [161]. To smooth part of the

existing limitations, some AD strategies were proposed in the literature, such as the use of

modularization and Design Pattern (DP) techniques.

According to the literature [7, 255–257], pattern is a general solution to a recurring problem,

often described with a high level of abstraction, that can be repeatedly re-used and re-defined in

different contexts. In the same vein, DP is often described as the abstraction of known design

strategies or solutions to real (and often recurrent) design problems that allow architects to take

advantage of previously used design knowledge [3–5], while avoiding repeated reinvention in the

60

resolution of new ones. In this thesis we consider DP as a frequently applied problem-solving design

strategy that is generalized in an algorithmic perspective.

The idea of DP has been closely related with the computer science field for a long time,

becoming part of several well-known computation-based theories and methods. In architecture, this

idea was introduced in the early 60s by Christopher Alexander [258], who developed a language

based on a network of patterns representing repeatedly occurring problems and their solutions [4].

For the author, the resolution of such problems could originate generic solutions that could be used

multiple times and in an infinite variety of design scenarios. In his work A Pattern Language [4], the

author presents 253 patterns to be used as generic guiding principles for architectural design.

Curiously, although his academic background was architecture, Alexander’s work had a great impact

in computer science [259], inspiring several design methodologies at the time, namely the design of

programming languages, modular programming, and object-oriented programming, as well as

different authors, including Peter Naur [260] and Richard Gabriel [261].

With the emergence of computational design approaches, such as AD, DPs also gained

visibility in the field, which is reflected in the literature of the last decades. Several authors have

recognized the advantages of DPs to assist architects with their computational thinking and to reduce

the complexity and abstractness of AD approaches [3, 258]. Woodbury et al. [76], for instance,

evaluated the capability of DPs to help architects with the identification of suitable solutions for certain

design problems, concluding that these strategies are suitable to anticipate unexpected design

changes during the design process. Similarly, Qian [7] demonstrated the ability of DPs in augmenting

and supporting architectural design practices based on AD. According to Khwaja & Alshayeb [262],

using DPs reduces the development time of AD solutions, while facilitating the communication

between team elements working on the same project. Lastly, Yu & Gero [177] investigated the trends

in using DPs at early design stages, concluding that these are more often used in Parametric Design

(PD) environments based on AD.

Regarding their practical application, Hudson [77] developed a reusable parametric tool based

on the capture of well-defined design methods and practical experiences from a group of designers,

concluding that several procedures in design offices could be converted into reusable tools for

design. Woodbury [83] and Chien et al. [176] developed pattern management tools containing

collections of predefined algorithmic DPs, with the aim of formulating knowledge for PD users.

Similarly, Lin [247] proposed an algorithmic framework to help architects in the exploration and

development of algorithmic descriptions to solve their design problems. Sousa and Paio [263]

elaborated a taxonomy relating and classifying patterns for small public spaces that responds to the

demands of current digital design processes. Finally, in the field of facade design, Su & Chien [78]

61

proposed a set of algorithmic patterns to support the development of architectural facades at initial

design stages.

Nevertheless, most of the previous studies focus on the modularization of AD solutions based

on VPLs and, thus, are restricted to their inherent shortcomings. Moreover, they attempt to support

AD processes only at initial design stages, not integrating other types of processes and algorithms,

such as analysis and optimization, neither connecting them to the multiple design tools that are

nowadays becoming ubiquitous. Finally, to the best of our knowledge, only Su & Chien [78]

addressed the application of algorithmic patterns to explore building envelopes, concluding that the

same pattern can appear in different design workflows as well as in different design stages, and that

multiple patterns can be used together. The research, however, only applies generic algorithmic

patterns proposed by other authors, not proposing others more specific for facade design problems.

Moreover, it only targets the visual programming paradigm, therefore being circumscribed to its

limitations.

63

5. FACING NEW DESIGN CHALLENGES

During the 50’s, the need to respond to the constantly changing social and technological

backgrounds, together with the growing environmental concerns and greater awareness on the

buildings’ ecological footprint, motivated new design approaches that went beyond aesthetic,

structural, and functional levels [143]. According to Fasoulaki [215], architects started to realize that

the buildings’ behavior could be a relevant input in design exploration processes, contributing to

more informed and conscientious design practices. For Anton & Tǎnase [264], integrating analysis

information in the design workflow potentially leads to better performing solutions that

simultaneously meet the original design intent. This idea has been evolving in the literature (Figure

5.1) under the name of performance-based, performance-driven, performance-oriented, or even

performative design [125, 126, 134, 136, 142, 265].

This chapter is organized in three main sections: the first addressing current environmental

concerns and the role of design analysis in current architectural practice; the second presenting some

of the existing design optimization strategies and their application in facade design processes; and

the last one illustrating the integration of building performance in real case scenarios, evidencing the

need for architects to collaborate with differently skilled professionals and benefit from diverse

Computational Design (CD) strategies.

Figure 5.1. The use of performance-related terms as a keyword from 1992 to 2021 in three scientific sources:

CuminCAD, Science Direct, and Scopus.

5.1. THE ROLE OF DESIGN ANALYSIS

The notion that buildings are one of the main CO2 emitters and spenders of energy resources [266]

has been motivating design practices that aim at reversing the situation. These practices have been

64

supported by the latest technological developments, including the increase in computational power,

which have been enabling architects to explore design solutions that better address environmental

requirements. As stated by Tibbits, “computational tools and methods allow designers to go far

beyond what they could conceive independently” [265, p. 145].

5.1.1. GROWING ENVIRONMENTAL AWARENESS

We are currently witnessing a dramatic environmental problem and the Architecture, Engineering

and Construction (AEC) sector is one of its main contributors. According to the literature, buildings

in the European Union are responsible for 40% of the total energy consumption and 36% of

greenhouse gas emissions [268], which are one of the main contributors for climate change and

global warming [269]. Most of these emissions result from the buildings’ operational costs, such as

heating, cooling, lighting, and ventilation, as well as from their construction, renovation, and

demolition [268]. In 2012, for instance, buildings consumed around 75% of European’s energy

consumption, and almost 70% of it was for space heating [70].

The statistics therefore show that it is critical to minimize the ecological footprint of buildings

[70, 71], and, to that end, several regulations and incentives were established [270] aiming at

contradicting the growing trend of global CO2 emissions [70]. The Building Research Establishment

Environmental Assessment Method (BREEAM), first published in 1990, is the oldest method for

assessing, rating, and certifying the buildings’ sustainability, covering a wide range of environmental

issues. Then, in 1997, the Kyoto protocol [271] was signed, constituting one of the first initiatives that

aimed at limiting CO2 emissions. Other examples include the European Union’s Energy Performance

of Buildings Directive (2002/91/EC, 2010/31/EU and COM/2016/0765) targeting the improvement of

buildings’ energy performance; the green building certification Leadership in Energy and

Environmental Design (LEED) developed by the non-profit U.S. Green Building Council; and the

Japanese green building management system Comprehensive Assessment System for Built

Environment Efficiency (CASBEE).

The existing legislation, however, requires architects to evaluate the performance of their

designs regarding different criteria [272] to ensure the proposed metrics are met [68]. This, in turn,

made building design a more demanding task as it has now to respond to the ever-existing design

requirements, such as aesthetics, structural, comfort, and economic, as well as to an increasing

number of performance regulations and metrics. To assess this multiplicity of requirements, several

analysis tools were released in the last decades, allowing architects to evaluate the performance of

their designs regarding different criteria [71]. Nevertheless, obtaining accurate analysis results is not

a straightforward task due to the wide variety of external (e.g., climate, geographic location, site

65

conditions, etc.) and internal (e.g., occupants behavior, operating schedule, type of activities, etc.)

factors that typically affect buildings’ performance [71].

5.1.2. ASSESSING BUILDING PERFORMANCE

In the last decades, several analysis tools for architectural design were released, popular examples

being EnergyPlus40 and TRNSYS41, two whole-building energy simulators; Radiance [273], for

(day)lighting simulations; DAYSIM42, for climate-based daylight simulations; and Robot [274] for

structural analysis. In general, these tools allow architects to simulate the behavior of their designs

and thus become more aware of the impact of design changes on their performance [71]. However,

despite their usefulness for architectural design, these tools are still far from being widely used in the

field. On the one hand, there are still few practitioners who use analysis tools in their design processes.

On the other hand, those who use rarely benefit from them at early design stages to support design

decision-making processes, but rather at later design stages only to validate the performance of

already well-defined solutions [68, 72, 269].

According to the literature, the need for specialized knowledge, the high cost of most analysis

tools, and the idea that they restrict the architects’ creative process are some of the factors that are

still hindering their widespread adoption [68, 272]. Moreover, the fact that most analysis tools target

final design stages and have interoperability issues with the design tools architects typically use is

another common barrier to their use, often resulting in a laborious process prone to information loss

and to the accumulation of errors [68]. Another critical hindering factor is the fact that most analysis

tools are single domain, while architectural problems are multi-domain, making it necessary to use

multiple analysis tools to evaluate different criteria. This, in turn, is further amplified by the specific

requirements of each analysis tool, which often require the production of different versions of the

architectural design model, i.e., a digital model containing the project’s geometric and sometimes

construction information, containing the information needed for the type of analysis performed [72];

also known as analytical models. Lastly, the long computation times of many analysis tools is another

common barrier to their use [71, 272], often being incompatible with the projects’ deadlines.

These limitations become even more pronounced with the need of architectural design

processes to iteratively redesign and reanalyze design solutions, often resulting in the repeated

production of several analytical models and the consecutive execution of multiple performance

evaluations. Given the time and effort required for each independent task, evaluating an acceptable

40 DOE and BTO, ‘EnergyPlus’ (1996). https://energyplus.net/ (Retrieved on <July 12th 2022>).
41 TRNSYS. ‘TRNSYS: a transient system simulation tool’. http://www.trnsys.com/ (Retrieved on <July 12th 2022>).
42 C. Reinhart. ‘DAYSIM: Advanced Daylight Simulation Software’ (2010).

https://energyplus.net/
http://www.trnsys.com/

66

sample of possible solutions is, in most cases, an impracticable scenario [272]. To address the need

for a faster and more reliable data-flow process suiting the iterative nature of architectural design,

some design tools started to integrate their own analysis strategies [80], partially solving the effort

associated with the use of multiple analysis tools. Nevertheless, most of them still present a limited

(1) modeling flexibility, mainly in representing nonstandard solutions; (2) accuracy, mostly in analyzing

less conventional geometries and construction schemes; and (3) information support, often making

no suggestions about which design direction to follow and how to translate analysis results into

design changes.

5.2. THE ROLE OF DESIGN OPTIMIZATION

The use of optimization in architecture was motivated by the need to explore the design space faster

and more efficiently in the search for better performing solutions [272]. In general, optimization

comprises the study of optima and the methods to find them [275]. Mathematically, this process aims

at identifying the best element in a set of alternatives according to a criterion [276]. Such a problem

can be described as 𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛) while subjected to 𝐺(𝑥1, 𝑥2, … , 𝑥𝑛) ≥ 0 𝑥𝑖 ∈ 𝑆𝑖 ,

wherein 𝐹 is a vector of objective functions and 𝐺 a vector of functional constraints, and 𝑥𝑖 is a

variable belonging to the domain 𝑆𝑖 .

Similarly, architectural optimization searches for the best solution according to a fitness

function within a design space of possible solutions; a process that typically entails the iterative

remodeling of a design and its subsequent analysis to check if the performance goals are met [269].

This search can consider either one or more objectives, the former being classified as single-objective

optimization and the latter as multi-objective optimization. In mathematical terms, the main

difference between them is the number of objective functions to optimize [270]. In most cases,

however, real design problems require handling multiple objectives that are often conflicting in

different degrees [277].

Optimizing architectural designs requires simplifying a real-world complex problem, often

dealing with multiple conflicting requirements, into a mathematical one. Given that multiple

conflicting goals often result in a set of possible solutions that are not optimal for all objective

functions [277], architectural optimization therefore searches for those solutions that make the best

compromises between goals [272]. In this thesis, we name the set of solutions with the best trade-

offs for a certain scenario as the optimized design space.

During this process, the higher the number of potential solutions analyzed, the greater is the

probability of finding or getting close to the optimized design space [270]. Obviously, choosing from

67

all possible solutions would be the ideal scenario but this is not yet possible due to the insufficient

computational power of existent computers. In any case, these processes are important to remind

architects of possible design solutions that might otherwise not occur to them [86]. Moreover, even

if the optimized design space is not reached during the optimization, the probability of obtaining a

solution with a better performance is much higher than not doing any optimization at all [272, 278].

5.2.1. ARCHITECTURAL DESIGN OPTIMIZATION

In the last decades, the number of works on building optimization has noticeably increased in the

literature [71, 270, 279–281]. For Nguyen et al. [278], this was stimulated by the stricter environmental

requirements of the AEC industry, as well as the recent developments in computer science, such as

the emergence of Algorithmic Design (AD) approaches, which, according to Oxman [135], have been

facilitating the automatic incorporation of design changes and their subsequent performance

analysis. Regarding architectural practice, the scenario is different because, even though designers

and engineers already use simulation tools to analyze their projects, these are often employed

without affecting the buildings’ form, let alone guiding the geometric exploration process [264]. As

in most cases the design space is manually explored, i.e., the solutions are adapted by hand to

incorporate the analysis results [135], only a few design alternatives are evaluated, thus resulting in

small design changes due to time constraints and associated effort [68]. Moreover, since only a few

design requirements are usually considered in such processes, the results tend to be either unrealistic

or non-effective [269].

Fortunately, the emerging CD approaches, such as AD, are changing this scenario, enabling

the automation of optimization routines and thus facilitating and accelerating the evaluation of wider

design spaces [277]. Nevertheless, the search for near-optimal solutions is not a straightforward task

in architecture because, first, most buildings are unique and their design has to respond to multiple

conflicting requirements [270]; second, it requires exploring large design spaces [270], which typically

results in high computation times; third, most of the available tools are little intuitive and require

specialized knowledge; and lastly, it requires architects to mathematically formulate the optimization

problem [276], which is far from trivial due to depending on several context-specific factors [72].

According to Machairas et al., the formulation of optimization problems is one of the main

steps of any optimization process [272] for which there are several strategies available and whose

selection has a direct impact in both the duration and success of the process. In single-objective

problems, for instance, this is a straightforward task [270] as it focuses on minimizing/maximizing a

single objective function. This simplicity therefore makes single-objective optimization the least time-

consuming strategy but also the least informative and accurate as well [72]. Regarding multi-objective

68

problems, there are two main strategies [270]: converting the problem into a single-objective one by

combining the multiple objectives into a single function, for instance, through weighted-sums or by

adding penalty functions, or adopting a Pareto-based optimization43. From the two, the former is

often easier to implement, less computationally demanding, and less time consuming since it must

solve a single combined objective function [72, 282]. Nevertheless, it is also less informative, often

returning a single solution and requiring prior knowledge on how the different objectives interfere

with each other [282]. The latter, in turn, provides a set of solutions with different trade-offs between

the multiple objectives, but requires higher computation times. In either case, however, there is no

information about the relationship between design variables and goals and their impact on other

design criteria like aesthetics. Moreover, both strategies are very sensible to the way the optimization

problem is modeled, especially the former, and, in the case of the latter, it becomes difficult to

graphically represent optimization problems dealing with more than three objectives, which hinders

the comprehension of the results [72, 282, 283].

According to Machairas et al. [272], the selection of the optimization tool is another critical

step that depends, among other factors, on the type of problem addressed, its mathematical

formulation, and the search methods available. Among the existing design optimization tools, there

are less user-friendly examples that require both specialized knowledge and programming skills, such

as GenOpt [284], modeFrontier44, ParaGen [285], and MultiOpt [286], but there are also easier-to-

use options, providing visualization and interaction mechanisms that interoperate with either the CAD

or BIM tools architects typically use. Grasshopper’s multiple plugins for design optimization, such as

Galapagos45, Goat46, Silvereye [287], Octopus47, Wallacei48, and Opossum [252] are some examples,

as is the optimization tool Optimo [288] from Dynamo Studio49 and the Optimization Module from

DesignBuilder50. However, these examples are all based on the visual programming paradigm and

thus share the same scalability issues [231, 241, 289]. Moreover, not all of them address multi-

objective problems (e.g., Galapagos, Goat, and Silvereye are single-objective) and most present a

limited range of optimization strategies, usually evolutionary ones (e.g., Octopus uses SPEA-2 and

HypE; Wallacei, DesignBuilder’s Optimization Module, and Dynamo’s Optimo currently only use

NSGA-II), thus reducing the probability of suiting the problem at hand [290, 291]. Lastly, very few

43 A strategy that returns the set of solutions that best balance the multiple objectives.
44 ESTECO. ‘modeFRONTIER®’ (1998). https://www.esteco.com/modefrontier (Retrieved on <July 12th 2022>)
45 D. Rutten. ‘Galapagos - Evolutionary Principles applied to Problem Solving’ (2010).
46 Rechenraum. ‘Goat’. https://www.rechenraum.com/en/goat.html (Retrieved on <July 12th 2022>).
47 R. Vierlinger. ‘OCTOPUS’ (2012).
48 M. Makki, M. Showkatbakhsh, and Y. Song. ‘Wallacei’ (2019).
49 Autodesk. ‘Dynamo Studio’ (2017).
50 DesignBuilder Software Ltd. ‘DesignBuilder’ (2012).

https://www.esteco.com/modefrontier
https://www.rechenraum.com/en/goat.html

69

support user-interaction while running the optimization process (e.g., Octopus) or traceability

between the analysis results and the generated solutions (e.g., Opossum and Octopus) [72], which

are critical to address the design constraints not covered by the optimization process (e.g., aesthetic

and functionality).

A last important step in most optimization processes involves the selection of the optimization

algorithm, which, according to Machairas et al. [272], should consider the type of problem addressed

and the algorithm’s performance. Currently there are several optimization algorithms available, which

are often classified according to the extent of their search (local or global), the determinism of their

results (deterministic or stochastic), and the type of information used (derivative-based or derivative-

free) [72]. Given their different characteristics, it is only natural that, depending on the problem

addressed, some optimization algorithms perform better than others [278]. However, this raises

questions regarding the different algorithms’ suitability for a given scenario, making their selection a

difficult task for which providing a generic rule is often infeasible due to the complexity and diversity

of real-world optimization problems. In the literature, there are already some works aiming at

systematizing the current variety of optimization algorithms [68, 71, 72, 270, 272, 280, 292–295];

however none present a general solution to guide their selection, only identifying the existing trends

in terms of (1) most used search strategies, namely genetic algorithms; (2) most addressed type of

problems and performance goals, namely single-objective problems and energy reduction,

respectively; and (3) most optimized building element, namely building facades.

5.2.2. EARLY DESIGN STAGES OPTIMIZATION

Reducing the buildings’ environmental impact requires the adoption of passive and active design

strategies from early design stages, where major performance improvements can be achieved [296],

that consider the multiplicity of requirements affecting their performance [269], such as occupants

behavior [297], building shape and orientation [298], envelope transmittance [299], and window type

and area [300]. Nevertheless, only a few requirements are often considered at initial design stages,

such as aesthetic and functional ones, the others being typically postponed to later stages, where the

design idea is already well-established [269, 301, 302]. However, at later design stages, most design

changes tend to be difficult, or even impossible, to implement due to the lack of flexibility of most

architectural design models [302]. The result is often a hardworking process based on iterative

manual remodeling tasks [264] that limit both the efficacy of the optimization strategy and its

successful integration in the design process, thus compromising the quality of its results [302].

In the literature, there are studies that focus on anticipating the improvement of design

solutions to early design stages to avoid the tiresome and time-consuming remodeling tasks.

70

Schlueter & Thesseling [303], for instance, proposed a prototypical tool for the BIM context to allow

instantaneous energy and exergy calculations and graphical visualizations of their results since early

design stages. Petersen & Svendsen [304] presented a method and a tool (iDbuild) to support

informed early stage design decisions based on energy and indoor environment performance. Attia

et al. [305] presented an energy-oriented tool to support early-stage design decisions based on

thermal comfort and energy performance. Lin & Gerber [306] developed the Evolutionary Energy

Performance Feedback for Design framework to support early-stage design decisions, which

combines geometric exploration and multi-objective optimization processes in the search for

improved solutions in terms of energy consumption, cost, and functionality. Konis et al. [307] applied

a novel framework (Passive Performance Optimization Framework) to improve daylighting, solar

control, and natural ventilation performances at early design stages. Anton & Tănase [264] discussed

the integration of both parametric modeling and energy analysis strategies at early design stages.

Lin et al. [308] developed a multi-objective optimization engine (MOOSAS) for early design stages

that supports the automatic conversion of 3D digital models into analytical ones, real time feedback

on energy and daylighting performance analyses results, and interactive building performance

optimizations based on user preferences. Finally, Ampanavos & Malkawi [309] introduced a

performance-driven design method to assist early-stage form finding optimization processes.

The proposed solutions, however, still present some limitations. The first one is that, most

proposals, only interact with one or even none of the design tools architects typically use (for

example, while [264, 307] are based on Grasshopper, [304, 308] only interoperate with Sketchup,

[305] with EnergyPlus, and [303, 306] with Revit). Another one is the fact that some solutions are

based on the visual programming paradigm (e.g., [264, 307]) and thus suffer from its scalability and

performance issues. Other limitations are that most solutions either hardly address more than two

performance requirements (e.g., [303] only calculates energy consumption, [305] encompasses only

thermal comfort and energy performance, and [308] only addresses energy and daylighting

performance), support a single or even no optimization strategy (for example, [306, 307] only use

Genetic Algorithms and [303, 304] do not provide any specific optimization strategy), or have a

narrow scope of application (e.g., [304] only supports rectangular rooms with a single fenestration,

[305] targets only the Egyptian context, and [309] only supports a limited range of design variables).

5.2.3. IMPROVING BUILDING FACADES

Based on the literature [68, 71, 270, 272, 280, 293–295], building facades are one of the most

optimized elements in architecture; a trend that is also visible in several contemporary buildings

whose facade design either considered or was guided by its performance. For some authors [40, 310,

71

311], this trend is explained by this element’s importance in the design of buildings, providing them

with an architectural identity, while shaping their environmental performance, indoor environmental

quality, and structural stability [71].

Within the scope of facade design, Bouchlaghem [312], proposed an integrated computer-

based model to design building facades based on their thermal performance; Wang et al. [313]

developed a multi-objective optimization model to assist designers in the design of green buildings;

Ochoa and Capeluto [311] developed the model NewFacades to help designers materialize their ideas

based on energy and visual comfort strategies; Gagne and Andersen [314, 315] proposed a tool based

on genetic algorithms to guide the design exploration of building facades based on their illuminance

and glare levels; Ko et al. [316] developed a methodology to refine faceted building facade shapes

according to their direct solar heat gains; Kasinalis et al. [317] proposed a multi-objective optimization

method based on genetic algorithms for quantifying the impact that seasonal facade adaptation has

on the buildings’ performance; Jin and Overend [318] developed a multi-objective optimization tool

prototype to search for optimal facade design solutions by considering functional, financial, and

environmental constraints; Gamas et al. [319] studied the use of evolutionary multi-objective

algorithms to optimize a building envelope in terms of its thermal and daylight performance;

Elghandour et al. [203] proposed a performance-oriented approach to improve the daylight

performance of building facades; Konis et al. [307] proposed a framework to improve daylighting,

thermal, and natural ventilation performance of buildings since early design stages by optimizing

their shape, orientation, fenestration configuration, and facade shading elements; Pantazis and

Gerber [320, 321] developed an agent-based framework to optimize facade paneling by considering

both lighting performance metrics and user daylight preferences since early design stages; and finally,

Bertagna et al. [322] proposed a framework to support holistic facade design approaches at

conceptual design stages combining shape exploration with structural, daylight, and user-defined

criteria.

Despite the extensive literature, most proposals do not directly address facade design

geometric exploration processes (for example, in [203, 312, 314–318, 320, 321], it is the user who

produces the facade design model a priori in either the modeling or simulation tool and, in [311–313],

the one who sets the project’s input data, e.g., window-to-wall ratio, building orientation, etc.) and

those that do have a limited modeling flexibility, only considering the generation of either building

shapes, fenestrations, and shading devices of regular sizes and geometries [307, 314, 315] or different

structural topologies for building facades [322]. Some also have a limited scope of application (for

example, while the proposals [311, 320, 321] target the optimization of office building facades, [318]

focuses on the optimization of commercial buildings with glazed facades, and [316] on the massing

72

process of faceted building facades), or address a single performance requirement, such as thermal

[312], lighting [203, 314, 315, 320, 321], or direct solar heat gains [316]. Moreover, the range of

optimization strategies allowed is often limited (for examples, [312] only provides Direct Search

algorithms and [307, 313–318] Genetic Algorithms), not only narrowing the scope of application of

the proposals, but also requiring architects to master an extensive range of tools to address different

design problems and to know in advance which strategy best suits each one. Lastly, some of the

proposals do not present a Graphical User Interface (GUI) displaying the resulting solutions [311–313,

317, 318], making their use insufficiently intuitive and insufficiently user-friendly, or do not directly

communicate with the design tools architects use [311–313, 318]. The existing exceptions [203, 307,

314, 316, 320–322], however, are mostly based on the visual programming paradigm, thus sharing its

limitations, particularly scalability [241].

5.3. THE ROLE OF COLLABORATION

Nowadays, environmental and social concerns play an important role in the design of buildings,

requiring the integration of analysis and optimization processes from early design stages to ensure

the different design requirements are met. This has, in turn, motivated the increasing adoption of CD

approaches in the field which, together with the growing complexity of architectural design problems,

have been causing several changes in design studios.

The adoption of collaborative design environments merging differently skilled professionals is

one such example [323]. It allows design studios to benefit from diverse specialized knowledge in

their design practice and thus more successfully respond to the growing design requirements [324].

Perkins+Will, White Architects, Foster+Partners, Woods Bagot, UNStudio, and SHoP are well-known

examples of collaborative design practices. In this section, we present a set of collaboratively

developed architectural projects that stand out at both representational and technological levels,

benefiting from the latest CD methods and manufacturing strategies.

The first, and earliest, example is the Sydney Opera House (Figure 5.2 left) designed by Jørn

Utzon. It was one of the first projects to challenge the means of architectural production of its time,

explaining the long period between its design (1959) and its construction (1973). At the time, this

project involved several experts to realize the unconventional roof shape, being a pioneer in resorting

to computers to structurally analyze its different roof shells and guide the assembly of their arches.

Already in the 1990s, the International Terminal Waterloo (Figure 5.2 middle) designed by

Nicholas Grimshaw and Partners and completed in 1993, is one of the first projects to technically

apply Parametric Design (PD). The arches that originally composed its roof structure had 36 different

73

possible dimensions but similar geometric principles, allowing the team to create a parametric model

based on the arches’ underlying geometric rules [129] instead of modeling them separately. In this

project, the use of PD enabled the team to save both time and effort in the design process, proving

its applicability in a real context, while evidencing its advantages for architectural design.

Project ZED designed by Future Systems in 1995 is another example that stands out due to

being one of the first projects to use computational fluid dynamics to guide the facade design process

and make the building self-sufficient in terms of energy consumption [129]. The result was a high-

performance facade design incorporating photovoltaic cells and optimized in terms of curvature to

maximize the channeling of wind towards the building’s wind turbines.

Another iconic example from this decade is Guggenheim Museum Bilbao (Figure 5.2 right),

designed by Frank Gehry and constructed between 1993 and 1997; one of the most innovative

projects of its time in terms of design exploration and materialization. Given the inability of the existing

design tools to model its complex facade shape and fabricate its double curved panels, the team

used instead an aerospace modeling software, namely CATIA. Using this tool, the team could not

only overcome the design limitations found, but also make the project’s construction viable, proving

that the adoption of both knowledge and tools from other fields can bring advantages to architectural

practice.

Figure 5.2. From left to right: Sydney Opera House (©author); the International Terminal Waterloo

(©Grimshaw and Partners); Guggenheim Museum Bilbao (©Tony Hisgett).

Already in the 2000s, the Southern Cross Railway Station (Figure 5.3 left) designed by Grimshaw and

Partners in association with Jackson Architecture and constructed between 2002 and 2006, is another

relevant example resulting from a collaborative design process involving architects, structural

engineers, and steel detailers. In this project, computer-generated analyses of both the wind and the

natural extraction of stale air were used to guide the design of its roof structure, originating an organic

undulating shape that was visually interesting and acted as a sun shading element that simultaneously

74

extracted stale air from the diesel trains. For its structural design, the team once again used CD, this

time to perform iterative analysis evaluations applying different loads, structural elements, and roof

configurations, among others, as well as optimize the size and connection complexity of the resulting

structure [325].

Figure 5.3. From left to right: Southern Cross Railway Station (©2021 GRIMSHAW); Louvre Abu Dhabi

(©author); the dome’s cladding structure (©author).

Another relevant example is the Louvre Abu Dhabi (Figure 5.3 middle), designed by Ateliers Jean

Nouvel in association with HW Architecture and constructed between 2009 and 2017. This project is

characterized by its environmentally informed dome structure, whose design complexity made the

team of architects collaborate with other teams of experts, such as Buro Happold, TransSolar, and

Gehry Technologies, in a process relying on a web-based central model that allowed the different

stakeholders to add their own design constraints and rules and share information in real-time. This

collaboration was critical to converge toward a design solution that successfully integrated all design

requirements [326], such as aesthetic, creating a visually pleasing covering structure made of different

layers of differently scaled and rotated star-shaped elements (Figure 5.3 right); thermal comfort,

shading and cooling down the inside spaces; natural lighting, regulating the perforation levels

according to the functional area below; and structural, supporting the 165 meter long roof structure

[327]. To make its construction viable, the team applied CD strategies to reduce the diversity of

structural elements from 2497 to 44 [326], an almost one year long process requiring the use of 23

analysis models51; as well as to mass-customize its cladding elements, namely to collaboratively detail

them in a parametric model, automatically convert them into construction elements [327], and

automatically catalogue and engrave assembly information on them, which was critical for their

subsequent installation.

51 BuroHappold, Buro Happold shortlisted for two IstructE awards (2018). https://www.burohappold.com/news/burohappold-

shortlisted-two-istructe-awards/ (Retrieved on <January 27th 2022>).

https://www.burohappold.com/news/burohappold-shortlisted-two-istructe-awards/
https://www.burohappold.com/news/burohappold-shortlisted-two-istructe-awards/

75

The next example is the Morpheus Hotel (Figure 5.4 left), designed by Zaha Hadid Architects

and constructed between 2013 and 2018. The geometric complexity of this project, especially its highly

irregular facade, made the use of traditional methods not viable in terms of time, effort, and efficiency,

thus motivating the design studio to collaborate with other teams of specialists, e.g., Buro Happold,

and to adopt an entirely CD approach combining AD and structural optimization. During this process,

the team developed several algorithmic descriptions to connect the AD tool Grasshopper with other

tools, such as MIDAS, Robot, and Excel, automating the structural analysis and optimization of the

facade design and making its construction feasible. In this project, using AD was advantageous to

both design exploration and construction processes [328] due to (1) saving both time and effort; (2)

minimizing fabrication errors; (3) reducing manufacturing costs while considering the design intent;

and (5) automatically generating accurate technical documentation (e.g., 2D drawings and 3D

models) for the ensuing manufacturing and construction stages.

The last example is the Kuwait International Airport, designed by Foster+Partners (Figure 5.4

right) and still under construction52, which is characterized by its continuous free-form roof structure

(with around 320000m2) performing both structural and aesthetic functions. Given the large scale

and geometric complexity of this project, its design involved differently skilled teams of experts, as

well as various specialized design methods, software platforms, and fabrication technologies. To

ensure the efficiency and flexibility needed to overcome the lack of interoperability between most of

the specialized tools used, the design studio adopted an integrated AD workflow combining

geometric, performance, and engineering data in a single input source. The result was a central data

model developed in Rhinoceros 3D that allowed the team to not only share information more

efficiently and accurately, but also collaboratively perform several parametric variations and structural

analyses within the short time available for it. It also allowed the team to automate several processes

from design to fabrication, such as the detailing of construction elements and the extraction of

technical documentation, as well as control the fabrication process by producing, in the end, the

building elements in temporary factories near the construction site, which was critical to reach the

high-level of precision and fabrication speed needed [329]. Even though the resulting workflow is

not yet fully automated, since it still uses handmade drawings occasionally, it nevertheless proves

the potential of collaborative CD approaches to deal with unconventional design outcomes and

higher levels of information complexity from conceptual design exploration to fabrication [277].

52 Estimated completion date in 2024.

76

Figure 5.4. Left: Morpheus Hotel (©Ivan Dupont); right: Kuwait Airport Terminal 2 (©Foster+Partners).

In sum, the selected projects prove, on the one hand, the need to adopt (1) collaborative design

environments to better respond to the growing complexity of architectural design and (2) CD

approaches to successfully coordinate its multiple constraints and strategies in a single workflow. In

most examples, using CD allowed the differently skilled participants to dynamically contribute to the

design process, making it easier to handle the complexity of the existing information schemes, as well

as realize the resulting unconventional solutions, which challenged the design and manufacturing

technologies available at the time.

On the other hand, the projects demonstrate the still existing limitations in collaborative design

practices, especially the lack of interoperability between design tools. In some projects this was

surpassed by converting the design model into an algorithmic equivalent, integrating both geometric

and construction data. In others, this was partially solved through the creation of algorithmic

extensions uniformizing the data produced by the different tools, improving the sharing of

information between them. However, in current practices the adoption of such scenarios is often not

trivial, the first barrier being the lack of programming experience of most architects, which hinders

their collaboration in the design process as well as their understanding of the shared data. Another

common barrier is the high level of abstraction typical of AD approaches, which makes both the

understanding and sharing of design information between the team elements difficult.

Considering the current scenario, the need to increasingly adopt CD approaches and

collaborative design teams involving differently skilled professionals is thus evident. However, it

requires architects to acquire, at least, a basic understanding of AD to successfully communicate with

AD specialists while intervening in the design process. In case they want to participate more actively

77

in AD-related tasks, architects have to learn new skills, such as programming, which still takes time

and effort.

To smooth AD’s learning curve and reduce the initial time investment required to learn it,

architects should be provided with architectural-oriented methodologies and tools supporting the

algorithmic development, analysis, optimization, and fabrication of their solutions. Although this

might not be enough to completely reduce the complexity and effort associated with AD, it should

nevertheless make AD more accessible to those architects who want to benefit from its advantages

in their design practices. By reducing AD’s abstraction barrier, while increasing its understandability,

it is expected it will reduce the time and effort those architects with some AD experience spend in

design development, not only facilitating the integration of multiple types of data and technologies,

but also smoothing the transition between design exploration and fabrication stages.

78

6. MAKING DIGITAL REAL

There are two main concerns that drive architectural practice: the design and the construction of

buildings [84]. Originally, the profession of architecture involved both tasks and, thus design

decisions were highly dependent on the construction viability of the solutions [330]. It was the

architect who made the relationship between design, structure, and materiality, as it is visible in

ancient iconic buildings such as Egyptian pyramids, Greek temples, and Gothic cathedrals [331]. The

separation of architecture and construction occurred during the Renaissance period, when architects

started to differentiate themselves from master builders and craftsmen [330] by focusing more on

the ideation and design development processes rather than on solving construction issues [332].

Nevertheless, the feasibility of the solutions never ceased to be a concern for architects, who

continued to consider the available materials and construction techniques when conceiving their

designs [141].

The desire for unconventional geometries that defied the laws of nature has always been

present in architecture. Architects have always ambitioned to design and construct innovative shapes

and structures that went beyond what had been done to date. Recent examples prior to the rise of

digital tools include the reinforced concrete freeform shapes of the mid-twentieth century. This new

material opened up new construction possibilities at the time, allowing the concretization of

geometries that were not possible to build until then [333], as is the case of the works of Antoni

Gaudí, Felix Candela, Eladio Dieste, Buckminster Fuller, Frei Otto, and Heinz Isler, among others. At

the time, these architects/engineers used physical models to explore less conventional shapes and

study their corresponding structural behavior [277]: e.g., Antoni Gaudí’s system based on the

mathematical description of hyperboloids to deal with ruled surfaces [102] and Felix Candela’s

structural models of hyperbolic paraboloid concrete shells.

With the emergence of digital tools and Computational Design (CD) approaches, architects

were provided with higher levels of design freedom and efficiency, facilitating not only the geometric

exploration of freeform shapes, but also the study of their structural and constructive viability and

their subsequent manufacturing. The works of design studios such as Zaha Hadid Architects,

Foster+Partners, Frank Gehry, and UNStudio, among others [277], are some examples of that.

79

However, the realization of the resulting solutions is often constrained by the construction

methods available, which rarely match the flexibility allowed by CD tools. Digital Fabrication (DF)

strategies are gradually changing this reality, despite still presenting some limitations [333]. Their

integration with CD tools has been promoting a greater design flexibility and fluidity between design

and fabrication processes, allowing architects to control the entire design process and thus reducing

the distance between design thinking and making [84, 141, 334]. This chapter addresses

contemporary fabrication methods, including the recent phenomenon of DF in architecture, and

their main challenges and practical applications. Given the scope of this investigation, most examples

are related to facade design strategies and solutions.

6.1. DIGITAL FABRICATION

The new digital means enabled the development of fabrication technologies capable of automating

manufacturing processes and achieving higher levels of design complexity and accuracy. These

technologies, known as DF, are generally based on Computer Numerical Control (CNC) machines to

control the manufacturing of different building elements of varying shapes and materials, allowing

architects to control the entire fabrication process and thus reach higher levels of precision.

DF techniques allow for the manufacturing of building’s elements that otherwise would be

unviable to produce [335]. Ideally, these technologies would also enable the conversion of traditional

manufacturing processes, where only the mass-production and assembly of standard elements is

economically viable [84], into new ones based on mass-customization strategies to produce multiple

non-standard elements at affordable costs [336]. This scenario, however, remains a challenge in

architecture due to the still existing limitations of the available fabrication technologies, which include

their cost, machining time, scale and material limitations, material waste, and special spatial

conditions, among others. Nevertheless, their gradual cost decrease is motivating their growing use

in architecture [337]. Finally, DF make it possible to develop architectural projects in an entirely digital

manner, where design data directly flows from design development stages to manufacturing and

construction ones [84].

Currently, there is a wide variety of DF techniques available suiting architectural practices. In

general, they vary in terms of (1) process used to shape the elements, which can be based on adding,

removing, cutting, or deforming materials, among others; (2) materials supported, which include

plastic, glass, concrete-based materials, etc.; (3) suitability to produce certain shapes and scales of

elements; and (4) surface finishing allowed, which can be smooth, textured, printed, perforated, etc.

80

Some authors categorize the existing DF strategies in three groups, namely additive, subtractive, and

formative [335, 337–340], whereas others classify them into four groups, the previous ones plus

cutting [84, 341, 342], or even in five groups, the first three ones plus joining and robotic [343]. This

research considers the three perspectives, which are further detailed in the following paragraphs.

Additive processes add layers of material to produce the desired shape [335]. These

techniques are based on the translation of digital information into a sequence of two-dimensional

layers [84]. 3D printing is the most popular additive process in architecture but there are other

techniques available, such as stereolithography, fused deposition modeling, laser sintering, and

digital light processing [335, 340]. Additive methods have the advantage of directly converting the

digital model into a physical element without requiring any additional device. They also support

geometric freedom, producing unique elements in a viable way [340]. Moreover, the available

machines are often silent, produce reduced material waste, and do not require programming

expertise [84]. Still, the production of large-scale elements is still an issue [337], as also is the resulting

surface quality and the large production times [340].

Figure 6.1. Additive manufacturing examples (from left to right): Arachne 3D printed facade by Lei Yu

(©Architizer); House of 3D Printed Curiosities by Emerging Objects, 2018 (©Matthew Millman); EU Building 3D

printed facade by DUS Architects, 2015 (©Ossip van Duivenbode).

In architecture, 3D printing has been often applied in the production of less conventional facade

elements, some examples including the entirely 3D printed facade of the Arachne project in China

(Figure 6.1 left); the facade of the Cabin of 3D Printed Curiosities in California (Figure 6.1 middle)

made of hundreds of 3D printed ceramic tiles of different geometries; and the facade of the Europe

81

Building in Amsterdam (Figure 6.1 right) composed by large-scale unique 3D printed elements made

of bioplastic and colored concrete53.

Subtractive processes use electro-, chemically, or mechanically reduced techniques to remove

or separate particles of raw material from an existing solid [335, 342] to achieve the desired shape

[337]. CNC milling and routing processes are the most commonly applied techniques [337]. When

compared with additive processes, the available subtractive technologies present several advantages

in terms of (1) elements size, allowing producing from smaller to larger scale elements; (2) material

diversity, enabling the use of a wider variety of materials; (3) precision, producing elements with finer

details; and (4) production efficiency, requiring less time and material [84]. Nevertheless, these

processes tend to produce considerable material waste [335].

Figure 6.2. Subtractive manufacturing examples (from left to right): Elbphilharmonie’s acoustic panels in

Hamburg by Herzog & de Meuron, 2017 (©ONE TO ONE); CNC milled cork facade designed by GenCork,

2019 (©GenCork); De Young Museum by Herzog & de Meuron, 2005 (©david basulto via flickr).

In architectural practice, CNC milling, and routing (with 3 to 5 axis) have been applied in the

fabrication of building elements in a process similar to carving, i.e., by removing material from a

volume. The manufacturing of the acoustic panels of the Elbphilharmonie in Hamburg (Figure 6.2

left) and the cork facade panels of a house in Aroeira, Portugal (Figure 6.2 middle), are two examples

of that. These technologies have also been used to produce either perforated or bumped/textured

facade elements, such as the sheet facade panels of de Young Museum in San Francisco (Figure 6.2

right); or customized molds, as it happened in the Neuer Zollhof office buildings in Düsseldorf (Figure

6.3 left), whose facade panels were manufactured with 355 different CNC milled molds, and in the

53 DUS. Europe Building. House DUS (2016). https://houseofdus.com/work/#project-europe-building (Retrieved on <July 12th

2022>)

https://houseofdus.com/work/#project-europe-building

82

MaoHaus facade in Beijing (Figure 6.3 right), which is made of self-supporting ultra-high

performance concrete panels casted from CNC milled molds54.

Figure 6.3. CNC milled molds examples (from left to right): the Neuer Zollhof office buildings in Düsseldorf by

Frank Gehry, 1999 (©Mirco Wilhelm via flickr); MaoHaus facade by AntiStatics Architecture, 2017 (©Xia Zhi).

Cutting processes, also known as two-dimensional fabrication, are based on a two-axis motion of a

cutting head to extract two-dimensional planar elements from surfaces or solids [335]. These

processes follow a set of instructions provided by the digital model to produce flat components with

the desired shape [337], often relying on laser-beam, plasma-arc, or waterjet technology. Cutting is

a very popular and widely used strategy, probably the most used one [84, 342], and it has been

frequently applied in the manufacturing of facade panels with complex patterns. These methods

have the advantage of being precise, cheap, and quick, but are limited in terms of type and thickness

of the material they can cut, while requiring the use of different technologies accordingly [84, 342].

Examples of cutting applications include the ceiling of the Trumpf Campus Gatehouse in Stuttgart

[344] (Figure 6.4 left), the facade panels of the Megalithic Museum in Mora, Portugal (Figure 6.4

middle), and the facade of the Formstelle building in Töging am Inn (Figure 6.4 right).

54 Say, Asli. The MaoHaus by AntiStatics Architecture (2018). https://parametric-architecture.com/the-maohaus-by-

antistatics-architecture/ (Retrieved on <July 12th 2022>)

https://parametric-architecture.com/the-maohaus-by-antistatics-architecture/
https://parametric-architecture.com/the-maohaus-by-antistatics-architecture/

83

Figure 6.4. Cutting manufacturing examples (from left to right): Trumpf Campus Gatehouse by Barkow

Leibinger Architects, 2009 (©David Franck); Megalithic Museum by CVDB Architects and P-06 Atelier, 2016

(©Fernando Guerra | FG+SG); Formstelle by Format Elf Architekten, 2013 (©Format Elf Architekten).

Formative processes use mechanical forces to deform materials into the desired shape [337]. These

methods often resort to heating to make the material adapt to the new geometry and then to cooling

to keep the new geometry stable [84]. CNC folding, CNC bending, CNC punching, hydro morphing,

and welding are some examples [335]. In architecture, these methods have been mostly applied in

the manufacturing of geometrically complex metal facade panels. Nevertheless, the existing methods

are still expensive due to the price of both the machines and material used [335]. Architectural

examples include the Prism Gallery in Los Angeles (Figure 6.5 top-left), whose facade panels were

shaped through heat-forming techniques [345]; the facade of the Holt Renfrew flagship store in

Vancouver (Figure 6.5 top-right), which is composed by heat-slumped glass panels that create a

specular, translucent visual effect [346]; the undulating glass panels of the Elbphilharmonie in

Hamburg (Figure 6.5 bottom-left), whose free form shape results from heat-bending processes; and

the metal facade panels of the Experience Music Project in Seattle (Figure 6.5 bottom-right), which

were produced through cold bending techniques [336].

Lastly, Robotic assembly processes involve the use of robotic arms or drones to accurately

place elements in layers. Some of these methods make it possible to reduce or even eliminate the

lack of accuracy typical of manual assembly processes, allowing a complete correspondence

between the intended design and its final product [339]. Architectural examples resulting from

robotic assembly strategies include the brick facade of the Chi She Gallery in Shanghai (Figure 6.6

right), which was assembled with the help of a robotic arm controlling the precise position of each

stacked brick to obtain the desired visual effect; and the facade of the Winery Gantenbein in

84

Switzerland (Figure 6.6 left), which also used a robotic production method to accurately control the

stacking angle of each brick and create the intended pictorial effect.

Figure 6.5. Formative manufacturing examples (from left to right): Prism Gallery by P-A-T-T-E-R-N-S, 2010

(©P-A-T-T-E-R-N-S); Holt Renfrew flagship store in Vancouver by Janson Goldstein Architects, 2008 (©Marc

Simmons / Front Inc); Elbphilharmonie Hamburg by Herzog & de Meuron, 2017 (©Maxim Schulz); Experience

Music Project by Frank Gehry, 2000 (©David via Blogger “Doodles Designs and Daydreams”).

85

Figure 6.6. Robotic manufacturing examples (from left to right): Chi She Gallery by Archi-Union Architects,

2016 (©shengliang su); Winery Gantenbein by Bearth & Deplazes Architekten + Gramazio & Kohler, 2006

(©Ralph Feiner).

6.2. DESIGN STRATEGIES FOR DIGITAL FABRICATION

The way the different DF technologies are used in architecture, as well as the reason why they are

used in a specific scenario, differs from case to case. It depends, among others, on the material used,

the scale and shape of the elements to produce, and on the type of surface finishing and intended

geometric effect. Based on this, Iwamoto [161] and Dunn [84] presented similar classifications for

design strategies to apply DF, organizing them into five categories: sectioning, tessellating/tiling,

folding, contouring, and forming.

Figure 6.7. Examples of sectioning (from left to right): Serpentine Pavilion 2005 by Álvaro Siza and Eduardo

Souto Moura (©Sylvain Deleu); Damiani Holz & KO Office extension by MoDus Architects, 2013

(©MoDusArchitects); Metropol Parasol by Jürgen Mayer H. Architects, 2011 (©Javier Orive).

86

The first one, sectioning, is based on the use of a series of profiles to create either a surface or a

structure. Despite its recency in architecture, this technique has been long used in other fields like

shipbuilding and airplane industry [84]. The CNC milled waffle structure of the Serpentine Pavilion

2005 (Figure 6.7 left), the facade of the Damiani Holz & KO Office extension in Brixen (Figure 6.7

middle), and the Metropol Parasol in Sevilla (Figure 6.7 right) are some examples.

Figure 6.8. Examples of tessellating (from left to right): Ravensbourne College by Foreign Office Architects,

2010 (©Morley von Sternberg); BMW Welt building by Coop Himmelb(l)au, 2007 (©Duccio Malagamba);

Federation Square by LAB Architecture Studio, 2002 (©Travis via flickr).

The second category, tessellating, results from the perfect fit of several pieces, creating a smooth

surface without gaps. This technique has long been used in architecture, under the name of tile

patterns or tiling: the ancient Rome mosaics and the Islamic tiles are two examples. Contemporary

examples include (1) the use of tiles of different shapes and colors to produce complex facade

patterns, e.g., Ravensbourne College tile facade in London (Figure 6.8 left); (2) the application of

mass-produced unique panels of multiple sizes and curvatures, e.g., BMW Welt curved facade panels

in Munich (Figure 6.8 middle); or (3) the composition of different facade panels to obtain an intricate

geometric pattern, e.g., Federation Square triangular facade panels in Melbourne (Figure 6.8 right).

Regarding the folding category, it involves the conversion of flat surfaces into three-

dimensional ones for geometric, structural, and aesthetical purposes [161]. This strategy is commonly

applied in architecture because it is very effective and economic and allows for continuous and

smooth surface finishing [84]. Architectural examples of folding include the facade of the National

Aquatics Center in Beijing (Figure 6.9 left), whose translucent bubble-like effect results from a

composition of two inflated layers of plastic film with different cellular organizations [347]; the facade

of the Allianz Arena in Munich (Figure 6.9 middle), whose three-dimensional diamond-shape

87

ethylene tetrafluoroethylene cushions were produced through the injection of air pressure inside

them [14]; and the facade the King Fahad National Library in Riyadh (Figure 6.9 right), which consists

in a set of fabric membranes whose shape is controlled by a three-dimensional steel cable structure

[337].

Figure 6.9. Examples of folding (from left to right): National Aquatics Center designed by PTW Architects, 2008

(©William via flickr); Allianz Arena by Herzog & de Meuron, 2005 (©Ulrich Rossman); King Fahad National

Library by Gerber Architekten, 2013 (©Christian Richters).

The next category, contouring, involves the removal of successive layers of material from a flat

surface to create a three-dimensional effect. This technique is similar to the long-established carving

technique but, instead of using manual processes, it uses digitally controlled ones that are more

precise, efficient, and capable of producing highly complex patterns [84]. Nevertheless, when

compared to other techniques, these processes require larger amounts of time and often produce

more material waste. Architectural applications of contouring include the Bone Wall, which is

composed by CNC milled high-density foam cells (Figure 6.10 left); GenCork’s wall panels made of

CNC milled cork creating different geometric patterns (Figure 6.10 middle); and Anoma’s wall

prototypes made of CNC milled stone panels with nature-inspired geometric patterns (Figure 6.10

right).

Lastly, forming is an economic and widely applied process that uses molds to mass produce

elements. This technique has been long used in architecture, mainly in the mass-production of facade

panels, whose application typically resulted in conventional solutions with repetitive patterns. More

recently, DF technologies brought new possibilities to conceive customized molds that allow

producing less conventional solutions; a strategy widely applied in the production of facade

elements.

88

Figure 6.10. Examples of contouring (from left to right): Bone Wall by Urban A&O, 2006 (©Joe

McDonald/Urban A&O Architecture LLC); interior cork panel at Cork Museum WOW in Oporto, Portugal

(©GenCork); stone facade panels (©Anoma).

Architectural applications of forming include the Deep Facade project, designed by a group of

students at ETH Zurich in 2018, who used 3D printed molds to create a metal facade with a highly

complex geometric pattern (Figure 6.11 top-left); the facade of the IBS Building at Minho University

in Guimarães (Figure 6.11 top-middle), whose prefabricated cement-based panels were shaped with

different customized molds; the three-dimensional facade of the San Francisco Museum of Modern

Art extension (SFMoMA), which is composed by unique fiber-reinforced polymer panels produced

with personalized CNC milled molds (Figure 6.11 top-right); the facade of the Filigrane building in

Tourcoing (Figure 6.11 bottom-left), whose concrete panels inspired by the architectural

ornamentation technique guilloche55 were produced with customized CNC milled molds; the facade

of the Palace of Justice in Cordoba (Figure 6.11 bottom-middle) whose panels were produced with

custom-made CNC milled molds; and, lastly, the copper-cladded structure of the Louisiana State

Museum and Sports Hall of Fame (Figure 6.11 bottom-right), which is composed by more than 1000

unique cast-stone panels produced with robotically fabricated molds [348].

55 Home World design. The Filigrane Project / D’Houndt + Bajart Architects & Associès.

https://homeworlddesign.com/filigrane-project-dhoundt-bajart-architects/ (Retrieved on <July 12th 2022>)

https://homeworlddesign.com/filigrane-project-dhoundt-bajart-architects/

89

Figure 6.11. Examples of forming strategies (from top-left to bottom-right: Deep Facade project, 2018

(©Jetana (Jet) Ruangjun); IBS Building by Claudio Vilarinho, 2015 (©João Morgado); SFMoMA extension by

Snøhetta, 2016 (©Henrik Kam); Filigrane building by D’HOUNDT+BAJART architects & associates, 2017

(©Maxime Delvaux); Palacio of Justice in Cordoba by Mecanoo, 2017 (©Fernando Alda); Louisiana State

Museum and Sports Hall of Fame by Trahan Architects, 2012 (©Tim Hursley).

6.3. GEOMETRIC OPTIMIZATION STRATEGIES

In the last decades, the design freedom allowed by most CD technologies has been motivating the

design of more complex freeform shapes [69], as well as the creation of intricate facade design

patterns. Unfortunately, their production is often challenging and expensive and, in many cases, the

complexity achieved can be hardly conceived through traditional construction methods [331, 335].

As a result, architects have to spend a lot of time and effort in solving manufacturing and economic

issues [331] and it is often the case that their creative intent is neglected in favor to these.

Despite the currently available mass-production techniques capable of producing non-

conventional elements at low cost, none of them is entirely suitable to deal with the geometric

diversity of architectural design, which usually requires the manufacturing of hundreds or thousands

90

of non-standard elements [336] that are often project-specific. To make the construction of free-

form shapes and complex facade patterns possible, architects have been increasingly adopting

geometric optimization techniques [349] in their design practice. These strategies allow them to gain

more insight and control over the designed solutions [69], facilitating the latter’s gradual adaptation

until reaching the desired feasibility [331]. In architecture, popular examples of geometric

optimization strategies include design rationalization and surface paneling.

6.3.1. DESIGN RATIONALIZATION

Design rationalization is a type of geometric optimization that focuses on subtly adjusting the

building elements that are expensive to produce until meeting the desired feasibility, without

compromising the design intent [168, 336]. The Sydney Opera House (1973) is one of the first

examples to combine design rationalization and computational technologies to gradually change

the original roof shape until its construction became viable [331]. Still, it was only during the 90s that

this combination gained popularity, mainly with the works of Gehry Partners, which were

characterized by complex free-form shapes [331]: the Guggenheim Museum Bilbao, for instance, was

one of the first buildings to have a free-form shape made of single-curved panels that could be

unfolded without stretching or tearing [168].

Based on the literature [69, 331, 350–352], design rationalization can vary in terms of temporal

application in the design process and target of the rationalization process. Regarding the former, it

can be classified in (1) pre-rationalization, when it is conducted before the design development stage;

(2) co-rationalization, when it is used during the design development stage; and (3) post-

rationalization, when it is applied after the design development stage. According to Austern et al.

[331], pre- and post-rationalization are the most and least addressed strategies in the academia, and

co- and post-rationalization the most and least applied ones in architectural practice.

91

Figure 6.12. Pre-rationalization examples (from top-left to bottom-right): the International Terminal Waterloo

by Grimshaw Architects, 1993 (©Grimshaw and Partners); the Eden Project by Grimshaw Architects and

Anthony Hunt Associate, 2001 (©Grimshaw and Partners); London City Hall by Foster+Partners, 2002

(©author); the 30 St Mary Axe building by Foster+Partners, 2004 (©Foster+Partners).

When adopting pre-rationalization, the design process is constrained by construction requirements

since the beginning, which means the design exploration is controlled by such constraints. Examples

of pre-rationalization include the International Terminal Waterloo Station (Figure 6.12 top-left), the

Eden Project (Figure 6.12 top-right), the London City Hall (Figure 6.12 bottom-left), and the 30 St.Mary

Axe (Figure 6.12 bottom-right). When using co-rationalization, the design development process often

combines principles from both pre- and post-rationalization methods [331], thus coordinating

material properties, fabrication and assembly constraints, and aesthetic principles in a flexible way

[353]. Examples of its application include the Galaxy SOHO (Figure 6.13 top-left), the Wangjing SOHO

(Figure 6.13 top-right), the Bangkok Central Embassy (Figure 6.13 bottom-left), and the Leadenhall

Building (Figure 6.13 bottom-right). Lastly, when adopting post-rationalization, the construction

requirements do not control the design development process and are instead fitted onto the design’s

92

final solution [69]. This strategy was adopted, for instance, in the Guggenheim Museum Bilbao (Figure

6.14 top-left), the Walt Disney Concert Hall (Figure 6.14 top-right), the Nordpark Railway Stations

(Figure 6.14 bottom-left), and the Heydar Aliyev Center (Figure 6.14 bottom-right).

Figure 6.13. Co-rationalization examples (from top-left to bottom right): Galaxy SOHO by Zaha Hadid

Architects, 2012 (©Iwan Baan); Wangjing SOHO by Zaha Hadid Architects, 2014 (©Virgile Simon Bertrand);

Central Embassy in Bangkok by AL_A, 2017 (©Hufton+Crow); The Leadenhall Building by Rogers Stirk

Harbour+Partners, 2014 (©Richard Bryant).

93

Figure 6.14. Post-rationalization examples (from top-left to bottom-right): Guggenheim Bilbao Museum by

Gehry Partners, 1997 (©Gehry Partners); Disney Concert Hall by Gehry Partners, 2003 (©Gehry Partners);

Nordpark Railway Stations by Zaha Hadid Architects, 2007 (©Hafelekar via Wikimedia); Heydar Aliyev Center

by Zaha Hadid Architects, 2012 (©Hufton+Crow).

Regarding the target of design rationalization processes, these methods have been mostly applied

in the design of building facades to make their manufacturing viable: to either (1) reduce the number

of different facade elements, e.g., window frames, facade panels, wall tiles, and shading devices, etc.,

without neglecting the initial design intent, (2) search for geometric similarities that potentially

facilitate their production, or (3) simplify their free-form surfaces into feasible solutions.

Examples of the first scenario include the facade of Museo Soumaya, in which design

rationalization was used to minimize the number of different hexagonal aluminum panels (Figure

6.15 top-left); the facade of the Federation Square in Melbourne (Figure 6.8 right), to reduce the

94

geometric complexity of the predefined basic units composing it [354]; and the facade of MAAT

Museum in Lisbon (Figure 6.15 top-right), to simplify its hexagonal geometric pattern.56

Figure 6.15. Geometric simplification examples (from top-left to bottom-right): Museo Soumaya by Fernando

Romero, 2011 (©Geometrica, Inc.); MAAT Museum by AL_A, 2016 (©Francisco Nogueira); 290 Mulberry Street

building by SHoP Architects, 2013 (©SHoP Architects); Centre for Contemporary Art by Nieto Sobejano

Arquitectos, 2013 (©realites: united).

The second scenario occurred, for instance, in the manufacturing of the brick facade panels of the

290 Mulberry Street building (Figure 6.15 bottom-left) [355] and in the production of the hexagonal

facade tiles of the Centre for Contemporary Art in Córdoba (Figure 6.15 bottom-right) [356].

Regarding the third scenario, different strategies have been adopted to make free-form

surfaces feasible [336]. One of them consists in the simplification of the original shape into one made

of planar panels only approximating it, as it happens in Renzo Piano’s Peek & Cloppenburg

56 CeramicArchitectures. Museum Art Architecture and Technology. https://www.ceramicarchitectures.com/obras/museum-

art-architecture-technology/ (Retrieved on <July 12th 2022>)

https://www.ceramicarchitectures.com/obras/museum-art-architecture-technology/
https://www.ceramicarchitectures.com/obras/museum-art-architecture-technology/

95

Department Store in Cologne (2005). Another one is the production of a faithful, smoother

approximation of the shape by using smaller discrete elements of different curvatures, as it happens

in Zaha Hadid Architects’ Nordpark Railway Stations in Innsbruck (2007) [157]. In either case, the

resulting solutions often resort to different surface paneling techniques.

6.3.2. SURFACE PANELING

Panelization, or paneling, is a geometric optimization strategy that focuses on dividing a large surface

into smaller panels of constructable size and acceptable cost. This strategy involves two dependent

tasks: the segmentation of the original shape into smaller pieces and the approximation of each

smaller piece into a shape that can be manufactured at a reasonable cost, while preserving the

design intent [171, 336, 352].

Dividing a surface into smaller planar surfaces of different polygonal shapes, like triangular,

quadrilateral, and polygonal, is the cheapest paneling strategy. This technique has been long used

in architecture and the dome structures designed before the 20th century are an example of its

application: their construction typically used flat quadrilateral panels due to aesthetical and economic

reasons [352]. Triangular panels emerged in the late 1920s thanks to the Carl Zeiss Company and

were later adopted by several architects due to having more structural stability and allowing for

greater geometric flexibility57. Their production, however, often creates more waste, and each vertex

is typically more complex than those of quadrilateral panels due to connecting six edges instead of

four. Moreover, since more panels are needed for covering the same surface area, the resulting

structure is also usually heavier [352]. Even so, triangular panels are the most popular paneling

solution in contemporary architecture, some examples being the roof of the Great Court at British

Museum (Figure 6.16 left), the facade of the 30 St. Mary Axe building, both in London (Figure 6.12

right), the roof of Zlote Tarasy in Warszawa (Figure 6.16 mid-left), the roof of the Islamic Art Exhibition

in the Louvre Museum in Paris (Figure 6.16 mid-right), and the roof of the Incheon International

Airport (Figure 6.16 right).

57 It is easier to change the vertices of triangular panels to accommodate different design requirements and keep their faces

planar.

96

Figure 6.16. Triangular paneling examples (from left to right): British Museum Great Court roof by

Foster+Partners, 2000 (©author); Zlote Tarasy roof structure by The Jerde Partnership, 2007 (©JERDE); Islamic

Art Exhibition roof by Mario Bellini Architects and Rudy Ricciotti, 2012 (©Raffaele Cipolletta); Incheon

International Airport by HEERIM Architects & Planners, MooYoung Architects and Gensler Architects, 2018

(©Gensler).

Regarding quadrilateral panels, these are used, for instance, in the facade of the Jerusalem Museum

of Tolerance (Figure 6.17 left) and in the roof of the Tokyo Midtown Plaza (Figure 6.17 middle). Finally,

hexagonal panels were applied in the bubbly domes of the Eden Project (Figure 6.12 middle), the

curvilinear facade of the Museo Soumaya (Figure 6.15 top-left), and the double-dome of the

Landesgartenschau Exhibition Hall (Figure 6.17 right).

Figure 6.17. Quadrangular and hexagonal paneling examples (from left to right): Museum of Tolerance

Jerusalem by Chyutin Architects (©ChyutinArchitects); Tokyo Midtown Plaza roof by Buro Happold, 2005

(©SOM); the Landesgartenschau Exhibition Hall by ICD/ITKE/IIGS University of Stuttgart, 2014 (©Roland

Halbe).

Another paneling strategy used in architecture involves the division of the original surface into

smoothly bent stripes, also known as single-curved panels or developable surfaces, that can be

97

produced by simply bending a flat piece of sheet metal; a technique that has been showing gradual

improvements over time due to the availability of more advanced tools [352]. Despite being more

often applied to metal surfaces, this strategy can be used with other materials, such as glass or wood,

albeit often leading to higher fabrication costs and requiring the use of specialized machinery [352].

Examples of glass single-curved panels include the IAC building in New York (Figure 6.18 left) and

Foundation Louis Vuitton in Paris (Figure 6.18 middle). In general, these panels are more affordable

than double-curved ones but also often lead to surfaces with less precision [336]. Walt Disney

Concert Hall (Figure 6.14 top-right) is one such example, where the originally double-curved facade

panels were converted into flat and single-curved ones to make their manufacturing viable, resulting

in a surface presenting a visible discontinuity between panels. Another example is the Mercedes-

Benz Museum (Figure 6.18 right) where, contrarily to the initial design intent, only a few facade areas

are composed by double-curved panels, the remaining ones presenting a lower precision due to the

discontinuity of the curvatures [336].

Figure 6.18. Single-curved panels examples (from left to right): IAC building in New York designed by Frank

Gehry, 2007 (©Chuck Choi/Arcaid); Foundation Louis Vuitton in Paris by Frank Gehry, 2014 (©ToddEberle);

Mercedes-Benz Museum by UNStudio, 2006 (©UNStudio).

One last paneling strategy focuses on dividing the surface into double-curved perfectly fitting panels,

resulting in smooth curved surfaces with a high finishing quality. This technique has been applied on

concrete surfaces, e.g., the Rolex Learning Center at EPFL in Lausanne (Figure 6.19 top-left) and the

Meiso No Mori Municipal Funeral Hall in Japan (Figure 6.19 top-middle); metal facades, e.g., the

Dongdaemun Design Plaza building in Seoul (Figure 6.19 top-right); acrylic glass facades, e.g., the

BMW Bubble project in Frankfurt (Figure 6.19 bottom-left); wood surfaces, e.g., the Kamppi Chapel

in Helsinki (Figure 6.19 bottom-middle); and, lastly, fiber-reinforced plastic facades, e.g., the

temporary building Chanel Mobile Art (Figure 6.19 bottom-right).

98

Figure 6.19. Double-curved panels examples (from top-left to bottom-right): Rolex Learning Center by

SANAA, 2010 (©Davide Galli); Meiso No Mori Municipal Funeral Hall by Toyo Ito, 2006 (©Dennis

Gilstad/Construction Matters); Dongdaemun Design Plaza by Zaha Hadid Architects, 2014 (©Virgile Simon

Bertrand); BMW Bubble building by Franken Architekten GMBH, 1999 (©Fritz Busam); Kamppi Chapel by K2S

Architects, 2012; Chanel Mobile Art by Zaha Hadid Architects, 2008-2010 (©Roland Halbe).

Compared with the previous paneling strategies, this is the most precise but also the most expensive

one as it often requires the production of several customized molds [171]. Based on the idea that the

larger the number of molds needed, the higher the manufacturing cost, several strategies based on

mold reuse have been adopted to reduce the solutions’ final cost [171]. One of them is the

identification of surface areas with similar geometries that can be produced with the same molds; a

strategy adopted in, for instance, the L’Atoll retail park in Angers (Figure 6.20 left) and the Investcorp

Building for the Middle East Centre at Oxford University (Figure 6.20 middle). Another one is the

adaptation of the original surface shape to decrease its level of geometric variation; a technique

applied, for instance, in the roof structure of the Sydney Opera House (Figure 6.20 right).

Despite the existing technologies and architectural examples, the production of large-scale

free-form structures is still regarded as a challenging task [169–174]. Moreover, the existing literature,

as well as practical examples, mostly focus on simple patterning techniques, i.e., the use of triangular,

quadrangular, and hexagonal panels, rarely considering other more complex geometric patterns,

which lately have been widely applied in building envelope design.

99

Figure 6.20. Surface simplification examples (from left to right): L’Atoll retail park by Antonio Virga

Architecte+AAVP Architecture, 2012 (©Luc Boegly); Investcorp Building by Zaha Hadid Architects, 2015

(©Luke Hayes); Sydney Opera House by Jørn Utzon, 1973 (©Roybb95 via Wikimedia Commons).

6.4. MATERIALIZING ARCHITECTURAL CREATIVITY

This section further develops some of the previous examples, describing the adopted rationalization

strategies, as well as the fabrication means used. The aim is to illustrate the potential of different

fabrication and rationalization techniques in achieving design solutions that simultaneously meet the

design intent, the available resources, and the established deadlines.

The first example is the Museo Soumaya in Mexico City (Figure 6.15 top-left), designed by FR-

EE (Fernando Romero Enterprise) and inaugurated in 2011. In this project, the unique double-curved

facade was first produced manually by the architects, the resulting physical model being then

scanned to obtain the corresponding digital model. The result was a solution with 16 000 unique

hexagonal panels whose shape adapted to the facade’s curvature (Figure 6.21 left). To make their

production viable in terms of cost and resources, the design was then submitted to a rationalization

process based on Algorithmic Design (AD) strategies [357] to reduce the number of different panels.

This process required the coordination of different specialized teams and the use of different

computational tools, resulting in a solution with only 49 unique panels whose production was already

viable [358].

The Spanish Pavilion at the 2005 World Expo in Aichi, designed by Foreign Office Architects,

is another example resulting from a post-rationalization strategy. Inspired by both Islamic and Gothic

architectures, this building facade was initially made of 72 unique irregular hexagonal tiles [359] that

varied between six possible shapes and colors and that could be either solid or perforated (Figure

100

6.21 middle). As their manufacturing required the use of customized molds, the team searched for a

strategy that minimized the number of different molds to make their production viable. The result

was a solution made of 72 unique tiles that could be produced with only six molds, whose different

combinations allowed the team to create the intended visual effect [359].

Figure 6.21. From left to right: the assembly of the customized hexagonal panels on the facade of Museo

Soumaya58; the facade tiles of the Spanish Pavilion 2005 in Japan [360]; the 100 11th Avenue project facade

(©Philippe Ruault via Dezeen).

A last example of post-rationalization is the 100 11th Avenue project (2010) in New York (Figure 6.21

right), designed by Ateliers Jean Nouvel. In this project, the design team aimed at creating a non-

conventional glass facade that visually communicated the vibrancy, density, and variability of the

surrounding city. The result was a patterned building facade made of glass panes of varying sizes,

shapes, and materials, whose design complexity posed some challenges in terms of manufacturing.

The design team addressed these challenges by iteratively rearranging the facade geometric system

until achieving a feasible solution [361]. As a result, the glass panes were organized into 87 unique

larger panels, whose dimensions varied according to the inside spaces’ function [346]. Still, the

geometry and structural integrity of the resulting framing system posed another challenge, which

was solved with the replacement of the originally intended slim profiles with steel mullions of varying

sections [361]. Finally, to reduce the still too high manufacturing costs of the solution, the design

team collaborated with two fabrication companies [346], manufacturing the facade panels in a

Chinese steel factory and then shipping them to New York City to assemble on site [361].

58 Gehry Technologies. Museo Soumaya: Facade Design to Fabrication (2013).

https://issuu.com/gehrytech/docs/sou_06_issuu_version/24 (Retrieved on <July 12th 2022>)

https://issuu.com/gehrytech/docs/sou_06_issuu_version/24

101

Regarding the application of co-rationalization strategies, the Federation Square in

Melbourne (Figure 6.8 right), designed by LAB Architecture Studio and inaugurated in 2002, is one

such example. In this project, the simplicity of the facade design system and its fabrication constraints

were considered since the beginning of the design process together with the architects’ design intent.

The use of a tiling system inspired on Joseph Conway’s triangular tiling [354] was due to its ability to

constantly shift and easily create an intricate and apparently rule-less geometric effect that was easy

to produce. Therefore, despite being visually complex, the resulting facade design system was quite

simple (Figure 6.22 left): it used five triangles of the same material to create a larger triangular panel

and then combined five triangular panels of the same or different materials to create an even larger

panel [354]. As three different materials were used in the final design (zinc, sandstone, and glass),

three types of facade panels were produced. In practice, all panels were manufactured in the factory

and then transported to the project’s site to be assembled.

Another example is the Lane 189 project in Shanghai, designed by UNStudio and inaugurated

in 2017. In this project, the facade design is composed by a hexagonal grid with diamond-shaped

panels of two sizes that are apparently randomly arranged, creating a complex visual effect of voids

and solids (Figure 6.22 middle). The aim was to create an articulated geometric facade pattern that

responded to different design constraints, such as perfectly fitting the building’s curvature, providing

high-quality views, and adapting its transparency level according to the inside spaces’ function. The

result was a set of different facade panels that varied in terms of thickness (ranging from one to three

layers), material, transparency, and reflectivity. By using rationalization strategies to balance the

design intent and its feasibility, the team could reach a design solution made of only 20 unique

facade panels, whose strategic arrangement created the desired visual effect.

A last example of co-rationalization is the Museum of Art, Architecture and Technology

(MAAT) in Lisbon, designed by Amanda Levete Architects (AL_A) and inaugurated in 2016, whose

facade design considered aesthetic, manufacturing, and assembly constraints since early design

stages. In this project, the final free-form facade made of different three-dimensional hexagonal

ceramic tiles (Figure 6.22 right) was the result of balancing the architects’ design intent, who aimed

at creating complex sunlight reflections that change during the day, with both manufacturing and

budget constraints59. As the ceramic tiles had a non-standard shape, they had to be produced using

59 CeramicArchitectures. Museum Art Architecture and Technology. https://www.ceramicarchitectures.com/obras/museum-

art-architecture-technology/ (Retrieved on <July 12th 2022>).

https://www.ceramicarchitectures.com/obras/museum-art-architecture-technology/
https://www.ceramicarchitectures.com/obras/museum-art-architecture-technology/

102

customized molds. Therefore, to minimize the facade design production cost, the team focused on

reducing the number of different tiles composing it, while considering their adaptability to its

curvature. In the end, the team adopted a strategy based on splitting the hexagonal grid into a

trapezoidal one due to its ability to correctly fit both single and double curvature facade areas. This

solution allowed the team to reach a solution made of only three types of tiles that were continuously

rotated 180 degrees along the surface to create the desired dynamic undulating effect59.

Figure 6.22. From left to right: the triangular tilling rule of the Federation Square facade (edited from [47]); the

diamond-shaped facade of Lane 189 (©Eric Jap); MAAT facade tiles (©HUFTON+CROW / AL_A).

Regarding pre-rationalization, the 290 Mulberry Street building (2013), designed by SHoP Architects

(Figure 6.15 bottom-left), is an example where both manufacturing and assembly constraints were

considered early on and used to guide geometric exploration processes. Given the site regulations’

preference for masonry facades, the design team decided to explore the potential of the available

construction technologies to develop a non-standard ripple motif made of differently positioned

bricks [355]. As this solution required the use of customized precast concrete panels with the bricks

embedded, the architects considered the information provided by the brick-panel fabricators since

early design stages to guide their decision-making process. Similarly, the constraints resulting from

the panels’ transportation, assembly on site [355], and manufacturing costs were also integrated in

the design development process to minimize the amount of molds needed for their manufacturing,

while maximizing the range of panel geometries produced by each one [355]. In the end, a single

CNC cut mold was used to produce all facade panels (Figure 6.23 left), which could be blocked out

in different ways to create the facade panels composing the final solution [359].

103

Another example of pre-rationalization is the DIY For Architects project by Sstudiomm (2016).

Due to budget constraints, the architects established from the very beginning that its facade design

would only use standard bricks and be built using traditional construction means. During the design

exploration process, AD was used to control the stacking angle of the facade bricks, resulting in a

unique brickwork pattern60 made of differently rotated standard elements that created a dynamic

visual effect (Figure 6.23 middle). Despite being visually complex, the brick facade was constructed

with local resources and crafts: the bricks were manually assembled on site with the support of metal

profiles, whose section shape guided the stacking angle of each brick. Even though the precision of

the constructed solution was lower than its digital representation, the visual result was acceptable for

the human eye resolution.

A last example of pre-rationalization is the South Asian Human Rights Documentation Centre

in New Delhi (Figure 6.23 right), designed by Anagram Architects (2005). In this project, the modest

budget available made the architects search for a solution that met their design intent of creating a

visually complex brick facade with different levels of porosity and, simultaneously, used standard

elements and traditional construction means since early on. During the design exploration stage, CD

was used to control the rotation angle of each facade brick, the result being a self-supporting solution

made of modules of one to six standard bricks that were strategically stacked to create the desired

visual effect, while meeting the established natural ventilation and daylight illumination levels. Given

the limited space available for its construction and the need to use traditional fabrication strategies,

the team adopted a five-week collaborative process between masons and architects that involved

the manual placement of the brick modules on site. To promote an accurate stacking process, while

minimizing potential human errors, the team followed a brick assembly strategy guided by technical

drawings informing about each module stacking angle and using triangular wooden wedges that

ensured the stacking angles were respected61. The result was a self-supporting brick structure that

successfully met both aesthetic and performance requirements, demonstrating the possibility of

building less conventional solutions through traditional construction means.

60 Chatel M. DIY For Architects (2016). https://www.archdaily.com/791588/diy-for-architects-this-parametric-brick-facade-

was-built-using-traditional-craft-techniques?ad_medium=gallery (Retrieved on <July 12th 2022>).
61 ArchDaily. South Asian Human Rights Documentation Centre / Anagram Architects (2010).

https://www.archdaily.com/58519/south-asian-human-rights-documentation-centre-anagram-architects (Retrieved on

<July 12th 2022>)

https://www.archdaily.com/791588/diy-for-architects-this-parametric-brick-facade-was-built-using-traditional-craft-techniques?ad_medium=gallery
https://www.archdaily.com/791588/diy-for-architects-this-parametric-brick-facade-was-built-using-traditional-craft-techniques?ad_medium=gallery
https://www.archdaily.com/58519/south-asian-human-rights-documentation-centre-anagram-architects

104

Figure 6.23. From left to right: a brick panel of the 290 Mulberry Street building facade produced in a factory

and then transported to the project’s site to be assembled [355]; DIY For Architects brick facade

(©Sstudiomm); South Asian Human Rights Documentation Centre (©AnagramArchitects).

Finally, the Dongdaemun Design Plaza in Seoul (Figure 6.19 top-right), inaugurated in 2014, is an

example where no rationalization strategy was used, evidencing the potential of DF technologies to

produce highly curvilinear, freeform facades in reasonable time and with acceptable costs. Designed

by Zaha Hadid Architects in collaboration with other specialized teams, including facade and BIM

consultants, this building facade was originally composed of 45 133 unique aluminum panels, varying

in terms of shape, color, perforation pattern, and degree of curvature62. Given the project’s short

deadline and limited budget, using the construction technology available at the time was not a

possible solution, motivating the team to develop an entirely new fabrication method that made the

manufacturing of thousands of different panels viable. This fabrication method is based on the use

of a custom-build multipoint molding press machine to stretch and press the metal panels until

reaching the desired shape, and a robotically controlled laser cutter to punch and cut the panels. As

a result, the team could manufacture highly accurate unique panels that were automatically

catalogued according to their location, color, and perforation pattern [336], while considerably

reducing their fabrication time and cost. This project is a relevant example of how CD and DF

techniques bring new construction opportunities and lead to innovative solutions whose production

was nearly impossible using conventional construction techniques.

62 Samsung C&T. The Technology Behind Seoul’s Landmark Dongdaemun Design Plaza (2017).

http://news.samsungcnt.com/the-technology-behind-seouls-landmark-dongdaemun-design-plaza/(Retrieved on <July

12th 2022>)

http://news.samsungcnt.com/the-technology-behind-seouls-landmark-dongdaemun-design-plaza/

107

Framework

109

PART III | FRAMEWORK

7. MATHEMATICAL REPRESENTATION OF FACADE DESIGNS

This investigation aims to extend the existing design knowledge by supporting architects that intend

to use Algorithmic Design (AD) in solving large-scale and unconventional facade design problems

involving multiple requirements, such as design intent, performance (e.g., structural, lighting, etc.),

and feasibility. To that end, it provides a mathematics-based facade design methodology and an

algorithmic framework that scales with the complexity of the design problems addressed while also

interoperating with the various tools and techniques used.

In the past, the author addressed the limitations of facade-oriented AD frameworks in the

handling of more intricate design problems. The result was a classification of facades that facilitated

the geometric exploration of facade design solutions, not only helping with the identification of the

best AD strategies according to the design scenario [79, 362], but also providing a set of predefined

algorithms that could be easily combined in the development of new solutions. However, after

using the framework for more than one year, the need to improve its structure and extend its

functionalities became evident. The desire for a more flexible facade-oriented framework

supporting a wider range of design scenarios and other relevant design processes beyond

geometric exploration, such as analysis, optimization, and fabrication, triggered the current

investigation.

7.1. FRAMEWORK FOR ALGORITHMIC FACADES

This thesis proposes the algorithmic framework DrAFT 2.0, systematizing facade design processes

to support the development of new design solutions. The preference for an algorithmic approach

over a grammar-based one is due to its greater expressiveness and flexibility, as well as the higher

level of control allowed. This is critical to support the intended procedural and deterministic design

processes where architects fully master the course of the project and its expected results. This is

also important to enhance both creative and critical thinking processes throughout the project and

110

thus enable a conscious and informed design space exploration and the achievement of useful

results.

Taking previous work as starting point [79, 362], this investigation goes further by proposing

an enhanced mathematical framework aiming at systematizing facade design processes based on

AD from early to late design stages, not only integrating different geometric exploration strategies,

but also the analysis, optimization, and fabrication processes typical of architectural design practice.

Given the complexity and technicality of the latter, their incorporation in the framework is not

straightforward, requiring profound transformations in the way the proposed mathematical

principles are organized and described. Moreover, they must also respond to the variability and

unpredictability typical of architectural practice and the diversity and context-specificity of its

different criteria.

As the scope of this thesis is building facades, the first stage involved the collection and

analysis of a large corpus of contemporary facade designs to identify recurrent design problems

and relevant design strategies. It also entailed the study of existing classifications of facades [45, 47,

74, 75, 127], which are further detailed in section 2.4. Although none of the previous classifications

focus on assisting architects with the algorithmic description of facade design solutions nor address

their improvement in terms of performance and feasibility, they inspired the organization of the

collected design knowledge in a facade-oriented way.

In the proposed framework, the mathematical principles are organized according to their

type and role in facade design processes, originating a multidimensional classification that facilitates

the selection of the most suitable strategies for different creative intents and design problems, while

guiding their subsequent combination in the development of new solutions. When using this

framework, the architect matches the design intent with the existing categorical dimensions,

receiving in turn the most appropriate strategies for (1) generating the idealized facade design

solution; (2) analyzing and improving its performance regarding one or more fitness criteria; (3)

increasing its feasibility in terms of cost and resources; and (4) proceeding with its manufacturing.

The aim is to resolve most of the design limitations found in facade design processes, especially

when solving more intricate, larger-scale design problems, while adapting to the context-specificity

and diversity of architectural design practice.

Since facade design processes are ruled by multiple requirements that can be generic or

context-specific, straightforward or abstract, fixed or evolving, it is not reasonable to expect that

this matching process yields a complete mathematical solution. Instead, the proposed framework

assumes that the architect is responsible for (1) dividing the whole design into parts, (2) establishing

111

the dependencies between them, (3) instantiating and combining the different strategies dealing

with each part, (4) implementing additional strategies that might be needed to handle the specific

circumstances of the design brief, and (5) evaluating the results. Even so, its use simplifies the

algorithmic description of new solutions, leaving more time for both design exploration and critical

reflection and thus increasing the likelihood of finding better solutions.

7.2. CATEGORICAL STRUCTURE

 Architectural practice is highly dependent on the specific circumstances of the design brief and,

thus, it is unlikely that the exact same approach can be used in different projects. This applies to

both traditional and computational design approaches, including AD. Since this investigation

addresses the second case, it must deal with the variability that typically exists in architectural design

in a perspective that is simultaneously understood by a computer.

Computational tools work by following a set of imposed instructions, transmitted to

computers via programming languages, whose variety is currently numerous. Even though the first

computers resorted to very low-level programming languages, which greatly hindered users’

understanding, with time, these have improved to become closer to human-based languages,

particularly, the universally understood language of mathematics. Considering this, the investigation

considers the formalism of mathematics in (1) organizing the collected design knowledge, (2)

defining the ready-to-use principles, and (3) structuring the framework specialized in facade design.

This allows the proposal to be understood by both architects and computers, while ensuring its

universal application by enabling the framework to be integrated in diverse design briefs. Moreover,

it also allows the proposal to be continuously improved with additional design knowledge as the

need arises.

To overcome the limitations architects face when using AD, which are elaborated in chapter

4 of this thesis, the proposed framework must have:

• Flexibility, to support the variability typically of architectural design processes.

• Diversity, to address a large range of design problems.

• Multiplicity of criteria, to accurately evaluate different design scenarios.

• Coherency, to correctly link different types of data and processes in a single workflow.

Obviously, covering all possible design scenarios would require the framework to integrate an

infinite set of strategies and solutions within its structure, which is impossible. Nevertheless, by

112

considering generic solutions to recurrent design problems, as those encapsulated by the existing

modular programming and design pattern techniques [7], the framework can not only reduce the

initial investment required by AD, but also embrace a wider range of design scenarios and

requirements. Additionally, by having these techniques available since initial design stages,

architects spend much less time and effort with algorithmic tasks due to not having to rewrite all

the algorithms from scratch every time they start a new design. As a result, the framework does not

consider all possible design scenarios and problems, instead focusing in the most common ones

and, more importantly, on being adaptable to more specific design briefs. The latter cases can then

be incorporated in it whenever the need arises.

Regarding the framework’s structure, it is organized in a modular way into six main

categories of principles (Figure 7.1), each addressing a specific task of facade design:

• Geometry: to define the building’s overall shape.

• Distribution: to distribute its facade elements.

• Pattern: to generate facade elements of varying shapes.

• Optimization: to adapt the design according to one or more fitness goals.

• Rationalization: to control the design’s feasibility.

• Fabrication: to prepare the design for manufacturing.

This modular structure was carefully designed to allow including additional dimensions (i.e.,

categories and/or subcategories) and the combination of novel design strategies and knowledge

with the already existing ones.

The following sections detail each category in terms of mathematical formulation and

combination, while illustrating the ability of the proposed principles to simplify the replication of

prior design knowledge through an algorithmic perspective. Then, in chapter 8, these principles

are evaluated in terms of their ability to generate new design knowledge while reducing the

algorithmic complexity in the development of novel facade design solutions.

113

Figure 7.1. DrAFT 2.0 modular structure composed of six main categories.

115

7.3. MATHEMATICAL FORMULATION

This thesis seeks to systematize and simplify algorithmic-based facade design processes, proposing a

mathematical framework synthetizing prior design knowledge into ready-to-use strategies that can be

combined in the generation of new design knowledge. The latter are organized according to their type

and role in the facade design process in the following categories: Geometry, Distribution, Pattern,

Optimization, Rationalization, and Fabrication. For each one, the framework provides ℝ → ℝ, ℝ → ℝ2,

ℝ2 → ℝ2, and ℝ2 → ℝ3 functions, among others, that can be then combined through function

composition.

Before proceeding to the different categories, it is important to first explain a set of fundamental

concepts that are used to describe the framework’s mathematical principles and their combination. The

first one is the anonymous function concept introduced by the mathematician Alonzo Church in the

1930s when inventing the lambda calculus (or λ-calculus) notation. Differently from traditional

mathematical functions, such as the sinus or the square root, anonymous functions have no name,

being often used as arguments to other functions or to allow these to return functions as result. This

leads us to the second concept of higher-order functions (HOFs), which represent functions that receive

other functions as arguments and/or compute other functions as results [363]: e.g., the function

composition ∘ is a HOF that receives two functions as input and returns a function as result, such as

(𝑓 ∘ 𝑔)(𝑥) = 𝑔(𝑓(𝑥)).

The next concept regards the way the framework deals with surface sampling, which is

particularly relevant to then understand the mapping and transformation processes explained in

sections 7.3.2 and 7.3.3. The framework adopts a matrix-based approach because of (1) its ability to

systematize and simplify the representation of different surface subdomains and (2) its combinatorial

potential. In practice, upon receiving the mathematical description of the surface, the framework

produces a matrix of points belonging to the surface. Figure 7.2 illustrates this with two mathematical

descriptions of a torus surface, namely, the parametric and the implicit ones (left and middle examples,

respectively), and the matrix-based representation of a sub-domain of that same surface.

116

Figure 7.2. Surface representation methods conceptual illustration: from left to right, describing the surface of a

torus by using a parametric, implicit, and matrix-based representation.

Finally, in general, the framework handles all surface-related functions 𝑆(𝑢, 𝑣) within the domain 0 ≤

𝑢 ≤ 1, 0 ≤ 𝑣 ≤ 1 and provides HOF operators that can be arbitrarily combined, namely the one-

dimensional linear variation function 𝑙𝑖𝑛𝑒𝑎𝑟(𝑎, 𝑏) = 𝜆(𝑡). 𝑎 + (𝑏 − 𝑎)𝑡 and the (paradoxical) constant

“variation” function 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝑐) = 𝜆(𝑡 …). 𝑐. Here, it is employed the λ-calculus notation for an

anonymous function with parameter 𝑡 [363], which means the result of the function 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 is an

anonymous function that can be combined with functions of any number of arguments, adapting its

number of arguments according to those of the combined function.

The next sections explain the mathematical formulation of the six categories.

7.3.1. GEOMETRY

Given that designers want their models to be flexible, when they define the underlying principle of a

shape, they want to easily control and change it, so that many design instances can be generated within

the same geometric principle. This idea guides the first category Geometry, which contains algorithms

to define the building facade's overall shape. For each different geometry, the framework provides a

ℝ2 → ℝ3 parametric function that describes a point on the facade surface and that when mapped along

two ranges of values, returns the corresponding surface shape. For example, 𝑓(𝑢, 𝑣) =

𝑋𝑌𝑍(𝑢 × 5, 0, 𝑣 × 5), where XYZ is the Cartesian coordinate function, represents a five-by-five square

on the XZ plane.

Naturally, other coordinate systems can be used, such as the Cylindrical, represented by the

function CYL, and the Spherical, represented by the function SPH. Moreover, each coordinate system

supports different types of transformations (e.g., translation, rotation, etc.), which are related to a spatial

location of reference, capable of codifying the transformed referential, which, for brevity, we will omit.

As an example, consider the completely planar facade of the Formstelle Building (Figure 7.3 left).

Depending on a width 𝑤 and height ℎ values, the facade surface can be defined as 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ) =

117

𝜆(𝑢, 𝑣). 𝑋𝑌𝑍(𝑢 × 𝑤, 0, 𝑣 × ℎ). Note that the algorithm 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 is a HOF that returns an anonymous

parametric function representing a delimited region on the XZ plane. Although it is perfectly possible

to explicitly define algorithms such as 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡, the framework goes deeper than that by providing a

set of more fundamental functional operators that can be arbitrarily combined, such as the already

mentioned algorithms 𝑙𝑖𝑛𝑒𝑎𝑟 and 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. As the algorithms of the Geometry category are often

two-dimensional, we need to extend the one-dimensional variations’ domain into ℝ2. We use HOFs to

define two functions, 𝑑𝑖𝑚𝑢(𝑓) = 𝜆(𝑢, 𝑣). 𝑓(𝑢) and 𝑑𝑖𝑚𝑣(𝑓) = 𝜆(𝑢, 𝑣). 𝑓(𝑣), that make a function 𝑓

vary only in one dimension, i.e., 𝑢 or 𝑣 accordingly. To generalize function composition operations, the

framework provides the operator

∘ (𝑓, 𝑔1, ⋯ , 𝑔𝑛) = 𝜆(𝑥1, ⋯ , 𝑥𝑚). 𝑓(𝑔1(𝑥1,⋯ , 𝑥𝑚),⋯ , 𝑔𝑛(𝑥1,⋯ , 𝑥𝑚))

and, to simplify the notation used, it defines 𝑢 ⊗ 𝑙𝑖𝑚 = 𝑑𝑖𝑚𝑢(𝑙𝑖𝑛𝑒𝑎𝑟(0, 𝑙𝑖𝑚)) and 𝑣 ⊗ 𝑙𝑖𝑚 =

𝑑𝑖𝑚𝑣(𝑙𝑖𝑛𝑒𝑎𝑟(0, 𝑙𝑖𝑚)), wherein 𝑙𝑖𝑚 is the domain’s upper limit. The framework also treats all numbers

𝑛 in a function context as 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝑛) and any first-order function 𝑓 being used with functional

arguments 𝑔1, ⋯ , 𝑔𝑛 as ∘ (𝑓, 𝑔1,⋯ , 𝑔𝑛), thus being 𝑓 × 𝑔 the same as ∘ (×, 𝑓, 𝑔). Moreover, it also

considers that any function applied to fewer arguments than the required ones is curried [364].

Figure 7.3. Formestelle Building, Töging am Inn, Germany (©Format Elf Architekten); Suzhou SND District Urban

Planning Exhibition Hall by BDP architects, Jiangsu, China (©MarcoJacobs); SMG apartment building by Mejiro

Studio, Tokyo, Japan (©koichi torimura).

With HOFs we can move from the numeric space into the functional space and combine functions using

functional operators rather than simply combining numbers using numeric operators. In a functional

space, the algorithm 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 has the equivalent representation 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ) = 𝑋𝑌𝑍(𝑢 ⊗ 𝑤, 0, 𝑣 ⊗

ℎ). Similarly, cylindrical facades such as that of Figure 7.3 (middle) are described by the function

𝑐𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙(𝑟, ℎ) = 𝐶𝑌𝐿(𝑟, 𝑢⨂2𝜋, 𝑣⨂ℎ), where 𝑟 is the radius size of the building and ℎ its height.

Regarding undulating facades, the framework represents the most common sinusoidal movement with

the HOF 𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑(𝑎,𝜔,𝜙) = 𝜆(𝑥). 𝑎 × 𝑠𝑖𝑛 (2𝜋𝜔𝑥 + 𝜙), where 𝑎 is the amplitude of the sinusoid, 𝜔

118

is the angular frequency, i.e., the number of cycles per unit length, and 𝜙 is its phase. When the

undulation movement occurs, for instance, in the XY plane, producing a horizontal wave as that of

Figure 7.3 (right), the surface is described as:

 𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑𝑎𝑙𝑢(𝑤, ℎ, 𝑎,𝜔,𝜙) = 𝑋𝑌𝑍(𝑢⨂𝑤, 𝑢⨂𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑(𝑎,𝜔,𝜙), 𝑣⨂ℎ)

When the sinusoidal effect occurs in both XY and YZ planes, creating horizontal and vertical waves such

as those of Figure 7.4 (left), it is described as:

𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑𝑎𝑙𝑢𝑣(𝑤, ℎ, 𝑎,𝜔,𝜙) = 𝑋𝑌𝑍(𝑢⨂𝑤, 𝑢⨂𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑(𝑎,𝜔, 𝜙) × 𝑣⨂𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑(𝑎, 𝜔, 𝜙 + 𝜋/2), 𝑣⨂ℎ)

Figure 7.4. Boiler House at Guy's Hospital, London, UK (©heatherwick); Selfridges Building, Birmingham, UK

(©Bs0u10e0).

Finally, the framework also supports the generation of more unconventional or organic facade shapes

as that of Figure 7.4 (right), which are often hard to describe mathematically but easy to create manually.

For such cases, it provides the algorithm 𝑓𝑟𝑒𝑒𝑓𝑜𝑟𝑚, which is a type of visual input mechanism (VIM): it

allows the architect to manually model the desired shape in the design tool and then use it as input to

the available algorithms. Other examples of VIMs are introduced throughout this chapter.

In practice, when selecting a manually created surface, the algorithm 𝑓𝑟𝑒𝑒𝑓𝑜𝑟𝑚 converts it into

a format suiting the remaining algorithms (i.e., into an algorithm reproducing that same surface), while

allowing the user to decide whether the dependency between the algorithms and the selected shape

is preserved. In the affirmative case, the algorithms are automatically regenerated every time the input

shape is changed in the design tool. Otherwise, they only consider these changes when the shape is

re-selected, thus becoming independent from it: not only do they no longer react to the changes made

to the original shape in the design tool, but they also can store its algorithmic description to then

119

reproduce it either in the same or another design tool. This enables the framework to have a general

application, not restricting the available functionalities to a specific tool, while permitting to take

advantage of shapes produced in multiple modeling environments.

Having the algorithmic equivalent of the manually generated shape then allows the architect to

reproduce and manipulate it whenever necessary, as well as combine it with the algorithms of the

remaining categories and create, for instance, different point distributions and geometric patterns on

it. Nevertheless, as the resulting algorithm is non-parametric, it only represents and reproduces the

original shape and not variations of it.

The next sections explain how the algorithms available in the Geometry category can be

combined with those of Pattern and Distribution categories in exploring different facade design

patterns.

7.3.2. DISTRIBUTION

While the previous category is concerned with the description of different surface shapes, this one

focuses on converting the latter descriptions into actual points in space. To that end, it contains

algorithms that, given the parametric representation of a surface shape and the interval of values to

assign to its variables, create different surface points configurations within that range.

Figure 7.5. On the left, a point resulting from the parametric representation of a surface 𝑓 and, on the right, the

set of surface point sampling resulting from its application over two intervals, i.e., [𝑢1, 𝑢𝑛] and [𝑣1, 𝑣𝑚],

composed by 𝑛 and 𝑚 values respectively.

In practice, these algorithms receive a matrix of surface point samples to rearrange (𝑝𝑡𝑠𝑠), which can

be produced by iterating the functions available in the Geometry category along two domains, i.e., the

120

𝑢 and 𝑣 dimensions of the surface sampling (see Figure 7.5). They then return another matrix with the

same surface points but rearranged in different configurations.

As an example, given the same set of surface points 𝑝𝑡𝑠𝑠, the algorithm 𝑔𝑟𝑖𝑑𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒𝑠

rearranges them in sets of four points describing rectangular areas on the surface (Figure 7.6-A); the

algorithm 𝑔𝑟𝑖𝑑𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 organizes them in sets of three points representing triangular areas (Figure 7.6-

B); and the algorithm 𝑔𝑟𝑖𝑑𝑟ℎ𝑜𝑚𝑏𝑢𝑠 in sets of four points creating diamond-shaped areas (Figure 7.6-C).

Figure 7.6. Conceptual representation of the points rearrangement: the black dots represent the surface point

samples and the purple dots their reorganization in sets of four points (A and C) and three points (B).

The way the given surface point sampling is rearranged in the new matrix therefore originates different

grid configurations, as those illustrated in Figure 7.7: for instance, we can mathematically describe

example A as 𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠(𝑝𝑡𝑠𝑠) and example F as 𝑔𝑟𝑖𝑑𝑟ℎ𝑜𝑚𝑏𝑢𝑠(𝑝𝑡𝑠𝑠), wherein 𝑝𝑡𝑠𝑠 is the result of

mapping the 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 algorithm along two domains, i.e., [𝑢1, 𝑢𝑛] and [𝑣1, 𝑣𝑚], with 𝑛 and 𝑚

subdivisions in both 𝑢 and 𝑣 directions (in this case 𝑛 = 𝑚 = 10).

Note that some Distribution algorithms rearrange the original surface point sampling (𝑝𝑡𝑠𝑠) into

sets of points with the same size but with different organizations. As an example, consider the

algorithms 𝑔𝑟𝑖𝑑𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒𝑠 and 𝑔𝑟𝑖𝑑𝑟ℎ𝑜𝑚𝑏𝑢𝑠, which correspond to the examples A and C of Figure 7.6,

respectively: both rearrange the given set of points (𝑝𝑡𝑠𝑠) in sets of four points but, while the former

directly groups the given points to create a rectangular grid configuration, the latter calculates their

intermediate points to then group them into sets of four as well but originating a diamond-shaped

configuration.

By combining these algorithms with those creating different facade elements, such as those

available in the Pattern category, we can produce several element distributions that in turn originate

different surface patterns.

121

Figure 7.7. Conceptual representation of eight Distribution algorithms: 𝑔𝑟𝑖𝑑𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒𝑠 (A), 𝑔𝑟𝑖𝑑𝑠𝑤𝑒𝑒𝑘𝑒𝑑 (B),

𝑔𝑟𝑖𝑑𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠𝑋 (C), 𝑔𝑟𝑖𝑑𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠𝑋𝑌 (D), 𝑔𝑟𝑖𝑑𝑠𝑡𝑟𝑖𝑝𝑒𝑠 (E), 𝑔𝑟𝑖𝑑𝑟ℎ𝑜𝑚𝑏𝑢𝑠 (F), 𝑔𝑟𝑖𝑑𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠𝐻𝑒𝑥𝑎𝑔𝑜𝑛 (G), and

𝑔𝑟𝑖𝑑ℎ𝑒𝑥𝑎𝑔𝑜𝑛𝑠 (H).

7.3.3. PATTERN

This category contains algorithms to create different facade elements. When combined with those of

the previous categories, these algorithms produce several facade design patterns. This thesis

categorizes as discrete those patterns resulting from repeating the same element along both 𝑢 and 𝑣

dimensions (Figure 7.8 left) and as continuous those repeating the same element along only one of the

dimensions (Figure 7.8 right). In both cases, the repeated element can be kept unchanged along the

facade's domain or can suffer some transformations regarding its shape, size, etc. Therefore, this

category provides algorithms to generate different geometric shapes, as well as to apply different

geometric transformations to them. These are organized in two groups, namely Shape and

Transformation, each one containing algorithms to handle both discrete and continuous patterns.

Mathematically, the framework represents discrete and continuous patterns differently in terms

of how the elements are shaped and geometrically transformed: while the former case deals with

polygonal geometries (e.g., regular polygons, star-shapes, rosettes, etc.) and geometric solids (e.g.,

spheres, cones, etc.), among others, the latter handles stripe-based elements such as pillars, bars, tubes,

etc., which requires the geometric transformations to be different. The next sections explain the

algorithms addressing both types of shapes and geometric transformations.

122

Figure 7.8. Lisbon Aquarium Extension by Campos Costa Arquitetos (©Daniel Malhão); ONS Incek Residence

Showroom and Sales Office by Yazgan Design Architecture (©Yunus Özkazanç).

SHAPE

Before describing the shapes and geometric transformations available in the framework, it is important

to present the HOF 𝑝𝑎𝑡𝑡𝑒𝑟𝑛, which is responsible for combining the algorithms of both Shape and

Transformation groups and produce the overall facade pattern. Mathematically, the framework

represents this algorithm as 𝑝𝑎𝑡𝑡𝑒𝑟𝑛(𝑓, 𝑝𝑡𝑠𝑠; 𝑎𝑟𝑔𝑠…), where 𝑓 is either the function or the

composition of functions shaping each facade element, 𝑝𝑡𝑠𝑠 is the set of points describing the facade

surface, and 𝑎𝑟𝑔𝑠… the supported optional arguments. In practical terms, the algorithm 𝑝𝑎𝑡𝑡𝑒𝑟𝑛

provides the optional arguments (𝑎𝑟𝑔𝑠 …) as input for the received function(s) (𝑓), which is/are then

mapped along the received surface points (𝑝𝑡𝑠𝑠). Regarding the 𝑓 argument, it can be a single function

simply describing a geometric shape, resulting in a surface pattern with non-varying geometric

elements, or it can be a composition of different Shape and/or Transformation algorithms, producing

a geometric pattern either with different or identical elements that either vary or not their shape along

the facade surface.

The next subsections present, first, some of the Shape algorithms addressing discrete patterns,

which create different 2D and 3D shapes, and then those targeting continuous patterns, which produce

stripe-based shapes.

TWO-DIMENSIONAL ELEMENTS

This investigation considers a two-dimensional shape as a geometric entity defined by a set of points

and lines connecting those points in a closed chain and the points contained within it. When bounded

by curves, these shapes are named as curved shapes, and when bounded by straight lines, they are

named as polygons. In either case, the available algorithms receive the set of points where to center

123

the geometric shape (𝑝𝑡𝑠), an information provided by the Distribution algorithms, being the remaining

parameters dependent on the characteristics of each geometric shape: 𝑠ℎ𝑎𝑝𝑒(𝑝𝑡𝑠; 𝑎𝑟𝑔𝑠 …). Figure 7.9

illustrates six Shape algorithms and their corresponding parameters.

The first group, curved shapes, includes, among others, circular, elliptic, and super-elliptic

geometries, providing for the first case the algorithm 𝑠ℎ𝑎𝑝𝑒𝑐𝑖𝑟𝑐𝑙𝑒, which receives the set of points (𝑝𝑡𝑠)

where to center the circle (Figure 7.9-A) and the radius size (𝑟); for the second case the algorithm

𝑠ℎ𝑎𝑝𝑒𝑒𝑙𝑙𝑖𝑝𝑠𝑒 , which receives the same set of points, two radius sizes (𝑟𝑢 and 𝑟𝑣), and a placement angle

(𝛼); and for the last case the algorithm 𝑠ℎ𝑎𝑝𝑒𝑠𝑢𝑝𝑒𝑟𝑒𝑙𝑙𝑖𝑝𝑠𝑒, which receives the previous parameters plus

the degree of the curve (𝑛):

𝑠ℎ𝑎𝑝𝑒𝑐𝑖𝑟𝑐𝑙𝑒(𝑝𝑡𝑠, 𝑟) 𝑠ℎ𝑎𝑝𝑒𝑒𝑙𝑙𝑖𝑝𝑠𝑒(𝑝𝑡𝑠, 𝑟𝑢 , 𝑟𝑣 , 𝛼) 𝑠ℎ𝑎𝑝𝑒𝑠𝑢𝑝𝑒𝑟𝑒𝑙𝑙𝑖𝑝𝑠𝑒(𝑝𝑡𝑠, 𝑟𝑢 , 𝑟𝑣 , 𝛼, 𝑛)

Figure 7.9. Parameters of six Shape algorithms: besides the set of points 𝑝𝑡𝑠 represented by the black dots,

algorithm (A) receives a radius; (B) receives a radius, an angle, and a number of sides; (C) receives a length, a

width, and an angle; (D) receives three radii, an angle, and a number of vertices; (E) receives two diagonals and

an angle; and (F) receives two radii, an angle, and a number of vertices.

The second group, polygons, includes planar figures bounded by a finite chain of straight-line

segments, called edges or sides, closing in a loop. The points where two edges meet are named vertices.

When the polygon boundary intersects itself, it creates self-intersecting polygons like star polygons and

rosette polygons, among others; otherwise, it creates regular and irregular polygons like squares,

hexagons, rectangles, rhombuses, parallelograms, non-regular triangles (isosceles and scalene), among

124

others. The way different polygonal shapes are organized in the framework is inspired by the existing

classifications of polygons, which differentiate them according to, for instance, the number of sides, the

equality of the edges and/or angles, and their convexity. Given the high number of algorithms

implemented, this section only illustrates some of them.

As a first example, consider the algorithm that creates regular polygons, whose practical

application in architecture is illustrated in Figure 7.10. It receives the set of points where to center the

element (𝑝𝑡𝑠), the number of sides (𝑛𝑠𝑖𝑑𝑒𝑠), the radius (𝑟), and the placement angle (𝛼). Similarly, the

algorithms creating rectangles and rhombuses receive the same set of points and placement angle and,

in the first case (Figure 7.9-C), the length of its horizontal and vertical edges (𝑒𝑢, 𝑒𝑣), and, in the second

case (Figure 7.9-E), the length of both its inner diagonals (𝑑𝑢 , 𝑑𝑣 ,):

𝑠ℎ𝑎𝑝𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑝𝑜𝑙𝑦𝑔𝑜𝑛(𝑝𝑡𝑠, 𝑛𝑠𝑖𝑑𝑒𝑠 , 𝑟, 𝛼) 𝑠ℎ𝑎𝑝𝑒𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒(𝑝𝑡𝑠, 𝑒𝑢 , 𝑒𝑣 , 𝛼) 𝑠ℎ𝑎𝑝𝑒𝑟ℎ𝑜𝑚𝑏𝑢𝑠(𝑝𝑡𝑠, 𝑑𝑢 , 𝑑𝑣 , 𝛼)

Figure 7.10. Frog Queen building by SPLITTERWERK, Graz, Austria (©Nikolaos Zachariadis); commercial building

in Fukuoka Prefecture by Junichiro Ikeura, Japan (©Satoshi Ikuma); The Afsluitdijk Wadden Center by GEAR

Architectencoöperatie, Netherlands (©Gerard van Beek).

Regarding star polygons, these shapes result from connecting non-adjacent vertices of a regular

polygon until the first vertex is reached again [365]. They are often classified as self-intersecting,

equilateral, and equiangular shapes, and when the intersecting lines are removed, they are also

classified as isotoxal [366] due to their vertices alternating between two radii values. The use of these

polygons in architecture has a long tradition, mainly in North-African and Arabic cultures. Lately, they

have also been widely applied in contemporary building facades, as illustrated in Figure 7.11.

125

Figure 7.11. Yardmasters building by McBride Charles Ryan, Australia (©John Gollings); The Al Bahar Towers by

Aedas (©WIKIARQUITECTURA); Stadshuis Nieuwegein by 3XN architects (©Adam M¢rk); Doha Tower by Jean

Nouvel (©Ateliers Jean Nouvel).

The algorithm representing such shape, 𝑠ℎ𝑎𝑝𝑒𝑠𝑡𝑎𝑟, takes as input the set of points received by all Shape

algorithms (𝑝𝑡𝑠) plus the number of vertices (𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠) (Figure 7.12-A), two radii sizes (𝑟𝑐𝑜𝑛𝑣𝑒𝑥 and

𝑟𝑐𝑜𝑛𝑐𝑎𝑣𝑒), i.e., the distances between the star’s center and either its convex or concave63 vertices (Figure

7.12-B), and the placement angle (𝛼) (Figure 7.12-C). To further increase its flexibility, an additional

parameter was added, the factor 𝑘𝑎𝑝𝑝𝑒𝑟𝑡𝑢𝑟𝑒 ranging from 0 to 1, that allows apertures of different sizes

and orientations (Figure 7.12-D): when 𝑘𝑎𝑝𝑝𝑒𝑟𝑡𝑢𝑟𝑒 = 0 the result is a totally opaque star polygon; when

𝑘𝑎𝑝𝑝𝑒𝑟𝑡𝑢𝑟𝑒 = 1 the result is a star-shaped polygonal line.

𝑠ℎ𝑎𝑝𝑒𝑠𝑡𝑎𝑟(𝑝𝑡𝑠, 𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 , 𝑟𝑐𝑜𝑛𝑣𝑒𝑥 , 𝑟𝑐𝑜𝑛𝑐𝑎𝑣𝑒 , 𝛼, 𝑘𝑎𝑝𝑝𝑒𝑟𝑡𝑢𝑟𝑒)

As a last example, consider those polygons whose shape is inspired on the Islamic rosettes. According

to some authors [367, 368], these geometries are a type of star polygons since they result from lines

connecting vertices alternating, in this case, between three radii sizes. The framework names these

elements rosette polygons, providing the algorithm 𝑠ℎ𝑎𝑝𝑒𝑟𝑜𝑠𝑒𝑡𝑡𝑒 to generate them. In addition to the

set of points (𝑝𝑡𝑠) and placement angle (𝛼), this algorithm receives the number of petals (𝑛𝑝𝑒𝑡𝑎𝑙𝑠) and

three radius sizes (𝑟𝑖𝑛𝑛𝑒𝑟, 𝑟𝑚𝑖𝑑𝑑𝑙𝑒, and 𝑟𝑜𝑢𝑡𝑒𝑟) corresponding to the inner, middle, and outer points

(Figure 7.13) of the rosette:

𝑠ℎ𝑎𝑝𝑒𝑟𝑜𝑠𝑒𝑡𝑡𝑒(𝑝𝑡𝑠𝑠, 𝑛𝑝𝑒𝑡𝑎𝑙𝑠, 𝑟𝑖𝑛𝑛𝑒𝑟, 𝑟𝑚𝑖𝑑𝑑𝑙𝑒 , 𝑟𝑜𝑢𝑡𝑒𝑟 , 𝛼)

63 When the internal angle of the polygon is less or more that π radians, respectively.

126

Figure 7.12. Conceptual representation of the algorithm 𝑠ℎ𝑎𝑝𝑒𝑠𝑡𝑎𝑟: (A) number of sides; (B) distance between the

star center and its concave vertices; (C) placement angle; (D) apertures resulting from different factors.

Figure 7.13. Algorithm 𝑠ℎ𝑎𝑝𝑒𝑟𝑜𝑠𝑒𝑡𝑡𝑒 conceptual representation: inner (A), middle (B), and outer (C) radii.

Before proceeding to the Transformation group, the combination of the Shape algorithms with both

Geometry and Distribution ones is illustrated. As a first example, consider the creation of a geometric

pattern based on star polygons. Besides selecting the algorithm 𝑠ℎ𝑎𝑝𝑒𝑠𝑡𝑎𝑟, we need to define (1) the

surface where to apply the star polygons and (2) their type of distribution. Imagine that, for the former

case, we choose a straight surface (𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡) and, for the latter, we select a rhombus grid distribution

(𝑔𝑟𝑖𝑑𝑟ℎ𝑜𝑚𝑏𝑢𝑠). Then, we combine the three algorithms in the process illustrated in Figure 7.14.

127

Figure 7.14. Conceptual representation of the composition of (A) 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 and 𝑔𝑟𝑖𝑑𝑟ℎ𝑜𝑚𝑏𝑢𝑠 algorithms,

originating a rhombus grid; and (B) the previous algorithms plus the 𝑠ℎ𝑎𝑝𝑒𝑠𝑡𝑎𝑟 one, distributing star-shape

elements along the previous grid (the result is illustrated in C).

We can simplify the composition of both 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 and 𝑔𝑟𝑖𝑑𝑟ℎ𝑜𝑚𝑏𝑢𝑠 algorithms by writing

𝑔𝑟𝑖𝑑𝑟ℎ𝑜𝑚𝑏𝑢𝑠(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ)) and, to facilitate the mathematical representation of algorithms dealing

with matrices, we can take advantage of broadcasting64 and apply a function 𝑓 to an array of elements

with the same or different number of dimensions from the other received arguments. Broadcasting is

represented by the dot syntax 𝑓. (𝑎𝑟𝑔𝑠…) and it can be applied in single or nested calls

𝑓. (𝑔. (𝑎𝑟𝑔𝑠…)). This means we can simplify the function composition illustrated in Figure 7.14 into

𝑠ℎ𝑎𝑝𝑒𝑠𝑡𝑎𝑟 .

(

𝑔𝑟𝑖𝑑𝑟ℎ𝑜𝑚𝑏𝑢𝑠(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ)),
𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ,
𝑟𝑐𝑜𝑛𝑣𝑒𝑥,
𝑟𝑐𝑜𝑛𝑐𝑎𝑣𝑒,

𝛼,
𝑘𝑎𝑝𝑝𝑒𝑟𝑡𝑢𝑟𝑒)

where 𝑔𝑟𝑖𝑑𝑟ℎ𝑜𝑚𝑏𝑢𝑠(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ)) returns a matrix of surface points arranged in a rhombus grid

configuration and the broadcasting operation maps the 𝑠ℎ𝑎𝑝𝑒𝑠𝑡𝑎𝑟 algorithm onto it.

It is important to note that the resulting mathematical structure supports a greater design

flexibility, offering control over the various parameters differently and independently and thus

producing a wider range of geometric patterns. While mapping the algorithm 𝑠ℎ𝑎𝑝𝑒𝑠𝑡𝑎𝑟 along a

squared grid produced by the algorithm 𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠, we can make the parameter 𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 vary, for

instance, randomly within a range of options by using the Transformation algorithm 𝑇𝑟𝑎𝑛𝑑𝑜𝑚, which is

further explained in the Transformation section; a scenario illustrated in Figure 7.15-A with a star pattern

64 The mapping of a function over an array or a matrix.

128

whose number of vertices randomly vary between 3 and 10. This is valid for all Shape algorithms, some

of which are illustrated in Figure 7.15.

Figure 7.15. Examples of Shape and Distribution algorithms combinations: (A) 𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠 and 𝑠ℎ𝑎𝑝𝑒𝑠𝑡𝑎𝑟 with a

random number of vertices and radius size; (B) 𝑔𝑟𝑖𝑑𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠𝐻𝑒𝑥𝑎𝑔𝑜𝑛 and 𝑠ℎ𝑎𝑝𝑒𝑟ℎ𝑜𝑚𝑏𝑖𝑙𝑙𝑒; (C) 𝑔𝑟𝑖𝑑𝑟ℎ𝑜𝑚𝑏𝑢𝑠 and

𝑠ℎ𝑎𝑝𝑒𝑟𝑜𝑠𝑒𝑡𝑡𝑒 with a random number of petals; (D) 𝑔𝑟𝑖𝑑ℎ𝑒𝑥𝑎𝑔𝑜𝑛𝑠 and 𝑠ℎ𝑎𝑝𝑒𝑟ℎ𝑜𝑚𝑏𝑖𝑡𝑟𝑖ℎ𝑒𝑥𝑎𝑔𝑜𝑛𝑎𝑙.

THREE-DIMENSIONAL ELEMENTS

The framework also includes algorithms to produce different three-dimensional shapes, including

simple geometric solids, such as prisms, boxes, cylinders, cones, and pyramids, and composite solids65.

Figure 7.16 presents some facade design examples using three-dimensional elements.

65 A solid composed of two or more other solids.

129

Figure 7.16. Three-dimensional facades: Community Car Park A1 by XVW architectuur, Amsterdam (©Stijn

Brakkee, Isabelle Nabuurs); Shangai boutique design by UUfie studio (©Shengliang Su); Regal Shoes shop by

Nudes, India (©Nudes); Consulate of Portugal by Campos Costa Arquitetos and DAU/ PUC-Rio students, Brazil

(©Henrique Delarue).

Like two-dimensional shapes, these algorithms all receive the set of points where to center the shape

(𝑝𝑡𝑠), the placement angle (𝛼), except the 𝑠ℎ𝑎𝑝𝑒𝑠𝑝ℎ𝑒𝑟𝑒 algorithm, and a set of additional parameters

depending on the type of element to create: for instance, the algorithm 𝑠ℎ𝑎𝑝𝑒𝑐𝑢𝑏𝑒 receives an edge

size (𝑒), the algorithm 𝑠ℎ𝑎𝑝𝑒𝑠𝑝ℎ𝑒𝑟𝑒 receives a radius size (𝑟), and the algorithms 𝑠ℎ𝑎𝑝𝑒𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 and

𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑛𝑒 receive a radius size (𝑟) and a height (ℎ).

𝑠ℎ𝑎𝑝𝑒𝑐𝑢𝑏𝑒(𝑝𝑡𝑠, 𝑒) 𝑠ℎ𝑎𝑝𝑒𝑠𝑝ℎ𝑒𝑟𝑒(𝑝𝑡𝑠, 𝑟) 𝑠ℎ𝑎𝑝𝑒𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟(𝑝𝑡𝑠, 𝑟, ℎ) 𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑛𝑒(𝑝𝑡𝑠, 𝑟, ℎ)

In addition to these shapes, the framework provides algorithms to create other types of three-

dimensional facade elements, such as bricks, ceramic elements, trusses, among others. These

algorithms receive the same set of points (𝑝𝑡𝑠) plus a set of parameters specific to each element: for

instance, the algorithm 𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑏𝑜𝑔𝑜, which creates a type of cobogó brick66, receives the thickness and

width of the brick’s outer frame, the radius size of its inner elements, and the pattern rule to create

(Figure 7.17):

𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑏𝑜𝑔𝑜(𝑝𝑡𝑠, 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠,𝑤𝑖𝑑𝑡ℎ, 𝑟𝑖𝑛𝑛𝑒𝑟, 𝑟𝑢𝑙𝑒)

66 A hollow ceramic block that allows ventilation and daylight control.

130

Figure 7.17. Conceptual representation of the algorithm 𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑏𝑜𝑔𝑜.

As already mentioned, it is possible to manipulate the algorithms’ parameters in different and

independent ways. In the case of the algorithm 𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑏𝑜𝑔𝑜, this allows for the application of multiple

geometric rules in the same function composition and thus create a facade pattern with different

cobogó elements. This scenario is illustrated in Figure 7.18 with four examples resulting from the same

function composition: in all cases, a randomly selected geometric rule from a set of possible rules

(𝑟𝑢𝑙𝑒𝑠) is applied to each cobogó element, alternating between two rules, in the top-left example,

between five rules in the top-right one, and four rules in the bottom ones. In the latter case, a random

opaqueness level is also applied to each selected rule, which in this case ranges between five possible

factors.

𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑏𝑜𝑔𝑜 . (𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ)), 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠,𝑤𝑖𝑑𝑡ℎ, 𝑟𝑖𝑛𝑛𝑒𝑟 , 𝑟𝑢𝑙𝑒𝑠)

Note that, while in the top examples the surface points are uniformly distributed, originating equally

sized cobogó elements, in the bottom ones their distribution is controlled by a random translation factor,

thus producing elements of varying shapes and sizes.

131

Figure 7.18. Four facade patterns resulting from the same algorithms but from different point distributions and

geometric rules: in the top examples the surface points are regularly distributed and either two or five rules are

used; in the bottom examples the surface points are randomly translated, and four rules are used with either the

same or different opacity levels.

STRIPE-BASED ELEMENTS

There are several examples of facades whose pattern results from elements discrete in one of the

surface’s dimensions and continuous in the other (Figure 7.19). The framework names these geometries

stripe-based, and it describes them mathematically through the HOF 𝑠ℎ𝑎𝑝𝑒𝑠𝑡𝑟𝑖𝑝𝑒. This function takes

as input an algorithm describing the stripe’s central axis (𝑝𝑡𝑠) and another one defining its section shape

(𝑠ℎ𝑎𝑝𝑒𝑠𝑒𝑐𝑡𝑖𝑜𝑛). As an example, when the section shape is a polygon, the result is an element similar to

a polygonal bar or pillar (Figure 7.19 right). When it is, for instance, a line-like shape, the element created

resembles a strip (Figure 7.19 left), and so on. Besides the previous arguments, the algorithm also

132

receives different geometric transformations (see section Transformation), which are mathematically

represented as optional arguments (𝑎𝑟𝑔𝑠 …):

𝑠ℎ𝑎𝑝𝑒𝑠𝑡𝑟𝑖𝑝𝑒(𝑝𝑡𝑠, 𝑠ℎ𝑎𝑝𝑒𝑠𝑒𝑐𝑡𝑖𝑜𝑛, 𝑎𝑟𝑔𝑠 …)

Figure 7.19. Stripe-based facade elements: Community Library in La Molina by Gonzalez Moix Arquitectura, Peru

(©Ramiro Del Carpio Fotografía); Aspen Art Museum by Shigeru Ban Architects, USA(©Michael Moran/OTTO);

Striped Living by Group8asia, Switzerland (©Régis Golay); Nebuta-no-ie Warasse by Molo, d/dt, Frank La Riviere

Architects, Japan (©Frank La Riviere).

To better understand this algorithm, consider the example of Figure 7.20. It starts with the selection of

the algorithm 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 to obtain a matrix of 𝑛𝑚 points describing a planar surface (example A). On

this matrix we can then create either horizontally oriented stripes, if we provide the algorithm

𝑠ℎ𝑎𝑝𝑒𝑠𝑡𝑟𝑖𝑝𝑒 with the matrix’ rows, by using the algorithm 𝑔𝑟𝑖𝑑𝑟𝑜𝑤𝑠; or vertically oriented ones, if we use

instead the matrix’ columns (example B), by selecting the algorithm 𝑔𝑟𝑖𝑑𝑐𝑜𝑙𝑢𝑚𝑛𝑠. In both scenarios, we

can simplify the mathematical representation of the resulting function composition as

𝑠ℎ𝑎𝑝𝑒𝑠𝑡𝑟𝑖𝑝𝑒 . (𝑝𝑡𝑠𝑠, 𝑠ℎ𝑎𝑝𝑒𝑠𝑒𝑐𝑡𝑖𝑜𝑛, 𝑎𝑟𝑔𝑠 …), where 𝑝𝑡𝑠𝑠 are the result of the composition of the algorithm

𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 with either the algorithm 𝑔𝑟𝑖𝑑𝑟𝑜𝑤𝑠 or 𝑔𝑟𝑖𝑑𝑐𝑜𝑙𝑢𝑚𝑛𝑠, and 𝑎𝑟𝑔𝑠 … are the supported optional

133

arguments regarding the geometric transformations allowed. Imagine we opt for the vertical stripes

(example C). We must combine the algorithms 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡, 𝑔𝑟𝑖𝑑𝑐𝑜𝑙𝑢𝑚𝑛𝑠, and 𝑠ℎ𝑎𝑝𝑒𝑠𝑡𝑟𝑖𝑝𝑒 in the following

composition:

𝑠ℎ𝑎𝑝𝑒𝑠𝑡𝑟𝑖𝑝𝑒. (𝑔𝑟𝑖𝑑𝑐𝑜𝑙𝑢𝑚𝑛𝑠(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ)), 𝑠ℎ𝑎𝑝𝑒𝑠𝑒𝑐𝑡𝑖𝑜𝑛)

Figure 7.20. Continuous pattern conceptual representation: (A) surface points matrix (𝑝𝑡𝑠𝑠) and (B) its

organization into 𝑛 columns of points to then (C) generate the stripe-based elements on each one.

In this composition, the number of stripes to create is controlled by the output of the algorithm

𝑔𝑟𝑖𝑑𝑐𝑜𝑙𝑢𝑚𝑛𝑠 since it depends on the number of columns on which the surface points (𝑝𝑡𝑠𝑠) were

rearranged: if the latter are organized, for instance, in five sets of points vertically aligned, the result is

a five-stripe pattern; if they are instead rearranged in 21 sets of points, as illustrated in Figure 7.20, the

result is a 21-stripe pattern.

Similarly, the stripes’ curvature also depends on the output of the algorithm 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡, i.e., the

surface geometry on which they are created, resulting, in this case, in a set of 𝑛 stripes without curvature.

If we had selected instead a non-straight surface, the stripes’ curvature would have been automatically

adapted to it as illustrated in Figure 7.21 with a set of horizontal stripes.

There are more Shape algorithms than those presented in this section, some of them being

illustrated in chapter 8. The next section elaborates on the functionalities available in the Transformation

group.

134

Figure 7.21. Three stripe-based patterns resulting from the algorithm 𝑠ℎ𝑎𝑝𝑒𝑠𝑡𝑟𝑖𝑝𝑒𝑠 and different surface shapes.

TRANSFORMATION

Like the Shape group, this group also provides algorithms for both discrete and continuous patterns,

which are organized into three main subgroups: affine transformations, rule-based transformations, and

continuous transformations. The next sections elaborate on the algorithms available in each subgroup

and how these can be combined with the other algorithms. They demonstrate that, despite containing

a finite set of Transformation algorithms, the framework provides a high level of design flexibility,

supporting the generation of a wide range of patterns resulting from the application of one or more

geometric transformations to the same Shape element.

AFFINE TRANSFORMATIONS

This group contains algorithms inspired on affine transformations, namely identity, scaling, rotation

shear, reflection, and translation. In general, these transformations map an affine space onto itself while

preserving collinearity and the size relations of its points, straight lines, planes, and sets of parallel line

segments. The angles between lines or distances between points can be changed, but the ratios of

distances between points lying on a straight line cannot. In architecture, there are several building

facades whose design results from different affine transformations (Figures 7.22-25).

135

Figure 7.22. Scaling examples: Louis Vuitton Store in Shenzhen, China (©Sérgio Gottsfritz pinterest); Quality Hotel

Friends by Karolina Keyzer + Wingårdhs, Solna, Sweden (©Tord-Rickard Söderström); Cube Tube by SAKO

Architects, Jinhua, China (©Misae HIROMATSU).

Figure 7.23. Rotation examples: Charles Street Multi Storey Car Park in Sheffield (©Adrian Welch); Nolan building

in Melbourne (©Tim Dickson); Copenhagen International School Nordhavn by C.F. Møller (©Adam Mørk).

Figure 7.24. Shear examples: Victoria Gate by ACME, UK (©Jack Hobhouse); 700 Bourke Street, Melbourbe

(©António Leitão); Ginza Place by Klein Dytham architecture + TAISEI DESIGN Planners Architects & Engineers,

Japan (©Nacasa & Partners).

136

Figure 7.25. Translation examples: Z53 Social Housing by Michan Architecture + Grupo Nodus, Mexico (©Rafael

Gamo); The Building C by Dark Arkitekter, Oslo (©Cavazos&Associates); Theodora House by ADEPT,

Copenhagen (©Rasmus-Hjortshoj).

The algorithms available in this group include:

• identity (𝑇𝑖𝑑), to keep the original shape unchanged.

• scaling (𝑇𝑠𝑐𝑎𝑙𝑒), to change distances between points according to a constant factor 𝑘,

compressing or enlarging shapes if 𝑘 < 1 or 𝑘 > 1, correspondingly.

• reflection (𝑇𝑚𝑖𝑟𝑟𝑜𝑟), to mirror shapes with respect to an axis or point.

• rotation (𝑇𝑟𝑜𝑡𝑎𝑡𝑒), to rotate shapes around an axis.

• shearing (𝑇𝑠ℎ𝑒𝑎𝑟), to distort shapes parallel to an axis or plane.

• translation (𝑇𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒), to move shapes according to a displacement vector.

All these algorithms receive as input the surface points (𝑝𝑡𝑠𝑠), a specific position on the surface (𝑝𝑡),

and, except for 𝑇𝑖𝑑, a factor controlling the transformation effect intensity (𝑘), being 0 and 1 the null

and maximum effects, correspondingly. The remaining arguments depend on the transformation to

apply.

The algorithm 𝑇𝑖𝑑 represents the non-transformation of a shape. To understand its functioning,

the mathematical notion of the identity function (𝑖𝑑) is introduced, which is a function that always returns

the value used as argument: 𝑖𝑑(𝑥) = 𝑥. Similarly, when receiving a set of geometric entities as input,

this algorithm returns the exact same entities with all their spatial relations and dimensions preserved.

Although it seems to have little applicability, this functionality is actually very useful to deal with more

complex combinations of algorithms, which will be further explained in the next section.

The algorithm 𝑇𝑠𝑐𝑎𝑙𝑒 scales a geometric entity according to (1) its position on the surface; (2) its

distance to one or more attractor points or curves, which can be algorithmically or manually described

137

in the design tool by using, for instance, the algorithms 𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑝𝑜𝑖𝑛𝑡𝑠 and 𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑐𝑢𝑟𝑣𝑒𝑠; (3) the

point-in-polygon problem67, where the set of surface areas can be described by using algorithms from

the Shape category or manually by using the algorithm 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝑎𝑟𝑒𝑎𝑠; and (4) random rule(s), among

others. For each case, 𝑇𝑠𝑐𝑎𝑙𝑒 receives the information needed to perform the transformation, which

might be, respectively:

1. the direction(s) of the effect to produce, causing the scaling factor to either increase or

decrease along them.

2. a set of attractors, which might be points, curves, etc., making the scaling factor vary

according to their relative position to each transformed shape.

3. a set of surface areas, the scaling factor changing depending on whether the shape is or not

contained within one of such areas.

4. random values or rules, making the scaling factor vary in a random way.

Mathematically, the framework represents this algorithm as 𝑇𝑠𝑐𝑎𝑙𝑒(𝑝𝑡𝑠𝑠, 𝑝𝑡, 𝑘, 𝑎𝑟𝑔𝑠 …), being 𝑎𝑟𝑔𝑠…

the supported optional arguments. The same logic applies to the remaining algorithms of this group.

To better understand the applicability of these algorithms, consider the example of Figure 7.26,

which results from the combination of the algorithms 𝑠ℎ𝑎𝑝𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑃𝑜𝑙𝑦𝑔𝑜𝑛, the one creating each

polygonal shape (in this case, a squared shape, i.e., 𝑛𝑠𝑖𝑑𝑒𝑠 = 4), and 𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠, the one arranging the

surface positions in a squared grid. In this composition, each set of four points resulting from

𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠(𝑝𝑡𝑠𝑠) is assigned to the algorithm 𝑠ℎ𝑎𝑝𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑃𝑜𝑙𝑦𝑔𝑜𝑛 by using broadcasting.

Figure 7.26. A pattern of squares distributed in a squared grid.

67 Testing if a given point in the plane is inside, outside, or on the boundary of a surface area.

138

Imagine we want to increase the polygons’ rotation in the 𝑢 direction as illustrated in Figure 7.27. We

combine the previous algorithms (𝑠ℎ𝑎𝑝𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑃𝑜𝑙𝑦𝑔𝑜𝑛 and 𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠) with 𝑇𝑟𝑜𝑡𝑎𝑡𝑒, which, in this case,

returns a factor that increases with the surface length. As we make the latter algorithm specifically affect

parameter 𝛼 of the algorithm 𝑠ℎ𝑎𝑝𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑃𝑜𝑙𝑦𝑔𝑜𝑛, the squares’ rotation angle increases in the 𝑢

dimension. This is illustrated in the function composition of Figure 7.27 where 𝑣𝑢⃗⃗⃗⃗ represents the direction

of the transformation effect.

Note that, in this composition, 𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠 and 𝑇𝑟𝑜𝑡𝑎𝑡𝑒 inform the two parameters 𝑝𝑡𝑠 and 𝛼 of

the algorithm 𝑠ℎ𝑎𝑝𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑃𝑜𝑙𝑦𝑔𝑜𝑛, respectively: the former provides the position of each polygon and

the latter changes their angle according to a factor. In turn, both algorithms are informed by the

algorithm 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 but with a small difference: while 𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠 takes all surface points at once, 𝑇𝑟𝑜𝑡𝑎𝑡𝑒

receives a surface point at a time, corresponding to the position of the element to rotate.

Figure 7.27. A pattern of squares distributed in a squared grid whose angle varies horizontally.

Following this logic, we can apply multiple transformations to the same pattern by combining more

Transformation algorithms in function compositions. As an example, we can add a random scale

variation to the previous rotation transformation, obtaining pattern A of Figure 7.28. For such, we select

the algorithms (1) 𝑇𝑠𝑐𝑎𝑙𝑒 to control the parameter 𝑟𝑜𝑢𝑡𝑒𝑟 of 𝑠ℎ𝑎𝑝𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑃𝑜𝑙𝑦𝑔𝑜𝑛, and (2) 𝑇𝑟𝑎𝑛𝑑𝑜𝑚 (see

section Ruled-based Transformations) to make such factor vary according to a random rule. In the

same way, we can continue applying more geometric transformations to the pattern and add, for

instance, a translation variation to randomly move the squares’ position as illustrated in Figure 7.28-B.

To that end, we combine the algorithms 𝑇𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 and 𝑇𝑟𝑎𝑛𝑑𝑜𝑚 with the previous ones, manipulating

the parameter 𝑝𝑡𝑠 of the algorithm 𝑠ℎ𝑎𝑝𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑃𝑜𝑙𝑦𝑔𝑜𝑛 in a random way.

139

Figure 7.28. A pattern of squares distributed in a squared grid, whose angle varies horizontally and whose radius

size (A) and center position (B) changes randomly.

Figure 7.29 presents some examples resulting from different combinations of Transformation and Shape

algorithms. In examples A and B, for instance, we combine the algorithms 𝑔𝑟𝑖𝑑𝑟ℎ𝑜𝑚𝑏𝑢𝑠, 𝑠ℎ𝑎𝑝𝑒𝑠𝑡𝑎𝑟, and

𝑇𝑠𝑐𝑎𝑙𝑒, obtaining a star-based pattern with decreasing radius sizes in the 𝑢 dimension, in the first case,

and random sizes, in the second. In either case, the algorithm 𝑇𝑠𝑐𝑎𝑙𝑒 manipulates two parameters of the

algorithm 𝑠ℎ𝑎𝑝𝑒𝑠𝑡𝑎𝑟 proportionally, namely 𝑟𝑐𝑜𝑛𝑣𝑒𝑥 and 𝑟𝑐𝑜𝑛𝑐𝑎𝑣𝑒, creating star polygons of varying sizes

but with the same size ratio between both radii. In example C, we use the same set of algorithms but,

this time, we keep the parameter 𝑟𝑐𝑜𝑛𝑣𝑒𝑥 fixed, making the algorithm 𝑇𝑠𝑐𝑎𝑙𝑒 manipulate the parameters

𝑟𝑐𝑜𝑛𝑐𝑎𝑣𝑒 and 𝑘𝑎𝑝𝑝𝑒𝑟𝑡𝑢𝑟𝑒 (aperture factor) of the algorithm 𝑠ℎ𝑎𝑝𝑒𝑠𝑡𝑎𝑟. In both cases, the scaling factor

varies within a range of random values that either increase along the 𝑢 dimension, in the former case,

or are fixed, in the latter case.

Regarding the remaining examples (from D to F), we combine the algorithm 𝑇𝑠𝑐𝑎𝑙𝑒 with other

Shape algorithms, namely 𝑠ℎ𝑎𝑝𝑒𝑟𝑜𝑠𝑒𝑡𝑡𝑒 (D), 𝑠ℎ𝑎𝑝𝑒𝑟ℎ𝑜𝑚𝑏𝑖𝑙𝑙𝑒 (E), and 𝑠ℎ𝑎𝑝𝑒𝑟ℎ𝑜𝑚𝑏𝑖𝑡𝑟𝑖ℎ𝑒𝑥𝑎𝑔𝑜𝑛𝑎𝑙 (F), and

Distribution algorithms, namely 𝑔𝑟𝑖𝑑𝑟ℎ𝑜𝑚𝑏𝑢𝑠, 𝑔𝑟𝑖𝑑𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠𝐻𝑒𝑥𝑎𝑔𝑜𝑛, and 𝑔𝑟𝑖𝑑ℎ𝑒𝑥𝑎𝑔𝑜𝑛𝑠, correspondingly.

In either case, the algorithm 𝑇𝑠𝑐𝑎𝑙𝑒 affects a size-related parameter of the shapes, making them

gradually increase in either the 𝑢 dimension (examples D and F) or 𝑣 dimension (example E).

140

Figure 7.29. Conceptual representation of the algorithm 𝑇𝑠𝑐𝑎𝑙𝑒 combined with different Distribution and Shape

algorithms: A to C combine 𝑔𝑟𝑖𝑑𝑟ℎ𝑜𝑚𝑏𝑢𝑠 and 𝑠ℎ𝑎𝑝𝑒𝑠𝑡𝑎𝑟; D uses 𝑔𝑟𝑖𝑑𝑟ℎ𝑜𝑚𝑏𝑢𝑠 and 𝑠ℎ𝑎𝑝𝑒𝑟𝑜𝑠𝑒𝑡𝑡𝑒; E applies

𝑔𝑟𝑖𝑑𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠𝐻𝑒𝑥𝑎𝑔𝑜𝑛 and 𝑠ℎ𝑎𝑝𝑒𝑟ℎ𝑜𝑚𝑏𝑖𝑙𝑙𝑒; and F combines 𝑔𝑟𝑖𝑑ℎ𝑒𝑥𝑎𝑔𝑜𝑛𝑠 and 𝑠ℎ𝑎𝑝𝑒𝑟ℎ𝑜𝑚𝑏𝑖𝑡𝑟𝑖ℎ𝑒𝑥𝑎𝑔𝑜𝑛𝑎𝑙.

RULE-BASED TRANSFORMATIONS

This group contains algorithms to transform shapes according to different geometric rules found in real

architectural examples (Figures 7.30-34), such as:

• Creating patterns combining multiple shapes – algorithm shape combination (𝑇𝑠ℎ𝑎𝑝𝑒𝑠).

• Applying different colors or materials to the shapes – algorithm color application (𝑇𝑐𝑜𝑙𝑜𝑟).

• Transforming shapes according to an image – algorithm pictorial effect (𝑇𝑝𝑖𝑐𝑡𝑜𝑟𝑖𝑎𝑙).

• Subdividing shapes according to one or more geometric rules – algorithm recursive

subdivision (𝑇𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒).

• Transforming the edges of a shape – algorithm edge deformation (𝑇𝑒𝑑𝑔𝑒).

• Adding randomness – algorithm randomness (𝑇𝑟𝑎𝑛𝑑𝑜𝑚).

141

Figure 7.30. Shape combination examples: D3 House by Pitsou Kedem Architects, Israel (©Amit Geron); Offices

Blaak 8 by GROUP A, Rotterdam (©Ossip van Duivenbode); Juvelen by Utopia Arkitekter AB (©Utopia).

Figure 7.31. Color application examples: Schuppen House by brandt+simon architekten, Berlin (©Michael Nast);

Martinet School by Mestura Arquitectes, Spain (©Pedro Pegenaute); ABC Museum, Illustration and Design

Center by Aranguren & Gallegos Architects, Spain (©Jesús Granada).

Figure 7.32. Picture-based examples: HELLO house by OOF! Architects, Melbourne (©Nic Granleese); Eskenazi

Hospital parking structure by Rob Ley Studio (©Serge Hoeltschi); Administrative Building Textilverband / Behet

Bondzio Lin Architekten, Germany (©Thomas Wrede).

142

Figure 7.33. Recursive subdivision examples: the Cube by Make Architects, UK; Federation Square by LAB

architecture studio, Melbourne (©António Leitão); Diamond building at the University of Sheffield by Twelve

Architects, UK (©Jack Hobhouse).

Figure 7.34. Edge deformation examples: Louis Vuitton's Tokyo store facade by Jun Aoki (©Daici Ano); The

Filigrane by D’HOUNDT+BAJART architectes&associés (©Maxime Delvaux); Butterfly Pavilion by 3deluxe, UAE

(©JoaquínBusch).

Compared to the previous group, these algorithms are mathematically more complex, requiring a

different algorithmic combination from what we have seen so far. Therefore, before proceeding with

their description, this section introduces an important mathematical concept for understanding their

future function composition, namely the matrix of functions (MF), i.e., a matrix containing different

functions. In practice, it allows us to apply more than one Shape or Transformation algorithm on the

same geometric pattern, while controlling their order of application. Mathematically, the framework

represents it as:

143

𝑀𝐹 = [
𝑓1 𝑓2
𝑔1 𝑔2

], where |
𝑓1 ∈ ℒ(𝑈,𝑈), 𝑓2 ∈ ℒ(𝑈, 𝑉),

𝑔1 ∈ ℒ(𝑉,𝑈), 𝑔2 ∈ ℒ(𝑉, 𝑉).

In general, MFs are useful to iterate along two-dimensional domains, which is the case of our surface-

related algorithms: both Geometry and Distribution algorithms produce two-dimensional matrices of

points (MP). To deal with possible size differences between matrices, the available rule-based algorithms

map the smallest size matrices along the largest size ones, iteratively applying the former to a submatrix

of the latter of the same size. This process is illustrated in Figure 7.35 with three MFs of different sizes

and whose colored squares represent different functions: when mapped along the MP below, the 2 × 2

matrix A affects 2 × 2 submatrices of the MP at a time, producing pattern 1; the same logic applies to

both examples B and C. Note that, the framework supports MFs of any size, including non-squared

matrices, row matrices, columns matrices, unit matrices, or even matrices covering the entire surface at

once68. Having this knowledge, we can now focus on these algorithms’ application.

Figure 7.35. Conceptual representation of three MFs (A-C) applied to the same MP (black dots): mapping

matrices A to C, whose sizes are 2 × 2, 2 × 3, and 3 × 3, on the same MP result in patterns 1 to 3, respectively.

In general, all rule-based algorithms receive three matrices: one containing the surface points (𝑝𝑡𝑠𝑠),

another with one or more algorithms to apply (𝑀𝑟𝑢𝑙𝑒𝑠), and a last one describing their order of

application (𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛):

68 A common scenario when creating pictorial effects where the size of the matrix often matches that of the picture.

144

𝑇𝑟𝑢𝑙𝑒𝐵𝑎𝑠𝑒𝑑(𝑝𝑡𝑠𝑠, 𝑀𝑟𝑢𝑙𝑒𝑠 ,𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

Note that these three matrices are mathematically different, the first one (𝑝𝑡𝑠𝑠) being a MP, the second

(𝑀𝑟𝑢𝑙𝑒𝑠) a MF, and the last one (𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛) an integer matrix69 (MI). The result is a new matrix with the

algorithms of 𝑀𝑟𝑢𝑙𝑒𝑠 organized according to the sequence set by 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛: its integers identify which

algorithm of 𝑀𝑟𝑢𝑙𝑒𝑠 should be applied at each position. Also note that this assignment of the integers

contained in one matrix to the indexes of the other is represented here by the symbol ∘.

As an example, consider the matrices 𝑀𝑟𝑢𝑙𝑒𝑠 and 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 illustrated in Figure 7.36: as the

integers of 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 (matrix 1) correspond to the indexes of the algorithms of 𝑀𝑟𝑢𝑙𝑒𝑠 (matrix 2), integer

1 therefore matches the algorithm 𝑓 and integer 2 the algorithm 𝑔, resulting in the matrix 3. As the

latter’s size often differs from that of 𝑝𝑡𝑠𝑠 (matrix 4), it is then resized to become a matrix of the same

size as 𝑝𝑡𝑠𝑠, containing the algorithms of 𝑀𝑟𝑢𝑙𝑒𝑠 arranged according to the pattern set by 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛

(matrix 5). Note that the framework supports 𝑀𝑟𝑢𝑙𝑒𝑠 containing from a single algorithm, creating the

same shape on each surface position, to the number matching the size of the matrix 𝑝𝑡𝑠𝑠, applying at

its extreme a different algorithm to each surface position.

Figure 7.36. Conceptual representation of the three input matrices 𝑝𝑡𝑠𝑠, 𝑀𝑟𝑢𝑙𝑒𝑠, and 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 and their

combination (right) and the resulting pattern (left).

To further illustrate their practical application, this section presents, in a step-by-step process, several

examples combining rule-based algorithms with those of the previous sections. Let us start with a simple

pattern made of several vertically and horizontally aligned squares (Figure 7.37-A). Imagine we want to

69 A matrix containing only integers, e.g., binary matrices, the identity matrix, the matrix of ones, etc.

145

replace some squares with circles as illustrated in the example B of Figure 7.37. We select the algorithm

𝑇𝑠ℎ𝑎𝑝𝑒𝑠 and we provide it with three matrices:

1. One containing the surface points (𝑝𝑡𝑠𝑠), which in this case is a squared grid of points

represented by the algorithm 𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠.

2. Another including the two shapes (squares and circles) composing the pattern (𝑀𝑠ℎ𝑎𝑝𝑒𝑠),

which correspond to the algorithms 𝑠ℎ𝑎𝑝𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑃𝑜𝑙𝑦𝑔𝑜𝑛 and 𝑠ℎ𝑎𝑝𝑒𝑐𝑖𝑟𝑐𝑙𝑒.

3. A last one describing their order of application (𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛), which corresponds to a MI where

integer 1 represents the algorithm 𝑠ℎ𝑎𝑝𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑃𝑜𝑙𝑦𝑔𝑜𝑛 and integer 2 the algorithm

𝑠ℎ𝑎𝑝𝑒𝑐𝑖𝑟𝑐𝑙𝑒.

𝑇𝑠ℎ𝑎𝑝𝑒𝑠

(

𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ)),

 [𝑠ℎ𝑎𝑝𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑠ℎ𝑎𝑝𝑒𝑐𝑖𝑟𝑐𝑙𝑒],

[

1 1
2 1
1 1
1 2

]

)

The result is a bigger matrix with the size of 𝑝𝑡𝑠𝑠 and containing the shapes in 𝑀𝑠ℎ𝑎𝑝𝑒𝑠, which are

illustrated bellow with ■ and ⏺, organized according to the instructions of 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛:

[

■ ■ ■ ■ ⋯
● ■ ● ■ ⋯
■ ■ ■ ■ ⋯
■ ● ■ ● ⋯
⋮ ⋮ ⋮ ⋮ ⋱]

To increase its complexity, we can now apply different geometric transformations to the algorithms of

𝑀𝑠ℎ𝑎𝑝𝑒𝑠 and obtain a pattern similar to that of Figure 7.37-C, if we combine the algorithms 𝑇𝑠𝑐𝑎𝑙𝑒 and

𝑇𝑟𝑎𝑛𝑑𝑜𝑚 with the algorithm 𝑠ℎ𝑎𝑝𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑃𝑜𝑙𝑦𝑔𝑜𝑛, obtaining a pattern made of randomly sized squares

but fixed sized circles; and to that of Figure 7.37-D, if we combine the previous algorithms with both

𝑠ℎ𝑎𝑝𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑃𝑜𝑙𝑦𝑔𝑜𝑛 and 𝑠ℎ𝑎𝑝𝑒𝑐𝑖𝑟𝑐𝑙𝑒, making the size of both shapes vary randomly.

This ability to keep some shapes unchanged, while transforming the others, is a good example

of the 𝑇𝑖𝑑 application. That is, when appearing in a MF containing different Transformation algorithms,

the shapes to which this algorithm is applied remain unchanged because it returns the exact same

shape: 𝑇𝑖𝑑(𝑠ℎ𝑎𝑝𝑒) = 𝑠ℎ𝑎𝑝𝑒. Figure 7.37-C is an example of that: while we combine the algorithm

𝑠ℎ𝑎𝑝𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑃𝑜𝑙𝑦𝑔𝑜𝑛 with both 𝑇𝑠𝑐𝑎𝑙𝑒 and 𝑇𝑟𝑎𝑛𝑑𝑜𝑚 to scale the squares in a random way, we combine

the algorithm 𝑠ℎ𝑎𝑝𝑒𝑐𝑖𝑟𝑐𝑙𝑒 with 𝑇𝑖𝑑 to keep the circles’ size unchanged.

146

Figure 7.37. Conceptual representation of the algorithm 𝑇𝑠ℎ𝑎𝑝𝑒𝑠: A. original pattern; B. replacement of some

squares by circles; C. application of a random scale variation to the squares; D. application of a random scale

variation to both squares and circles.

Besides differently combining various Shape algorithms, the algorithm 𝑇𝑠ℎ𝑎𝑝𝑒𝑠 also allows the creation

of voids instead of shapes or simply creating no shape. In both cases, it is the matrix 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 that

informs the algorithm 𝑇𝑠ℎ𝑎𝑝𝑒𝑠 about which option to execute, distinguishing shape subtraction from

shape creation with a negative integer and the absence of shapes with zeros. As an example, consider

Figure 7.38, where A is the pattern developed in the previous figure, and B and C are that same pattern

but with punctual squared holes rather than shapes, in the first case, and no shapes, in the second. To

obtain pattern B, we combine the previous 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 with one informing about the existence of holes at

every two diagonals, which the framework mathematically represents as:

[
+1 +1 −1
+1 −1 +1
−1 +1 +1

]

147

Figure 7.38. Conceptual representation of the algorithm 𝑇𝑠ℎ𝑎𝑝𝑒𝑠: original pattern (A) and the same pattern with

punctual voids/holes (black shapes) (B) and with both punctual voids/holes and absent elements (C).

The result of their combination is the following function composition where integer -1 means subtracting

the algorithm of index 1 in 𝑀𝑠ℎ𝑎𝑝𝑒𝑠, i.e., 𝑠ℎ𝑎𝑝𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑃𝑜𝑙𝑦𝑔𝑜𝑛, and integer -2 the algorithm of index 2,

namely 𝑠ℎ𝑎𝑝𝑒𝑐𝑖𝑟𝑐𝑙𝑒:

[
+1 +1 −1
+1 −1 +1
−1 +1 +1

] ∘ [

1 2
1 1
2 1
1 1

] ∘ [

𝑝11 𝑝12 ⋯ 𝑝1𝑚

𝑝21 𝑝22 ⋮
⋮ ⋱ ⋮

𝑝𝑛1 ⋯ ⋯ 𝑝𝑛𝑚

] →

[

−1 1 1 −1 ⋯
2 −1 2 1 ⋯
1 1 −1 1 ⋯

−1 2 1 −2 ⋯
⋮ ⋮ ⋮ ⋮ ⋱]

By providing the 𝑇𝑠ℎ𝑎𝑝𝑒𝑠 with the previous matrix, we obtain a bigger one with the shapes of 𝑀𝑠ℎ𝑎𝑝𝑒𝑠

organized according to 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 together with information about their creation or subtraction, which

are represented with ⏹/⬤ and □/○, respectively:

𝑇𝑠ℎ𝑎𝑝𝑒𝑠

(

𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ)),

 [𝑠ℎ𝑎𝑝𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑠ℎ𝑎𝑝𝑒𝑐𝑖𝑟𝑐𝑙𝑒],

[

−1 1 1 −1 ⋯
2 −1 2 1 ⋯
1 1 −1 1 ⋯

−1 2 1 −2 ⋯
⋮ ⋮ ⋮ ⋮ ⋱]

)

→

[

□ ■ ■ □ ⋯
● □ ● ■ ⋯
■ ■ □ ■ ⋯
□ ● ■ ○ ⋯
⋮ ⋮ ⋮ ⋮ ⋱]

To obtain example C, we provide the algorithm 𝑇𝑠ℎ𝑎𝑝𝑒𝑠 with a different 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 where 0 represents

the creation of no shape:

𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 =

[

+1 +1 −1 +1 +1 −1
0 −1 0 +1 0 +1

−1 +1 +1 −1 +1 +1
+1 0 −1 0 +1 0
+1 −1 +1 +1 −1 +1
0 +1 0 −1 0 +1]

148

As a result, nothing is created in the locations matching the zeros:

[

 ■ □ ⋯
● □ ● ■ ○ ⋯
■ □ ■ ⋯
□ ● ■ ○ ■ ⋯
 □ ■ ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱]

The same logic applies to the remaining rule-based algorithms, which are illustrated in the following set

of examples.

Imagine we want to apply different colors to the pattern A of Figure 7.38. We select the algorithm

𝑇𝑐𝑜𝑙𝑜𝑟 and we provide it with the same matrix 𝑝𝑡𝑠𝑠 plus two new matrices, one with the colors to apply

(𝑀𝑐𝑜𝑙𝑜𝑟𝑠) and another with their pattern of application (𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛):

𝑇𝑐𝑜𝑙𝑜𝑟(𝑝𝑡𝑠𝑠,𝑀𝑐𝑜𝑙𝑜𝑟𝑠 ,𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

Then, we combine this algorithm with 𝑇𝑠ℎ𝑎𝑝𝑒𝑠, obtaining a new matrix of the same size as 𝑝𝑡𝑠𝑠 merging

the information of the following matrices, where the first two are the inputs of 𝑇𝑠ℎ𝑎𝑝𝑒𝑠 and the latter

two the inputs of 𝑇𝑐𝑜𝑙𝑜𝑟𝑠:

𝑀𝑠ℎ𝑎𝑝𝑒𝑠 = [☐ ◯] 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = [
1 1 1 2
1 2 1 1

] 𝑀𝑐𝑜𝑙𝑜𝑟𝑠 = [■ ■] 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = [
1 1 2
1 2 1
2 1 1

]

Regarding the first two matrices, as integer 1 matches symbol ☐ and integer 2 the symbol ◯, the result

of their combination is:

𝑀𝑠ℎ𝑎𝑝𝑒𝑠 ∘ 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 → [
☐ ☐ ☐ ◯

☐ ◯ ☐ ☐
]

The same happens with the other two matrices, where integer 1 matches color lilac and integer 2 color

grey, the result of their composition being:

𝑀𝑐𝑜𝑙𝑜𝑟𝑠 ∘ 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 → [
■■■
■■■
■■■

]

By providing the algorithms 𝑇𝑠ℎ𝑎𝑝𝑒𝑠 and 𝑇𝑐𝑜𝑙𝑜𝑟𝑠 with these two matrices, respectively, while combining

them in a function composition, we obtain a larger matrix merging all the above information, whose

application is illustrated in Figure 7.39.

149

Figure 7.39. Conceptual representation of the algorithms 𝑇𝑠ℎ𝑎𝑝𝑒𝑠 and 𝑇𝑐𝑜𝑙𝑜𝑟𝑠 composition: the same pattern

before (A) and after applying different colors to its elements (B).

As another example, consider the creation of pictorial effects resulting from either strategically scaling,

moving, or rotating facade elements as illustrated in Figure 7.40: in the top-left example, for instance,

the bricks are simultaneously rotated and moved perpendicularly to the facade surface to create the

diamond shape weaving pattern; in both top-center and top-right examples, the bricks are strategically

rotated to produce, in the first case, a rhombus pattern and, in the second, a pattern resembling a

“basket filled with giant grapes”70; and in the bottom examples, the pictorial effect is obtained through

differently scaled perforations.

To produce such examples, we select the algorithm 𝑇𝑝𝑖𝑐𝑡𝑜𝑟𝑖𝑎𝑙 and provide it with the matrix 𝑝𝑡𝑠𝑠

containing the surface points, plus two new matrices, one with the transformation(s) to apply and the

other with the pictorial effect to create:

𝑇𝑝𝑖𝑐𝑡𝑜𝑟𝑖𝑎𝑙(𝑝𝑡𝑠𝑠, 𝑀𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠,𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

In practice, 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 contains the information about how the algorithm(s) of 𝑀𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 should

perform at each position (𝑝𝑡𝑠𝑠). As an example, if the matrix 𝑀𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 contains the algorithm

𝑇𝑟𝑜𝑡𝑎𝑡𝑒, the values of 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 will be different rotation angles. In case it contains the algorithm 𝑇𝑠𝑐𝑎𝑙𝑒,

the latter’s values will instead be different scaling factors. When executed, the algorithm 𝑇𝑝𝑖𝑐𝑡𝑜𝑟𝑖𝑎𝑙 maps

the transformation(s) available in 𝑀𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 along the surface’s shapes according to the factors

set in 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛.

70 https://www.archdaily.com/260612/winery-gantenbein-gramazio-kohler-bearth-deplazes-architekten (Retrieved on <July

12th 2022>).

https://www.archdaily.com/260612/winery-gantenbein-gramazio-kohler-bearth-deplazes-architekten

150

Figure 7.40. Pictorial facade patterns: House for Solidarity by Ellenamehl architects, France (©Hervé Ellena); APT.

no7 by Sstudiomm, Iran (©Sstudiomm); Winery Gantenbein by Gramazio & Kohler + Bearth & Deplazes

Architekten, Switzerland (©Gramazio & Kohler, Ralph Feiner); Tapestry Museum in Arraiolos by CVDB

arquitectos, Portugal (©Fernando Guerra | FG+SG); WG Sasbach by Amann|Burdenski|Munkel Architekten,

Germany (©Yohan Zerdoun); 3 MiamiCentral by AECOM, USA (©Poma Architectural Metals).

Imagine we want to create the top-right facade pattern of Figure 7.40. In addition to the surface points

(𝑝𝑡𝑠𝑠), we need to provide the algorithm 𝑇𝑝𝑖𝑐𝑡𝑜𝑟𝑖𝑎𝑙 with a row matrix containing the algorithm 𝑇𝑟𝑜𝑡𝑎𝑡𝑒

and another matrix containing the rotation angles of each surface position. As the latter values depend

on the selected image’s pixels, manually producing this matrix would require us to, first, assign a factor

to each RGB value and, second, identify the RGB values of each pixel. Considering that each image

typically has thousands of pixels, this would be a time-consuming and hardworking task.

To avoid this tiresome and time-consuming task, the framework provides the algorithm

𝑝𝑖𝑥𝑒𝑙𝑚𝑎𝑝𝑖𝑚𝑎𝑔𝑒 to automatically convert PNG or JPEG files into a matrix containing their RGB values.

This functionality takes as input an image (𝑖𝑚𝑎𝑔𝑒) and the surface points (𝑝𝑡𝑠𝑠) on which it will be

applied. It then collects the RGB values of the former’s pixels, storing them in a matrix whose size

151

matches that of the given surface: in case its domain is smaller than the picture size, the user can decide

whether to calculate the average value between adjacent pixels or not; otherwise, the algorithm

calculates new values that approximate the existing ones. When provided to the algorithm 𝑇𝑝𝑖𝑐𝑡𝑜𝑟𝑖𝑎𝑙,

the latter translates the received RGB values into factors by considering, among others, (1) the surface

dimensions, (2) the number of elements, (3) the size of the elements, and (4) the intensity of the pictorial

effect. As an example, when applying a 100x100 pixels picture to control the rotation angle of 50x40

bricks, the algorithm automatically adjusts the size of the former matrix to match the size of the latter.

Using this functionality, we can therefore use the selected picture as a direct input for the algorithm

𝑇𝑝𝑖𝑐𝑡𝑜𝑟𝑖𝑎𝑙 and easily and effortlessly obtain the desired pictorial effect.

Regarding the previous example, we could therefore describe it as

𝑇𝑝𝑖𝑐𝑡𝑜𝑟𝑖𝑎𝑙

(

𝑖𝑡𝑒𝑟𝑎𝑟ℎ𝑜𝑚𝑏𝑢𝑠(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ)),

[𝑇𝑟𝑜𝑡𝑎𝑡𝑒],

𝑝𝑖𝑥𝑒𝑙𝑚𝑎𝑝𝑖𝑚𝑎𝑔𝑒 (, 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ))

)

obtaining the pictorial pattern of Figure 7.41.

Figure 7.41. Pictorial effect using differently rotated standard bricks.

Using the same input image, we can now easily test other possibilities, such as producing the same

pictorial effect by using differently colored bricks (Figure 7.42-A), if we replace 𝑇𝑟𝑜𝑡𝑎𝑡𝑒 with 𝑇𝑐𝑜𝑙𝑜𝑢𝑟𝑠;

protruded bricks (Figure 7.42-B), if we use the algorithm 𝑇𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 instead; or sized bricks (Figure 7.42-

C), if we select the algorithm 𝑇𝑠𝑐𝑎𝑙𝑒.

152

Figure 7.42. The same pictorial facade design effect using different brick (A) colors, (B) protrusions, and (C) sizes.

Now consider the facade designs of Figure 7.33. To obtain such examples, we select the algorithm

𝑇𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒, which receives as input a matrix with the surface points (𝑝𝑡𝑠𝑠), another one with the finite

subdivision rule(s)71 to apply (𝑀𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒𝑅𝑢𝑙𝑒𝑠), and a last one with their order of application (𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛).

As this algorithm applies the rule(s) of 𝑀𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒𝑅𝑢𝑙𝑒𝑠 to each shape recursively, it must be informed

about the number of iterations to perform to prevent it from executing the same rule endlessly. For

such, it receives an additional argument, a matrix informing about the level of recursion to apply at

each surface position (𝑀𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛):

𝑇𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒(𝑝𝑡𝑠𝑠,𝑀𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒𝑅𝑢𝑙𝑒𝑠 , 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ,𝑀𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛)

Note that, in this algorithm, the first argument is a MP, the second is a MF, and the last ones are MIs

containing the indexes of the rules available in 𝑀𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒𝑅𝑢𝑙𝑒𝑠 and their recursion levels. In practice,

while the integers of 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 inform about the subdivision rule to apply at each position (𝑝𝑡𝑠𝑠), those

of 𝑀𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛 inform about the number of recursive steps to perform.

As an example, imagine we want to subdivide a triangular tiling [369] into increasingly smaller

triangles as illustrated in Figure 7.43. We select the algorithm (𝑇𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒) and provide it with a set of

71 Subdivision of a shape into recursively smaller shapes.

153

surface points (𝑝𝑡𝑠𝑠), which in this case are distributed in a triangular grid; the subdivision rule(s) to

apply (𝑀𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒𝑅𝑢𝑙𝑒𝑠), which in this case is a single algorithm; their pattern of application (𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛),

which in this case is a single integer; and finally their recursion level (𝑀𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛):

𝑇𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒(𝑝𝑡𝑠𝑠,𝑀𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒𝑅𝑢𝑙𝑒𝑠 , 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ,𝑀𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛)

Figure 7.43. An example of a finite subdivision rule: rule A applied twice (B), thrice (C) and four times (D).

In case we set, for instance, 𝑀𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛 = [0], no subdivision rule is applied, obtaining the top-left

example of Figure 7.44. If we instead use 𝑀𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛 = [1], the rule is applied once, originating the top-

right example of the same figure. Lastly, if we set 𝑀𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛 = [2] or 𝑀𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛 = [3], the rule is applied

twice or trice, respectively producing the bottom left and right examples.

Figure 7.44. The previous subdivision rule applied to a triangular grid with different levels of recursion.

154

Figure 7.45 illustrates the result of providing the algorithm 𝑇𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒 with the same subdivision rule and

different grid configurations, such as those produced with the Distribution algorithms 𝑔𝑟𝑖𝑑𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠𝑋𝑌

(example A), 𝑔𝑟𝑖𝑑𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠𝑌 (example B), and 𝑔𝑟𝑖𝑑𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠𝐻𝑒𝑥𝑎𝑔𝑜𝑛 (example C).

Figure 7.45. The same subdivision rule applied thrice to different grid configurations.

To add a certain level of randomness to these patterns, as it happens in some architectural examples,

the algorithm 𝑇𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒 was extended with a Boolean parameter (𝑟𝑎𝑛𝑑𝑜𝑚) that, when set as true, adds

some randomness to the rules’ level of recursion (𝑀𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛) and/or pattern of application (𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛).

In the former case, it allows setting the range of values between which the recursion level can vary. In

the latter case, it allows defining the ratio between the rules of 𝑀𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒𝑅𝑢𝑙𝑒𝑠. Both scenarios are

illustrated in Figure 7.46 with three examples using the same grid configuration: in the first row we apply

rule I with a level of recursion of one, two, and randomly varying between one and three; in the second

row, we use rule II with the same recursion levels; and in the last row, we randomly apply either rule I

or II in a fifty-fifty chance with the same levels of recursion.

Figures 7.47-48 illustrate further examples combining different finite subdivision rules and grid

configurations, with varying levels of recursion and randomness.

155

Figure 7.46. Top: the original tiling and the subdivision rules applied to it; bottom: the result of individually and

simultaneously applying rules I and II to the original tiling with different recursion levels.

156

Figure 7.47. Two examples of subdivision rules: creating a polygon inside another polygon according to a factor

(rule 1) and triangulating a polygon (rule 2). Examples A to C illustrate rule 1 applied to different grid

configurations and with random levels of recursion and factors. Examples D to F apply rule 2 to different grid

configurations with random levels of recursion.

157

Figure 7.48. Four examples of subdivision rules: connecting the polygon’s center to either its corners or edges

(rules 1 and 2) or creating a polygon inside another polygon according to a factor with its corners connecting

either the outer polygon’s corners or edges (rules 3 and 4). Examples A to D apply either rule 1, 2, or both with

random recursion levels to different grid configurations. Examples E to H apply either rule 3, 4, or both with

random recursion levels and factors to different grid configurations.

158

Lastly, this section illustrates the application of the algorithm 𝑇𝑒𝑑𝑔𝑒, which deforms the edges of a given

shape through bending or folding. Mathematically, the framework represents both deformation

movements with a vector function 𝑣, their amplitude and direction being the vector’s length and sign,

respectively (Figure 7.49-A).

Figure 7.49. Conceptual representation of the algorithm 𝑇𝑒𝑑𝑔𝑒: A. deformation movement sign; B. edge

subdomain factors 𝑡; C. deformation maximum point factors 𝑘.

Using this algorithm, it is possible to apply multiple deformations to the same edge with different

amplitudes and directions, as illustrated in Figure 7.49-B. To that end, we provide it with each edge’s

subdomains to which each deformation movement will be applied, which the framework mathematically

represents as different 𝑡 factors: in this example we divide the edge into two subdomains, from 𝑡1 to 𝑡2

and from 𝑡2 to 𝑡3, applying a different deformation to each one. Moreover, it is also possible to control

the deformation maximum point position through different 𝑘 factors: in Figure 7.49-C, for instance,

while the negative deformation is symmetric, because 𝑘1 = 0.5, the positive one is not, because 𝑘2 =

0.3. Lastly, the framework also allows controlling the deformation smoothness by setting the parameter

smooth as true when we want the edges bent, or as false when we want them folded.

In sum, this algorithm receives five matrices, one containing the surface points (𝑝𝑡𝑠𝑠); another

with the vector functions organized in sets {𝑣1, … , 𝑣𝑛} (𝑀𝑣𝑒𝑐𝑡𝑜𝑟𝑠); a third one with the 𝑡 factors organized

in sets {𝑡1, … , 𝑡𝑛} (𝑀𝑠𝑢𝑏𝑑𝑜𝑚𝑎𝑖𝑛); another one with the 𝑘 factors {𝑘1, … , 𝑘𝑛} (𝑀𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒); and a last one

with the latter three’s order of application (𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛); plus a Boolean parameter (𝑠𝑚𝑜𝑜𝑡ℎ) controlling

the type of deformation created:

𝑇𝑒𝑑𝑔𝑒(𝑝𝑡𝑠𝑠,𝑀𝑣𝑒𝑐𝑡𝑜𝑟𝑠 ,𝑀𝑠𝑢𝑏𝑑𝑜𝑚𝑎𝑖𝑛 ,𝑀𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 ,𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 , 𝑠𝑚𝑜𝑜𝑡ℎ)

In practice, for each surface position in 𝑝𝑡𝑠𝑠, 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 dictates the set of vector functions {𝑣1, … , 𝑣𝑛} to

apply, as well as their respective 𝑡 and 𝑘 factors. To make this process clearer, Figure 7.50 illustrates a

set of examples resulting from the application of 𝑇𝑒𝑑𝑔𝑒 to a regular grid.

159

Figure 7.50. The algorithm 𝑇𝑒𝑑𝑔𝑒 applied to a squared grid (example A) with a single-direction deflection

(example B) and a double deflection with different directions, 𝑡 factors, and amplitudes (examples C to F).

CONTINUOUS TRANSFORMATIONS

This group contains geometric transformations for continuous patterns inspired on real facade designs

(Figure 7.51). It includes algorithms such as bending, folding, twisting, scaling, and weaving, that, when

combined with the algorithm 𝑠ℎ𝑎𝑝𝑒𝑠𝑡𝑟𝑖𝑝𝑒, affect how each stripe-based element is generated by either

twisting, undulating, or even scaling it.

Figure 7.51. Continuous transformations examples: One Ocean, Thematic Pavilion EXPO 2012 by soma (©soma);

Liverpool Villahermosa Department Store by Iñaki Echeverria, UK (©Luis Gordoa); The Mantes-la-Jolie Water

Sports Centre by Agence Search, France (©Emile Dubuisson).

160

Comparing to the previous Transformation algorithms, these algorithms present a different

mathematical structure that requires a different combination strategy. The framework organizes them

into two groups, unidirectional and bidirectional transformations, the first one containing algorithms to

fold, bend, twist, and scale stripe-based elements, and the second to intertwine these elements in

different ways.

Let us start with the first group of algorithms. When combined with 𝑠ℎ𝑎𝑝𝑒𝑠𝑡𝑟𝑖𝑝𝑒, which can

receive one or more Transformation algorithms as optional arguments (𝑎𝑟𝑔𝑠…) (see section Shape),

these algorithms can control its (1) straightness, by either bending or folding it according to different

rules (𝑇𝑏𝑒𝑛𝑑 and 𝑇𝑓𝑜𝑙𝑑); (2) rotation, by twisting it in different ways (𝑇𝑡𝑤𝑖𝑠𝑡); and (3) width, by increasing

or decreasing its section size along its length (𝑇𝑤𝑖𝑑𝑡ℎ).

As a first example, consider the application of a wave movement to a set of stripes. We therefore

select the algorithm 𝑇𝑏𝑒𝑛𝑑, which receives (1) a row vector (𝑉𝑏𝑒𝑛𝑑) with the undulating movement(s) to

apply, which are represented as functions 𝑓, and (2) a column vector (𝑉𝑝𝑎𝑡𝑡𝑒𝑟𝑛) dictating their order of

application, which are represented as integers 𝑖:

𝑉𝑏𝑒𝑛𝑑 = [𝑓1, 𝑓2, … , 𝑓𝑛], 𝑓𝑖 ∈ ℝ → ℝ𝑛
𝑉𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = [

𝑖1
𝑖2
⋮
𝑖𝑛

] , 𝑖𝑗 ∈ ℕ

As in ruled-based transformations, integer 1 in 𝑉𝑝𝑎𝑡𝑡𝑒𝑟𝑛 represents the algorithm of index 1 in 𝑉𝑏𝑒𝑛𝑑 (𝑓1),

integer 2 the algorithm of index 2 (𝑓2), and so on. Therefore, if we combine the following vectors

𝑉𝑏𝑒𝑛𝑑 = [𝑓1, 𝑓2, 𝑓3] 𝑉𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = [

1
2
1
3

]

we obtain a stripe-based pattern made of alternated stripes resulting from three Transformation

algorithms, i.e., {𝑓1, 𝑓2, 𝑓1, 𝑓3, 𝑓1, 𝑓2, … }.

To simplify the use of this algorithm, the framework provides a set of predefined undulation

strategies that, given (1) the surface domain (𝑝𝑡𝑠𝑠), (2) the intensity of the transformation effect (𝑘), and

(3) a set of additional parameters depending on the movement to create (𝑎𝑟𝑔𝑠 …), produce stripes with

different undulations. As an example, consider Figure 7.52: while the stripes of pattern A result from

fixed amplitude, frequency, and phase values, those of patterns B and C result from gradually smaller

amplitude values along either the surface’s length, in the first case, or height, in the second.

161

Figure 7.52. Stripe-based patterns resulting from (A) fixed amplitude, frequency, and phase values; (B) decreasing

amplitude values along the surface length; and (C) increasing amplitudes along the surface height.

As another example, consider pattern A of Figure 7.53, which applies 𝑇𝑏𝑒𝑛𝑑 in an alternated way,

keeping the odd stripes unchanged while bending the even ones. To achieve this result, we used a

vector containing two algorithms, the no transformation (𝑇𝑖𝑑) and constant undulation (𝑓1) ones, and

another vector describing their alternate application:

𝑉𝑏𝑒𝑛𝑑 = [𝑇𝑖𝑑, 𝑓1] 𝑉𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = [
1
2
]

Figure 7.53. Application of the algorithm 𝑇𝑏𝑒𝑛𝑑 to a stripe-based pattern to (A) uniformly undulate the even

stripes; (B) increase the even stripes’ amplitude along the 𝑣 direction; (C) decrease the even stripes’ amplitude

along the 𝑢 direction; (D) undulate the odd stripes with an amplitude increasing in the 𝑢 direction.

As integer 1 matches the first algorithm (𝑇𝑖𝑑) and integer 2 the second (𝑓1), the odd stripes suffer no

transformation, whereas the even ones are bent in a constant way. Imagine we replace the constant

undulation amplitude (𝑓1) with an increasing one in the 𝑣 direction (𝑓2). We obtain pattern B. If we

162

instead replace it with a decreasing amplitude in the 𝑢 direction (𝑓3), we obtain pattern C. Lastly, if we

replace the first algorithm (𝑇𝑖𝑑) with an increasing amplitude in the 𝑢 direction, we produce pattern D.

The same logic applies to the remaining algorithms 𝑇𝑓𝑜𝑙𝑑, 𝑇𝑡𝑤𝑖𝑠𝑡, and 𝑇𝑤𝑖𝑑𝑡ℎ, which receive a row

vector with the folding (𝑉𝑓𝑜𝑙𝑑), twisting (𝑉𝑡𝑤𝑖𝑠𝑡), and scaling (𝑉𝑠𝑐𝑎𝑙𝑒) effects to apply, respectively, and a

column vector with their order of application (𝑉𝑝𝑎𝑡𝑡𝑒𝑟𝑛). Figure 7.54 illustrates their application on the

previous stripe-based pattern.

Figure 7.54. Stripe-based patterns resulting from the application of the algorithms 𝑇𝑓𝑜𝑙𝑑 (top), 𝑇𝑤𝑖𝑑𝑡ℎ (bottom left

ones) or 𝑇𝑡𝑤𝑖𝑠𝑡 (bottom right ones).

Regarding the bidirectional transformations group, it contains algorithms to create different weaving

patterns as illustrated in Figure 7.55. Also known as woven structures, these patterns are no more than

stripe-shaped elements strategically bent to not intersect each other [370]. This means that we can

benefit from the previous algorithm 𝑇𝑏𝑒𝑛𝑑 to interlace a set of perpendicular stripe-based elements

following different weaving strategies.

163

Figure 7.55. Weaving patterns examples: Casa AAG by Manuel Cerdá Pérez, Spain (©Joan Roig); Eemsmond

Building by Team 4 Architecten, Netherlands (©Holland Composites BV); Yong He Yuan residential buildings by

NEDELEC Architecture (©Florent Nedelec).

In a first approach, we could simply apply the algorithm 𝑇𝑏𝑒𝑛𝑑 to a set of 𝑛 vertical and 𝑚 horizontal

stripes in a coordinated way. However, this would require us to solve the intersection problems between

stripes for each design variation tested by, for instance, increasing the stripes’ frequency when changing

their number; varying both their phase and frequency values when changing the weaving strategy;

adjusting their amplitude, phase, and frequency values when changing the surface dimension and/or

curvature; and so on. As in architecture several design iterations are usually performed, this apparently

simple task would quickly become a time-consuming and tiresome process. To automate it, the

framework provides the algorithm 𝑇𝑤𝑒𝑎𝑣𝑒, which receives the surface points (𝑝𝑡𝑠𝑠), the number of

vertical and horizontal stripes (𝑢𝑠𝑡𝑟𝑖𝑝𝑒𝑠, 𝑣𝑠𝑡𝑟𝑖𝑝𝑒𝑠), the weaving amplitude (𝑎𝑚𝑝) and type (𝑀𝑤𝑒𝑎𝑣𝑒), the

stripes widths (𝑀𝑤𝑖𝑑𝑡ℎ𝑠) and thicknesses (𝑀𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠𝑒𝑠), and a set of optional arguments (𝑎𝑟𝑔𝑠…),

including a Boolean parameter (𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡) that makes the stripes straight when 𝑡𝑟𝑢𝑒 and undulated

when 𝑓𝑎𝑙𝑠𝑒 and a set of additional transformations controlling the stripes’ rotation and/or width:

𝑇𝑤𝑒𝑎𝑣𝑒(𝑝𝑡𝑠𝑠, 𝑢𝑠𝑡𝑟𝑖𝑝𝑒𝑠 , 𝑣𝑠𝑡𝑟𝑖𝑝𝑒𝑠, 𝑎𝑚𝑝,𝑀𝑤𝑒𝑎𝑣𝑒 ,𝑀𝑤𝑖𝑑𝑡ℎ𝑠 , 𝑀𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠𝑒𝑠 , 𝑎𝑟𝑔𝑠…)

Regarding their mathematical representation, the framework adopts a strategy inspired by that of

Grünbaum and Shephard [371] to represent fabrics, which uses a two colors 2D squared mesh to

represent different weaving types, where black means the stripe along the vertical direction passes over

the stripe in the horizontal direction and white the opposite (Figure 7.56).

164

Figure 7.56. On the left, a sketch of a fabric (left) and, on the right, its conceptual representation, the outlined

squared area corresponding to its simplest pattern unit [372].

To adapt this approach to the mathematical nature of the proposal, the 2D mesh graphical

representation is converted into a numerical one where black corresponds to integer 1 and white to

integer -1. This means the weaving type parameter (𝑀𝑤𝑒𝑎𝑣𝑒) is a MI where all elements are either 1 or -

1. Based on this information, the algorithm 𝑇𝑤𝑒𝑎𝑣𝑒 automatically applies different amplitude, frequency,

and phase values to each stripe, originating different weaving outcomes (Figure 7.57).

Figure 7.57. Weaving type graphical representation: A. the weaving type to apply (top) and its corresponding

two-color matrix (bottom); B. the resulting weaving pattern.

To facilitate the development of weaving facade patterns, the framework provides several predefined

weaving types that can be directly combined with the algorithm 𝑇𝑤𝑒𝑎𝑣𝑒. Figures 7.58-59 illustrate some

examples of their application.

165

Figure 7.58. Three weaving types – chess (A), double-chess (B), and triple-chess (C) – with the corresponding

representation matrices.

Figure 7.59. Twelve examples of predefined weaving types.

Lastly, this section illustrates the flexibility of 𝑇𝑤𝑒𝑎𝑣𝑒 in automatically adapting the selected weaving type

to different numbers of stripes (Figure 7.60), surface shapes (Figure 7.61), and geometric transformations

(Figure 7.62). Note that, in all examples, no additional effort was needed, for instance, to (1) adjust the

166

stripes’ bending movement and curvature, (2) guarantee their equidistance along the surface, and (3)

change their rotation angle or section size according to the rules set.

Figure 7.60. The weaving type on the left with different numbers of stripes.

Figure 7.61. The same weaving type applied to different surfaces.

167

Figure 7.62. The same weaving pattern with differently rotated stripes.

7.3.4. OPTIMIZATION

The previous sections showed how the available strategies allow to generate different facade design

solutions based on different geometry-related parameters. This section demonstrates how some of

these parameters can be manipulated according to different performance requirements. To that end,

the Optimization category contains algorithms to support the analysis and optimization of the facade

design solutions produced with the previous categories regarding different performance criteria. When

combined with the previous algorithms, these algorithms provide insight on the quality of the evaluated

solutions with respect to the selected metrics, while allowing their incremental refinement through

different optimization strategies.

Given the complexity and technicality of performance evaluation and optimization strategies, this

category provides algorithms that, instead of dealing directly with these processes, automate the

connection to the already existing specialized tools and libraries for that purpose, such as Robot,

Frame3DD, and Radiance, among others (see chapter 5). This approach avoids the wasteful replication

of the expertise of these tools.

By encapsulating relevant procedures of different analysis tools into simple and easy-to-use

algorithms, this category simplifies the use of different performance evaluation strategies. Additionally,

it also enables the integration of the framework’s predefined algorithms with those of other frameworks

to benefit from their analysis capabilities. This integration is important to ensure that the entire design

workflow, from design conception to performance evaluation, can be algorithmically described,

allowing architects to automate the execution of different analysis cycles, as well as the integration of

the analysis results in the design workflow.

In general, the algorithms available in this category are HOFs that receive the function

composition describing the facade design to analyze (𝑠ℎ𝑎𝑝𝑒𝑠) and a set of additional arguments

(𝑎𝑟𝑔𝑠 …) that depend on both the type of analysis to perform and the existing fitness requirements, as

168

well as the specificities of the analysis tool to use. Based on the received information, these algorithms

then establish the connection with the selected tool, automating the transfer of design data according

to the type of analysis to perform and the execution of the different analysis-related tasks involved in

it. The results can be graphically visualized in the analysis tool being used or they can be returned for

further processing and/or visualization in a different external tool by coupling the framework to a

modeling tool or visualization engine. After reflecting on the results and perceiving the quality of the

solution developed, the architect might change the design and re-evaluate the solution to check if

improvements were made.

 As an example, imagine we want to adjust two design variables of pattern A of Figure 7.63,

namely the size of the diagonals (𝑑𝑢 and 𝑑𝑣), towards the shading goal illustrated by example B. We

select the most suitable algorithm from this category, providing it with:

1. The algorithmic description of the design solution (𝑠ℎ𝑎𝑝𝑒𝑠), which, in this case, is a

composition of the algorithms 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡, 𝑔𝑟𝑖𝑑𝑟ℎ𝑜𝑚𝑏𝑢𝑠, and 𝑠ℎ𝑎𝑝𝑒𝑟ℎ𝑜𝑚𝑏𝑢𝑠 of the categories

Geometry, Distribution, and Pattern, respectively.

2. Information about the type of analysis to perform, performance metrics to evaluate, and the

analysis tool to use.

Figure 7.63. On the left, the design variables to adjust; on the right, conceptual representation of (A) the design

to evaluate and (B) the goal considered - the more intense the color, the greater the shading effect should be.

Based on the results, we then adjust the size-related parameters of pattern A, and then re-evaluate its

shading performance to check for improvements. Figure 7.64 illustrates the result of this process after

a set of iterations where only one (examples A and B) or both (example C) diagonals were changed.

169

Figure 7.64. The result of an iterative process of analyzing and adjusting the design, in this case the rhombuses’

size-related parameters (A) diagonal 𝑑𝑢; (B) diagonal 𝑑𝑣; or (C) both diagonals.

Through the use of algorithms that generate samples of possible solutions (such as those of the

Geometry, Distribution, and Pattern categories) and algorithms that simplify their evaluation according

to different criteria (such as those of this category), it becomes possible to incrementally improve the

design by repeating the design-evaluation-redesign cycle in an iterative way. This process can be

executed either manually, where the architect, on each iteration, evaluates the results and changes the

design accordingly, or automatically, by applying an optimization routine. To support the latter

scenario, the framework provides the means to couple the available geometry- and analysis-related

strategies with optimization algorithms. Having this ability, it becomes easier to benefit from the large

variety of optimization libraries currently available. Depending on the design parameters allowed to

change during this process, we obtain design solutions with either elements of different sizes, when

changing size-related parameters; positions, when altering translation-related values; or even shapes,

when changing transformation- or shape-related functions.

To better illustrate this ability, consider an example where the framework is coupled with an

optimization routine to improve both the structural performance and cost of a pyramidal truss-like

facade (Figure 7.65).

Figure 7.65. Front view of a truss-like facade: the black lines represent the pyramidal truss elements and the grey

lines the elements subdividing their faces.

170

To create the pyramidal truss structure, we select algorithms from the categories:

• Geometry, to produce a straight surface (𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡).

• Distribution, to create a rectangular grid configuration (𝑔𝑟𝑖𝑑𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒𝑠).

• Pattern, to create the pyramidal truss elements (𝑠ℎ𝑎𝑝𝑒𝑡𝑟𝑢𝑠𝑠 and 𝑠ℎ𝑎𝑝𝑒𝑝𝑦𝑟𝑎𝑚𝑖𝑑𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠).

By combining the first two algorithms, we obtain a set of surface positions arranged in a rectangular

grid and by mapping the last two algorithms onto it, we obtain a truss with a rectangular configuration

and pyramidal elements (Figure 7.66-A).

Figure 7.66. Pyramidal truss elements before (A) and after the application of a subdivision rule (B-E).

To create the subdivision effect illustrated in Figure 7.66 (on the right), we combine the transformation

algorithm 𝑇𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒 with those generating the pyramidal elements, and to obtain the random effect

illustrated in Figure 7.67, we add two more transformation algorithms to the previous composition,

namely 𝑇𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 and 𝑇𝑟𝑎𝑛𝑑𝑜𝑚, making the pyramids’ apices vary in a random way.

171

Figure 7.67. Left: ranges between which the pyramids’ apices can vary in both x and y directions (e.g., when 𝑘𝑥 =

𝑘𝑦 = 0.5 the apex is centered); Right: four pyramids resulting from different factors (A: 𝑘𝑥 = 0.5; 𝑘𝑦 = 0.3; B:

𝑘𝑥 = 𝑘𝑦 = 0.65; C: 𝑘𝑥 = 0.35; 𝑘𝑦 = 0.5; D: 𝑘𝑥 = 0.7; 𝑘𝑦 = 0.3).

Then, to analyze the solution in terms of structural performance, we select the algorithm 𝑒𝑣𝑎𝑙𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒

and the structural analysis tool (in this case Robot), obtaining the results (1) numerically, through tables

containing structure-related information such as the structure’s weight and displacement, and (2)

geometrically, by visualizing the 3D models of both the original and deflected structures in the modeling

tool in use. Figure 7.68 illustrates this process with eight design variations under the same load

conditions: truss A has all nodes fixed and pyramids with constant heights and panel subdivisions; truss

B is equal to A but without panel subdivisions; trusses C and D are similar to A but their pyramids’

heights randomly range from 1 to 4 times the original value, in the first case, or have a base with twice

the original size, in the second; truss E is equal to A but only with outer nodes fixed; finally, trusses F, G,

and H are equal to E but have smaller section bars, increased loads, and a different truss material,

respectively.

172

Figure 7.68. Original (green) and deflected structures (red) of eight design variations.

At this stage, the analysis of the results allows us to perceive that:

• Panel subdivisions sightly increase the truss deformation.

• Pyramids with a greater height increase the truss weight.

• Pyramids with larger bases reduce the truss weight but slightly increase its deformation.

• Less fixed nodes and/or thinner truss bars result in higher buckling.

• Different loads or truss bar materials directly affect the structure displacement.

To further improve the solution’s structural performance and cost, we can automate iterative structural

analyses by coupling the previous algorithms with an optimization routine. For instance, we can set as

optimization variables the pyramids’ height size, apices’ random variation, and bar material; as objective

functions the structure’s maximum displacement and cost; and as optimization algorithm the NSGA-II.

173

Figure 7.69 presents the results of 300 structural evaluations, where M0, M1, M2, and M3 correspond

to the different materials used and the lilac curve to the set of best solutions (i.e., the Pareto front).

Based on its analysis, we conclude that to significantly improve the truss structural performance, we

need to use more expensive materials, as is the case of solution I1. Nevertheless, we can also consider

other acceptable solutions that, despite having a slightly lower structural performance, are more cost

effective, as is the case of solutions I2 and I3.

Figure 7.69. Optimization of the truss’ structural performance and cost using four materials (M0,M1,M2,M3): on

top, the resulting Pareto front (lilac curve) and, at the bottom, three optimal designs (I1, I2, I3).

Despite the simplicity of the previous examples, they demonstrate the ability of the framework to

simplify the performance evaluation of a given design solution regarding different criteria. They also

demonstrate its ability to incorporate additional design tasks and to be coupled with external

frameworks and libraries specialized in different analysis and optimization routines and benefit from

their different strategies.

174

7.3.5. RATIONALIZATION

Rationalization is the geometric simplification of a design for manufacturing purposes. It can involve

the reduction of the number of elements composing a solution, the simplification of the manufacturing

method adopted, or the incorporation of additional design constraints, among others. To facilitate the

integration of these strategies into the facade design process, the Rationalization category provides

several algorithms that, when combined with those of the previous categories, allow:

1. Counting the number of different elements (or typologies) of a given solution.

2. Identifying their spatial locations and positions.

3. Controlling the maximum number of typologies allowed.

4. Simplifying the resulting solution for manufacturing purposes.

These are important aspects to consider not only to increase the designs’ feasibility, reducing both its

manufacturing costs and the time and resources needed for their production, but also to facilitate the

ensuing manufacturing stage and on-site assembly. Given the framework’s flexibility, it is possible to

combine these algorithms with design requirements other than construction viability, such as creative

intents and environmental performance, and search for solutions that are feasible and successful in

terms of aesthetic and performance as well.

To identify and count different facade elements (typologies), the framework provides the

algorithm 𝑡𝑎𝑙𝑙𝑦𝑖𝑛𝑔. Mathematically, this algorithm is a HOF that receives a function, or a composition

of functions, describing the facade design solution:

𝑡𝑎𝑙𝑙𝑦𝑖𝑛𝑔(𝑠ℎ𝑎𝑝𝑒𝑠)

It then returns the list of typologies composing the design solution with the corresponding quantities

and spatial locations in two formats: numerically, by presenting tables with the stored information, and

graphically, by displaying the results in the design tool in use by means of a color scheme (Figure 7.70).

While the former allows obtaining accurate and detailed information about the existing typologies, the

latter facilitates their interpretation by increasing the perception of their quantities and precise locations.

175

Figure 7.70. Graphical visualization of different typologies of bricks using a color scheme.

To control the maximum number of typologies allowed, this category provides the algorithm

𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑧𝑒. When executed, this algorithm iteratively reduces the geometric diversity of a given design

solution (𝑠ℎ𝑎𝑝𝑒𝑠) until reaching the range of typologies allowed (𝑛𝑡𝑦𝑝𝑜𝑙𝑜𝑔𝑖𝑒𝑠):

𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑧𝑒(𝑠ℎ𝑎𝑝𝑒𝑠, 𝑛𝑡𝑦𝑝𝑜𝑙𝑜𝑔𝑖𝑒𝑠)

Mathematically, this algorithm is also a HOF that, given the function or composition of functions

describing the design to rationalize, reduces the number of accepted values by one or more of the

latter’s variables, converting a continuous interval into a set of 𝑛 discrete values matching the number

of typologies allowed (𝑛𝑡𝑦𝑝𝑜𝑙𝑜𝑔𝑖𝑒𝑠). In practice, it collects the values that differ from element to element,

which can be, among others, size-related parameters, transformation factors, or even material

properties. Based on this information, it then produces a new set of discrete values varying within the

range of original values (i.e., the maximum and minimum values found in the previous stage) but

containing at most the maximum number of typologies set (𝑛𝑡𝑦𝑝𝑜𝑙𝑜𝑔𝑖𝑒𝑠). Finally, it replaces the

variable(s)’ original inputs with their closest match in the discretized interval, thus guaranteeing the final

solution has no more than 𝑛𝑡𝑦𝑝𝑜𝑙𝑜𝑔𝑖𝑒𝑠. Figure 7.71 illustrates this process.

176

Figure 7.71. Conceptual representation of the rationalization process: on the left, the original solution composed

of 9 different elements resulting from the set of factors below; on the right, the solution after the rationalization

process with 𝑛𝑡𝑦𝑝𝑜𝑙𝑜𝑔𝑖𝑒𝑠 = 3, the initial set of nine factors being reduced to three.

The simplicity and speed of this process allows the architect to perform several iterations with different

values and assess their impact on the solution’s visual expression and performance quality and thus

control the number of typologies produced more conscientiously, increasing the solution feasibility

without compromising the design intent.

Lastly, to divide a facade design into smaller segments by considering similarities between them,

the framework provides the algorithm 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒. Mathematically, this algorithm is also a HOF that

receives the function composition describing the facade design to discretize (𝑠ℎ𝑎𝑝𝑒𝑠) plus a level of

refinement (𝑙𝑟𝑒𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡), which controls the degree of discretization to apply. In practice, the higher this

value, the smoother the geometric transition between segments, and the greater the number of

different segments.

𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒(𝑠ℎ𝑎𝑝𝑒𝑠, 𝑙𝑟𝑒𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡)

To better understand the previous algorithms applicability, consider the pattern illustrated in Figure

7.72-E.

177

Figure 7.72. Pattern’s geometric implementation: creating a rhombus grid (A); mapping the pyramidal elements

(B); creating the pyramids’ openings (C) while controlling their aperture factor according to their distance to a

curve (D-E).

To produce the diamond-shaped elements, we select algorithms from the categories (1) Geometry, to

produce a planar surface (𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡); (2) Distribution, to organize the latter’s positions into a rhombus

grid (𝑔𝑟𝑖𝑑𝑟ℎ𝑜𝑚𝑏𝑢𝑠); and (3) Shape, to create the pyramidal elements (𝑠ℎ𝑎𝑝𝑒𝑝𝑦𝑟𝑎𝑚𝑖𝑑). To make the

apertures vary in the desired way, we select the algorithms (4) 𝑇𝑠𝑐𝑎𝑙𝑒, to control their size, (5)

𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑐𝑢𝑟𝑣𝑒, to calculate the aperture factor according to their distance to a curve, and (6)

𝑐𝑢𝑟𝑣𝑒𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎, to describe the curve.

Then, we select the algorithm 𝑡𝑎𝑙𝑙𝑦𝑖𝑛𝑔 to count the total number of elements and existing

typologies composing the final solution, obtaining a total of 6144 triangular panels from which 2424

are different. To make their production viable in terms of cost and resources, we select the algorithm

178

𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑧𝑒, gradually reducing the number of allowed typologies, while increasing their frequency of

use. The results of this process are illustrated in Table 7.1, where the first column (ID) identifies the

existing typologies, and the remaining ones present their frequency of use for different 𝑛𝑡𝑦𝑝𝑜𝑙𝑜𝑔𝑖𝑒𝑠.

Table 7.1. Typologies’ ID number (left column) and frequency of use (remaining columns) for different 𝑛𝑡𝑦𝑝𝑜𝑙𝑜𝑔𝑖𝑒𝑠:

∞, 100, 60, 20, 10, and 5 typologies allowed.

As, during this process, it is possible to visualize the results graphically (see Figure 7.73), it becomes

easier to compare the solutions in terms of cost and resources: the less colors they have, the less panel

typologies exist and the more affordable their manufacturing is. Similarly, it is also possible to visualize

the typologies’ frequency of use through a color code (Figure 7.74), where red tones represent the least

used panels and green tones the most used ones, and thus perceive almost immediately which are the

most and least cost-effective typologies, i.e., whose frequency of use either justifies or not its

manufacturing.

179

Figure 7.73. Representation of the existing typologies for different rationalization levels using a color scheme.

Figure 7.74. Visualization of the typologies’ frequency of use for different rationalization levels using a color

scheme.

180

7.3.6. FABRICATION

The previous sections addressed the framework’s algorithms to geometrically explore, analyze, and

rationalize different facade design solutions. This section focuses on those that materialize the

developed solutions through different manufacturing strategies and materials. Figure 7.75 presents a

set of examples where the different facade elements, whether in terms of shape, size, and material,

among others, require different manufacturing, assembly, and support strategies.

Figure 7.75. Cobogó House by studio mk27, Brazil (©nelson kon); Library of Birmingham by Mecanoo, UK

(©Christian Richters); Institute of Bio-Sustainability by Cláudio Vilarinho, Guimarães (©Joao Morgado); Mayfair

House by Squire and Partners, London (©Gareth Gardner); Leixões Cruise Terminal by Luís Pedro Silva

Arquitecto, Portugal (©Fernando Guerra | FG+SG); Junction 9 by MODA, Canada (©MHB Photo-graf).

In general, this last category contains algorithms to:

• Extend the solutions with construction details.

• Automatically produce technical drawings according to different manufacturing strategies.

• Increase the control over fabrication processes.

In practice, when receiving the shape(s) to detail and/or produce, these algorithms analyze their

geometric characteristics, adapting their algorithmic structure according to the selected (1) construction

detail(s), in the first case; and (2) manufacturing scenario, in the remaining ones.

181

The first set includes algorithms such as 𝑑𝑒𝑡𝑎𝑖𝑙𝑠𝑐𝑟𝑒𝑤ℎ𝑜𝑙𝑒, 𝑑𝑒𝑡𝑎𝑖𝑙𝑎𝑛𝑔𝑙𝑒𝑏𝑟𝑎𝑐𝑘𝑒𝑡, 𝑑𝑒𝑡𝑎𝑖𝑙𝑢𝑝𝑟𝑜𝑓𝑖𝑙𝑒, and

𝑑𝑒𝑡𝑎𝑖𝑙𝑝𝑎𝑛𝑒𝑙𝑒𝑛𝑑, that, given the shape to detail and a set of detail characteristics, automatically extends

it with, in this case, screw hole(s), angles bracket(s), u-profile(s), or panel ends, automatically fitting the

elements’ different sizes and shapes.

The second set includes algorithms such as 𝑓𝑎𝑏3𝐷𝑝𝑟𝑖𝑛𝑡, 𝑓𝑎𝑏𝑓𝑜𝑟𝑚𝑖𝑛𝑔, and 𝑓𝑎𝑏𝑙𝑎𝑠𝑒𝑟𝑐𝑢𝑡, among others.

When provided with the facade design to produce, they convert it into different representation schemes

(Figure 7.76): for 3D printing the original shapes are converted into a set of printing paths; for sectioning

strategies they are translated into a series of profiles whose superposition creates the desired surface

or structure; for forming techniques they are transformed into their 3D negative shapes for casting

purposes; and for cutting they are converted into two-dimensional planar curves delimiting the areas

to cut, engrave or fold. The result is a new algorithm representing the original solution (𝑠ℎ𝑎𝑝𝑒𝑠)

according to the specifications of the selected manufacturing strategy, from where all the fabrication

information and technical documentation needed can be automatically extracted.

Figure 7.76. Automatic production of technical documentation for different manufacturing techniques: 3D

printing, sectioning, laser cutting, and casting.

Finally, the last set includes algorithms to control material waste and costs of a given solution, enhance

the efficiency and accuracy of its manufacturing process, or label its different elements for assembly

purposes. When combined with the previous algorithms, they provide architects with a high-level

control over the solutions’ manufacturing and on-site assembly processes, increasing both the viability

and quality of their production: e.g., by planning the 3D printing paths in different ways we can obtain

various levels of element density, structural integrity, and surface quality, among others; by

182

manipulating the profiles’ thicknesses in sectioning strategies we can achieve different element

materialities and visual effects, among others; by optimizing the planning of the technical drawings

through nesting techniques we can reduce material usage and costs; by labelling the produced

elements we can more easily position and fit them in the final solution, etc.

To better illustrate these functionalities, we apply them to produce the technical documentation

needed to manufacture the set of customized bricks of Figure 7.77 (left) through different strategies

and materials. As a first example, imagine we select the 3D printing algorithm (𝑓𝑎𝑏3𝐷𝑝𝑟𝑖𝑛𝑡). We

automatically obtain a set of 2D paths for the printer head to pass creating the intended three-

dimensional shapes. When planning these paths, the algorithm considers different printing specificities,

such as the printer resolution (ℎ𝑒𝑎𝑑𝑚𝑚), the material layer thickness (𝑙𝑎𝑦𝑒𝑟𝑚𝑚), and the printing

strategy (𝑝𝑎𝑡ℎ𝑝𝑙𝑎𝑛), which in turn result in different numbers of printing paths, different distances

between them, and different trajectories. Accordingly, the resulting machining time, surface finishing,

geometric accuracy, and material used also change [373].

Figure 7.77. The original geometric model and the resulting printing paths (black lines) and support structures

(red lines).

Figure 7.77 illustrates the result of combining the algorithm 𝑓𝑎𝑏3𝐷𝑝𝑟𝑖𝑛𝑡 with those producing the

customized elements (𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑏𝑜𝑔𝑜), where ℎ𝑒𝑎𝑑𝑚𝑚 = 3, 𝑙𝑎𝑦𝑒𝑟𝑚𝑚 = 1.5 , and the planning type is

based on alternated paths by level. Regarding the resulting algorithmic representation, this conversion

of 3D elements (𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑏𝑜𝑔𝑜) into 2D paths (𝑠ℎ𝑎𝑝𝑒3𝐷𝑝𝑎𝑡ℎ𝑠) requires changing its algorithmic structure,

the originally used geometric solid primitives being replaced by paths operations, whose distribution

along the generated volume is controlled by the previous parameters:

𝑓𝑎𝑏3𝐷𝑝𝑟𝑖𝑛𝑡(𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑏𝑜𝑔𝑜) → 𝑠ℎ𝑎𝑝𝑒3𝐷𝑝𝑎𝑡ℎ𝑠

As another example, imagine we want to produce the same facade elements through casting strategies.

We select the forming algorithm (𝑓𝑎𝑏𝑓𝑜𝑟𝑚𝑖𝑛𝑔), automatically obtaining the 3D models of their negative

183

shapes (Figure 7.78), together with cost-related information, such as the number of different molds and

material quantities. As, in this case, both original (𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑏𝑜𝑔𝑜) and translated models (𝑠ℎ𝑎𝑝𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

correspond to 3D, albeit inverse, geometric shapes, the resulting algorithm is also composed by

geometric solid operations but organized in a slightly different way:

𝑓𝑎𝑏𝑓𝑜𝑟𝑚𝑖𝑛𝑔(𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑏𝑜𝑔𝑜) → 𝑠ℎ𝑎𝑝𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

Figure 7.78. The original geometric model (left) and the corresponding negative shapes (right).

Having the molds’ 3D models, the possibilities for their production are the same as for the brick

elements, allowing us to select, for instance, the algorithm 𝑓𝑎𝑏3𝐷𝑝𝑟𝑖𝑛𝑡 and plan the paths for their 3D

printing or the algorithm 𝑓𝑎𝑏𝑚𝑖𝑙𝑙𝑖𝑛𝑔 and set the instructions for their CNC milling:

𝑓𝑎𝑏3𝐷𝑝𝑟𝑖𝑛𝑡(𝑠ℎ𝑎𝑝𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) → 𝑠ℎ𝑎𝑝𝑒3𝐷𝑝𝑎𝑡ℎ𝑠

𝑓𝑎𝑏𝑚𝑖𝑙𝑙𝑖𝑛𝑔(𝑠ℎ𝑎𝑝𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) → 𝑠ℎ𝑎𝑝𝑒𝑚𝑖𝑙𝑙𝑖𝑛𝑔𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

Lastly, imagine we opt for manufacturing the previous elements through sectioning strategies. We select

the algorithm 𝑓𝑎𝑏𝑠𝑒𝑐𝑡𝑖𝑜𝑛, automatically obtaining a set of profiles, whose number is controlled by the

𝑛𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠 parameter and whose juxtaposition creates the intended shapes. When setting the previous

parameter (𝑛𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠), it must be considered that, first, it depends on the thickness of the selected

material and, second, its division by the element’s total thickness does not always result in a whole

184

number of sections. As, in this case, the material and element thicknesses are 10 mm and 90 mm,

correspondingly, we set 𝑛𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠 = 9, obtaining the set of profiles illustrated in Figure 7.79.

Figure 7.79. The bricks’ geometric (left) and sectioned models (right).

Given the profiles’ relatively small thickness (i.e., 10 mm), we can manufacture them, for instance, by

using laser cutting techniques, selecting the algorithm 𝑓𝑎𝑏𝑙𝑎𝑠𝑒𝑟𝑐𝑢𝑡 to produce the 2D drawings of the

areas to cut (Figure 7.80).

Regarding the resulting algorithmic representations, while the combination of 𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑏𝑜𝑔𝑜 with

𝑓𝑎𝑏𝑠𝑒𝑐𝑡𝑖𝑜𝑛 causes mostly organizational changes, as both the original and converted algorithms use

similar geometric solid primitives but in different ways, its combination with 𝑓𝑎𝑏𝑙𝑎𝑠𝑒𝑟𝑐𝑢𝑡 causes more

radical changes, as the previous primitives are replaced with line operations defining the elements’

contour shape:

𝑓𝑎𝑏𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑏𝑜𝑔𝑜) → {𝑠ℎ𝑎𝑝𝑒𝑙𝑎𝑦𝑒𝑟01,⋯ , 𝑠ℎ𝑎𝑝𝑒𝑙𝑎𝑦𝑒𝑟𝑛}

𝑓𝑎𝑏𝑙𝑎𝑠𝑒𝑟𝑐𝑢𝑡. (𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑏𝑜𝑔𝑜) → 𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑛𝑡𝑜𝑢𝑟

In sum, these algorithms reduce the time and effort spent with manufacturing-related tasks, while

increasing the accuracy and quality of the produced solutions. They therefore facilitate the exploration

of different construction possibilities, assessing their different advantages and disadvantages in terms

of production times, material waste, and overall costs, as well as their impact on the solutions’ aesthetic

quality, geometric precision, and physical properties.

185

Figure 7.80 The two-dimensional drawings of the sectioned model’s profiles for laser cutting.

7.4. CHAPTER OVERVIEW

This chapter presented the proposed framework for facade design, illustrating the structure and

application of its mathematical principles with a set of conceptual examples.

To avoid making this chapter too long and repetitive, only part of the available strategies in each

category were presented, their mathematical structure and combination serving as example for the

remaining ones. Given the hierarchy imposed by the procedural development of the proposal, which

first tackled geometry-related aspects of facade design (categories 1 to 3) and only then technical and

manufacturing-related ones (categories 4 to 6), its different categories do not have the same level of

development. Nevertheless, the goal of this thesis is to lay the foundations for solving the research

problem addressed, allowing the proposed framework to be extended with more principles and

eventually additional categories when the need arises.

The next chapter evaluates the proposed framework for facade design in a set of architectural

application studies, applying the formulated general principles in practice-based design scenarios.

187

187

Evaluation

189

PART IV | EVALUATION

8. FRAMEWORK APPLICATION

The previous chapter explained the framework’s categorical structure and mathematical principles,

illustrating its ability to reproduce an already existing corpus of facade designs. This chapter evaluates

the framework’s ability to apply the formulated principles to generate a novel corpus of facade

designs responding to different design practices and problems. To that end, the framework is

implemented on an Algorithmic Design (AD) tool, in this case Khepri [246], and applied in the

development of a set of architectural application studies involving different creative intents and

design problems. The choice for Khepri is due to its portability between different CAD, BIM, analysis,

and visualization tools, allowing the framework’s mathematical principles to benefit from the

compatibility ensured by this AD tool.

Figure 8.1 illustrates the AD workflow adopted in the application studies: it starts with the

design intent (arrow 1) and its implementation using the framework (arrow 2); it continues with the

design’s geometric exploration (arrow 3) and the testing of several variations considering both the

design intent and the established performance criteria (arrow 4); finally, when satisfactory results are

achieved, it assesses the solution’s feasibility (arrow 5) in terms of cost and material waste, while

preparing it for manufacturing. The result is a set of solutions balancing design intent, performance

criteria, and feasibility (design space) among which we can then choose the one that most pleased

us (arrow 6).

The next sections present five of the application studies developed using the framework.

Based on the results and feedback received from the application studies’ participants, the next

chapter assesses the applicability and usefulness of the proposed principles for real-world design

scenarios, identifying the strengths and weaknesses of the proposed mathematics-based

methodology and framework, as well as concepts and requirements that may be relevant to address

in the future.

190

Figure 8.1. AD workflow: design intent definition (1) and implementation using the framework (2); design

geometric exploration (3) and improvement regarding a certain fitness criterion (4); control of the design’s

manufacturing cost and waste (5) and selection of the final solution (6); A. iterative process of geometrically

adjusting the design to meet the fitness goal(s) set; B. iterative process of balancing design intent,

performance, and feasibility.

191

8.1. STUDY 1

This application study assesses the framework’s ability to generate facade design solutions based on

their structural performance from early stages. To that end, we adopt the methodology of Figure 8.2 in

the development of a glazed truss-like facade structure inspired by the Blue Crystal building (Figure

8.3).

Figure 8.2. (1) Implementation, generation, and visualization of the design intent; (2) design space navigation

based on iterative structural analyses; (3) design optimization by automating the search for better-performing

solutions; (4) organization and interpretation of the optimized design space; and (5) final decision.

Figure 8.3. Blue Crystal building in Anand, India, by KPA Deesign Studio and constructed in 2019 (©KPA).

192

8.1.1. ALGORITHMIC IMPLEMENTATION

The first stage entails the implementation of the design intent in a parametric algorithm describing both

its geometric principles and degrees of freedom, which include the irregularity of the truss

configuration, the amplitude of its three-dimensional effect, and the number of triangular panels. To

that end, we select the most suitable algorithms to (1) compute the truss’ irregular configuration; (2)

create its metal profiles and glazed panels; (3) produce different geometric patterns on the panels; and

(4) generate horizontal support bars. Figure 8.4 illustrates this process.

Figure 8.4. Design intent implementation: creating the truss bars (A), horizontal supports (B), and panels (C).

8.1.2. PERFORMANCE-BASED GEOMETRIC EXPLORATION

This stage focuses on the geometric exploration of the truss-like facade by considering both its design

intent and structural behavior. After defining its material properties and expected loads, we iteratively

explore the design space in a process guided by structural analyses and the visualization of the

corresponding 3D models. Rather than obtaining accurate results, the goal at this stage is to get a

general idea of how the design behaves to guide future design changes, not only identifying potential

structural inconsistencies early on, but also enhancing the perception of the impact of each design

variable on its visual expression and structural performance.

Figure 8.5 illustrates this process with an initial version of the design, whose structural analysis

reveals, first, errors in the developed truss, such as the existence of overlapping truss bars and the lack

of physical connections in some corner nodes (example A); then, after fixing the errors, the occurrence

of structural instabilities deriving from sets of coplanar nodes (example B); and lastly, the truss’ tendency

to deform asymmetrically due to the different length sizes of its horizontal supports (example C).

193

Figure 8.5. Iterative structural analysis using default truss bar materials and cross-sections and gravitational loads

automatically calculated from the truss self-weight: A. overlapping truss elements and insufficient physical

connections; B. node coplanarities; C. truss deformation tendency. At each iteration, the design was changed

according to the results and reanalyzed to check if all problems were solved.

When a higher level of detail is needed, we extend the algorithm with additional (1) geometric

constraints, namely the irregularity and amplitude of the crystal-like structure, (2) physical properties,

namely the type of supporting systems, materials, and sections, and (3) environmental variables, such

as wind loads, iteratively repeating the previous generation-analysis-regeneration cycle with different

combinations of values.

8.1.3. STRUCTURAL OPTIMIZATION

To make the search for the best solutions viable in terms of time and labor, we couple the previous

algorithm with an optimization step, automating the previous cycle towards the goals of (1) meeting

the design intent and (2) minimizing both the structure’s displacement and cost. Despite the latter being

a typical case of conflicting goals [374], since the stronger the structure is, the more expensive it

becomes, the aim at this stage is not to find the strongest structure but rather the least expensive one

that complies with safety standards [282].

Since it is not easy to describe creative intents in optimization processes nor to understand their

impact on the solutions’ performance beforehand, it is important to be able to compare the solutions

found both quantitatively, i.e., in terms of performance quality, and qualitatively, i.e., in terms of visual

expression. To that end, we also couple the framework to an external visualization library, allowing us

to organize the optimization results in interactive scatter plots where each point corresponds to a design

solution that can be visualized by clicking on it.

To perform the optimization, we set as decision variables (Figure 8.6) the truss’ (1) number of

panels, (2) grid irregularity, (3) inner, outer, and top amplitudes, and (4) bar material and section size;

and as optimization goals its (5) maximum displacement and (6) cost. We also set the range of

acceptable values for the latter two requirements to ensure that both the safety standards and budget

are met, not only avoiding solutions above those limits (Figure 6, green area), including Pareto-optimal

ones, but also considering as acceptable solutions other than those of the Pareto front that may be

194

preferable in terms of visual expression. Finally, we select as optimization algorithm the genetic

algorithm NSGAII [375], due to its popularity within the community and its suitability to deal with

architectural optimization problems [278, 376], particularly those addressing structural analysis [377].

Figure 8.6. Decision variables: A. number of triangular panels; B. grid irregularity; C. top amplitude; D. inner and

outer amplitudes.

By performing iterative optimization cycles considering both the previous analysis results and the impact

of each decision variable, the likelihood of finding better-performing solutions increases. This process

is illustrated in Figure 8.7, first, with different materials, each corresponding to an orange dot in the

graph, and then, with both different materials and section sizes, each combination (material and section)

corresponding to the yellow dots. In both cases, the remaining variables are kept fixed with the values

found in the previous iteration. The results, however, demonstrate that changing only these two

variables is not enough to meet the established goals since none of the obtained solutions match the

acceptable area (Figure 8.7 green area). After repeating this process by varying an additional parameter,

namely, the inner amplitude, we obtain the results illustrated by the red curve in Figure 8.8. As they

only result in slight improvements, we now also let the outer amplitude vary, and then the top

amplitude, the results corresponding to the yellow and orange curves of Figure 8.8, respectively.

195

Figure 8.7. Truss optimization with fixed horizontal supports and different truss bar materials and section sizes:

bottom left, the area of acceptable solutions identified in green, the horizontal and vertical dashed lines delimit

the maximum acceptable cost and displacement, respectively; top right, a close-up view of the acceptable area.

Figure 8.8. Truss optimization with the previous variables plus additional variables for different inner, outer, and

top amplitudes of the crystal-like effect.

Although solutions with acceptable values have already been found at this stage, we continue the

optimization process by varying, first, the number of panels (Figure 8.9, orange curve) and then, the

truss grid irregularity (Figure 8.9, yellow curve). Despite greatly improving the results in terms of cost

and strength, the design intent is however neglected, resulting in solutions with markedly vertical panels

that deviate from the desired crystal-like effect (Figure 8.9).

196

Figure 8.9. Truss optimization with the previous variables plus a different number of panels (orange) and grid

irregularities (yellow).

Given the proximity of the previous Pareto fronts, we now repeat the optimization process with a fixed

number of panels to see how it impacts the results. As is visible in Figure 8.10, despite the obtained

solutions (red curve) not being as good as the previous ones (orange and yellow curves) in terms of

cost and strength, they are nevertheless preferable in terms of design intent (Figure 8.10 bottom-right

image). We could now continue repeating this process with different combinations of values, e.g., with

a slightly lower number of panels or even additional pinned supports at the truss’ bottom nodes (Figure

8.11), searching for improved solutions in an incremental, flexible way, coordinating creative and

performance intents.

197

Figure 8.10. Comparison of the previous truss optimizations (orange and yellow) with one with the number of

panels fixed at its original value (red).

Figure 8.11. Truss optimizations with the number of panels fixed at its original value (orange), at a slightly value

(yellow), and at its original value plus the bottom supports pinned (red).

8.1.4. REVISION AND DECISION

To restrict the sample of possible solutions, this stage only considers the Pareto-optimal designs that

we find to have the best trade-offs between creative intents, cost, and strength. Given the framework’s

ability to benefit from the graphical and interactive capabilities of external visualization libraries, the

198

presentation of the optimization results becomes more intuitive and also more informative for the

decision-making process: by allowing us to more easily balance design intent and performance, i.e., by

simply pointing to the dots in the graph and quickly visualizing the corresponding 3D models (Figure

8.12), we can navigate the optimized design space more consciously and efficiently and select the

solution that we think best satisfies both.

Figure 8.12. Visualization of the solution selected in the interactive graph (top-left) in multiple tools: a point-and-

click in one of its dots triggers the generation of the corresponding 3D model in, for instance, Rhinoceros 3D

(top-right), POVRay (bottom-left), or Blender (bottom-right).

8.1.5. DISCUSSION

The previous results confirm that the framework supports design exploration processes responding to

both creative intents and performance criteria, facilitating, in this case:

• The algorithmic implementation of the design intent, allowing us to benefit from the ready-

to-use algorithms that can be easily combined.

• The incremental development of the resulting algorithm to include additional requirements,

allowing us to iteratively test design variations and immediately see the results.

• The structural analysis of different solutions, allowing us to understand their structural

integrity and the impact of each design variable on it.

199

• The optimization of the solutions in terms of structural performance, cost, and aesthetic

preferences, allowing us to balance both quantitative and qualitative design criteria.

By reducing the time and effort spent on the previous tasks, we were able to focus on creative processes

and add aesthetic-related constraints to the optimization process, such as the truss irregularity and the

number of panels, and more efficiently explore the trade-offs between design intent, structural

performance, and cost.

201

8.2. STUDY 2

The second application study results from a collaboration with the Portuguese design studio Atelier dos

Remédios. It involved the design of a set of facade shading panels for a private house in Ericeira that

addressed the complex daylight situation on both its South and West facades (Figure 8.13).

As the panels faced different sun exposures, their design could not present the same geometric

configuration nor the same opacity level. Additionally, to respond to the ever-changing daylight

conditions and achieve a balanced illumination and ambience comfort, the panels should allow users

to adapt their position accordingly. Lastly, to balance the initial design intent with both performance

and material requirements, the panels’ stereotomy should (1) be geometrically irregular, (2) soften the

rigidity of the almost completely opaque North facade, (3) adapt to the house’s different materials, and

(4) adjust its opacity level to the adjacent inside space function.

Figure 8.13. Private house conceptual plan and its daylight exposure.

8.2.1. GEOMETRIC EXPLORATION

During this stage, the framework allowed us to easily explore different panel configurations in

collaboration with the design studio in an iterative way, evolving the geometric pattern in a short period

202

of time. The result was a set of facade shading panels with a geometric pattern based on horizontal

wood bars of different alternating sizes (Figure 8.14-A).

To achieve the desired geometric irregularity, the design studio suggested changing both the

size and position of the smaller bars in a random way (Figures 8.14, examples B and C), while adding

some restrictions to its random behavior to allow controlling the panels’ shading levels. To that end, we

extended the panels’ algorithmic description with new variables, namely the maximum and minimum

sizes (𝐿𝑚𝑖𝑛 and 𝐿𝑚𝑎𝑥) and the size increment (∆𝐿) allowed for the smaller bars, as well as the maximum

distance (𝐿𝑚𝑎𝑥) between them (Figure 8.15).

Figure 8.14. Facade panels’ geometric evolution: alternating between one full-length bar and a set of equally

distanced smaller bars (A); and randomly controlling the smaller bars’ size (B) and position (C).

Figure 8.15. Additional geometric restrictions: A. maximum and minimum possible lengths and maximum distance

between smaller bars; B. smaller bars’ size increment.

The next step involved testing different design alternatives for the facade panels by simply assigning

different values to its variables. This allowed the team to iteratively visualize and evaluate a wide range

of solutions, while suggesting improvements to be implemented. The result was a collaborative design

process based on the generation-visualization-regeneration of different solutions that facilitated the

search for the best ones from an aesthetic point of view.

203

8.2.2. DAYLIGHT OPTIMIZATION

In addition to geometric complexity, the facade panels should also have a good daylight illumination

performance. To that end, we coupled the framework with an optimization routine, selecting as

performance metric the Spatial Useful Daylight Illuminance (sUDI) [378], which measures the daylight

provision and levels of solar exposure by using percentual scales. This allowed us to automate the

iterative application of design changes and the daylight analysis of the resulting solutions until an

acceptable design was achieved. Given the short time available for this project and the effort required

to manually perform each task individually, the use of the framework was critical, allowing us to generate

and evaluate a higher number of solutions within the same period.

To reduce the time taken by each performance evaluation, we only considered the inside spaces

containing facade shading panels. Then, to generate several panel alternatives, we used different

sampling techniques, starting with Monte Carlo Sampling [379] to test the optimization workflow, and

later transiting to Latin Hypercube Sampling (LHS) to reduce the number of candidates, while improving

the coverage and variance of the design space [380]. This allowed us to achieve a design solution with

100% of sUDI but also with a high daylight glare probability (DGP), which reduced the inside spaces’

comfort (Figure 8.16).

Figure 8.16. Six facade panel configurations with the corresponding sUDI levels.

We then repeated the optimization process with an additional cost constraint that limited the smaller

bars’ length to 5, 10, 15, 20, or 25 cm. We implemented this requirement by fixing the parameters 𝐿𝑚𝑖𝑛,

𝐿𝑚𝑎𝑥, and ∆𝐿 to 5, 25, and 5, respectively, and only allowing the distance between smaller bars (𝐷𝑚𝑎𝑥)

to vary, dictating the level of daylight entering the room.

204

The design studio suggested starting the optimization process by setting 𝐷𝑚𝑎𝑥 = 20 𝑐𝑚.

However, after generating 50 samples, the best sUDI value achieved was around 45%, which was far

from being optimal. We, therefore, repeated the process, this time using a 𝐷𝑚𝑎𝑥 = 100 𝑐𝑚 and

generating 200 samples, the results being presented in Figure 8.17. Unfortunately, despite achieving

solutions with higher sUDI values, most of them deviated from the initial design intent: for example, the

best solution reached, solution G, presented an almost non-existent or even null random effect.

Figure 8.17. The results of the second optimization process (200 samples): solutions A to G correspond to the set

of examples presented to the architects.

Given the high number of solutions obtained during this process, the next challenge was selecting one

that had a good performance and matched the initial design intent. To that end, we decided to assess

how much the design studio’s initial suggestions restricted their final choice, evaluating the ease with

which they accepted design options deviating from their design intent. We presented seven solutions

to them (from A to G), which were carefully selected to be as heterogeneous as possible, without

informing them about the variables’ values and corresponding sUDI values. The final sample contained

one solution fitting all the constraints proposed by the design studio (option A), 𝐷𝑚𝑎𝑥 = 20, 𝐿𝑚𝑖𝑛 = 5,

𝐿𝑚𝑎𝑥 = 25, and ∆𝐿 = 5; five solutions matching all constraints except the distance between bars

(options B to F); and one solution not considering most of the constraints (option G).

After analyzing the seven options, the design studio selected option C as the best solution, option

D as the second-best solution, and option A as the worst solution, which ironically was the solution that

matched all their requirements. Based on the results, we concluded that the solutions with more

balanced characteristics, i.e., with an acceptable sUDI value (higher than 80%) and close enough to the

design intent, were the preferred ones. In contrast, none of the solutions with the highest sUDI values

(options E, F, and G) was selected, meaning that these were not considered as good at responding to

205

the design intent as other solutions like options B and C. Nevertheless, they were also not considered

the worst solutions, demonstrating that even when the design deviates from the initial design intent, as

is the case of option G, it can still be considered as a possible solution. Regarding the worst solution,

option A, although it had the worst sUDI value, it matched all the geometric constraints, but the design

studio considered the panels’ geometric pattern as excessively dense.

As a result of this process, the team included an additional design constraint, the percentage of

non-opaque areas, which, in this case, should be at least 50%. After implementing this requirement, we

automatically repeated the entire optimization process, obtaining, in the end, a solution that successfully

met all the requirements set: responding to the design intent, having good daylight performance, only

using small bars with sizes {5,10,15,20,25}, having a maximum distance between small bars of 20 cm,

and presenting less than 50% of opaque area. Figure 8.18 shows the final solution in Revit.

Figure 8.18. A perspective of the house’s north and west facades.

8.2.3. DISCUSSION

This application study was important to evaluate the framework’s ability to adapt to different design

practices and tools, while enhancing both creative design and decision-making processes. In this case,

despite having no experience in AD, the design studio could still benefit from the framework’s flexibility

during the design exploration process, by constantly suggesting design changes and incrementally

refining its geometric configuration, as well as during the design development stage, by gradually

improving the design in terms of daylight and privacy levels. They could also benefit from its portability

and use more performant and flexible design tools during the design exploration phase (in this case

Rhinoceros 3D), to navigate a wider design space, and after deciding on a panel solution, effortlessly

206

generate its corresponding model in the desired tool (namely Revit), obtaining the detail and

construction information required. All these scenarios contributed to increase (1) the design space

explored and thus the variety of solutions considered, (2) the perception of the impact of the design

changes made on the results, and (3) the probability of achieving better solutions.

207

8.3. STUDY 3

The next application study is the result of a collaboration with two Portuguese design studios, Atelier

dos Remédios and FOR-A Architects, in the context of an architecture competition. The aim was to

create a facade design for a residential building in Lisbon that ensured different degrees of permeability

and, simultaneously, communicated the idea of randomness. Given the tight deadline for its

development (six days), and the fact that the design intent was not yet defined in terms of geometry

and materiality, using AD was the only solution that provided the design flexibility and generation speed

needed to quickly explore different designs. Unfortunately, the architects had no experience in AD and,

clearly, there was no time to teach them. The only possibility was for us, architects with AD skills, to

collaborate with them as specialized service providers.

Considering the short deadline and the advanced progress of the building design when we were

contacted, the design studios continued designing the still-missing parts of the project and we

developed the algorithmic facades in a three-stage process: two days to materialize the design intent

and explore different design alternatives, two days to improve the chosen solution regarding a set of

requirements, and two days to detail the solution for manufacturing. As the 3D model of the entire

project was done in Revit, which is a relatively slow tool, we decided to take advantage of the flexibility

and visualization speed of a CAD tool during the design exploration stages, and only, in the end, did

we transit to the BIM tool to produce the final model with the construction information.

Figure 8.19. A. street view of the intervention lot; B. conceptual analysis of the dwellings’ views and daylight; C.

physical model of the intervention (developed facades are in dark red).

208

8.3.1. GEOMETRIC EXPLORATION

This stage involved the geometric exploration of three facade designs for the residential building, which

had to consider three constraints: (1) the tight time limit of six days; (2) the need to incorporate a pre-

existence of the intervention lot in the final design (Figure 8.19-A); and (3) developing three design

solutions fitting the already defined building shape (Figure 8.19-C) and simultaneously meeting the

design intent and existing design requirements (Figure 8.19-B).

Regarding the design intent, the aim was to create a facade design with different levels of opacity

that varied according to the inside spaces’ function: i.e., more permeable when coinciding with the

dwellings’ terraces and less permeable or almost opaque when covering more private areas, such as

bedrooms and kitchens. To implement it, we used the framework and, since there were no constraints

regarding the design’s materiality at this stage, we addressed the concept of permeability-opacity

through different materials, e.g., bricks, tiles, and concrete.

Figure 8.20. Two of the design ideas initially explored (A and B) and the final solution (C).

Thanks to the use of AD, two days were sufficient for us to explore multiple design solutions of diverse

geometries and materials, which we then presented to the leading architects to receive feedback about

possible design improvements. The first suggestion was to merge some features of the two options

illustrated in Figure 8.20 (examples A and B), such as playing with the presence and absence of bricks

209

to create different permeability levels and using bricks of different sizes and positions to obtain the

desired geometric randomness. The second suggestion was to reduce the degree of variation of the

facade pattern to achieve higher control over its feasibility and final cost, decreasing the range of

possible protrusions and brick sizes to only two. The last suggestion was to limit the creation of facade

voids to the absence of small bricks and never of large bricks. The result was a design solution that met

the initial design intent but used more restricted design variables (example C): the placement of either

one large brick or four small bricks is randomly controlled, as also is the creation of both facade voids

and protrusions.

8.3.2. DESIGN IMPROVEMENT

The next stage addressed the generation of a more detailed facade model that matched the building’s

dimensions and had different permeability levels according to both privacy and daylight requirements.

Figure 8.21 illustrates some of the small changes applied to the design at this stage, which included (1)

the balance between the placement of a large brick and a set of four small bricks, (2) the percentage

of protruded bricks, and (3) the percentage of absent bricks.

Figure 8.21. Design variations explored: A - Percentage of four small bricks; B - Percentage of absent bricks; C -

Protrusions’ depth size; D - Percentage of protruded bricks.

8.3.3. DESIGN RATIONALIZATION

The last stage addressed the construction feasibility of the developed solution. As the budget for this

project was relatively small, and the availability of advanced manufacturing processes was limited, it was

important to adopt a simple manufacturing strategy that addressed the challenges resulting from the

210

facade design complexity. The bricks used in this project had a non-conventional size, which meant

they had to be prefabricated. To reduce the solution’s manufacturing cost, the design team had already

limited the number of brick sizes to only two. However, there were still other challenges to be solved,

namely the placement of the bricks.

The first limitation was the depth of the bricks, which was too narrow to obtain the necessary

stability when stacked. We overcame this situation by simply doubling the bricks’ depth. The second

limitation was the presence of small bricks immediately above a facade void, which meant these bricks

would have no support. We could have solved this by adding another constraint to the algorithm

dictating that only large bricks could be placed on top of facade voids. However, this would decrease

the visual intricacy of the pattern and so the design team adopted another strategy: fabricating the sets

of three and four small bricks as single units.

Figure 8.22. Possible rotations of a brick typology.

This solution, however, raised another challenge, namely the number of molds needed to produce the

range of possible configurations. As the fabrication cost of the molds usually exceeds that of the

elements produced [170], the design team searched for a strategy that minimized the number of

customized molds needed, while preserving the solution geometric complexity. The strategy found

relied on the fact that the back face of a set of small bricks had the inverted pattern of the front face,

meaning that we could horizontally and vertically rotate it to obtain different pattern configurations

(Figure 8.22) and thus reduce the number of produced molds to one-fourth of its original value. Figure

8.23 shows some of the brick configurations created together with their possible variations.

211

Figure 8.23. Four typologies (A to D) with the corresponding variations resulting from their rotation.

Another limitation was the placement of the different brick configurations on-site. This task promised

to be challenging given the geometric complexity of the facade pattern and the need to accurately

stack the bricks on-site to achieve the desired result. Fortunately, using the framework, we could easily

obtain the list of positions of the different brick typologies on the facade, while graphically displaying

them (Figure 8.24), facilitating their identification and accurate placement on site.

Figure 8.24. Graphical representation of the different brick typologies.

Regarding the bricks’ support on-site, the design team opted for a hybrid strategy using metal profiles,

to keep the verticality of the stacked bricks, and angle brackets, to fix them to the facade. Therefore,

we used the framework to further detail the bricks for construction and develop the fixing elements,

while balancing the solution’s structural stability, natural ventilation, and material waste. We extended

212

the algorithm producing each brick to create two small grooves on its top and bottom surfaces to then

place the metal profiles, allowing the placement of the bricks in two different positions: when the brick

is protruded, the below and above metal profiles fit the first grooves; otherwise, they fit the second

ones (Figure 8.25-A). Then, to give structural stability to the bricks’ supporting system, we placed two

metal profiles on all bricks, except the top and bottom row ones, and distributed angle brackets holding

alternating rows of bricks (Figure 8.25-B). As is visible in Figure 8.25-C, the resulting solution had the

advantage of creating a thermal isolation zone between the bricks’ structure and the building’s exterior

wall that improved both its natural ventilation and thermal performance.

Figure 8.25. Bricks supporting system: A. facade section illustrating the two possible stacking positions; B. angled

brackets and metal profiles fitting process; C. facade section showing the thermal isolation zone.

Lastly, we used the framework to estimate the solution’s cost and extract the list of quantities of the

facade elements (Figure 8.26). In the end, the design team was provided with the 3D model of all facade

elements, including the bricks’ molds, metal profiles, and angle brackets, and their corresponding

quantities, as well as the design’s construction information, such as the different elements’ positions,

material, and dimensions. This information would have allowed the design studios to proceed with the

fabrication and assembly of the different facade elements if they had won the competition. Moreover,

the adopted methodology would have also facilitated the response to the constraints imposed by both

manufacturing and construction processes, allowing the design to be constantly updated with further

details and information.

213

Figure 8.26. All brick types and frequency of use.

8.3.4. DISCUSSION

The application study demonstrated how the application of the framework in a non-AD context allowed

for a more flexible design process, resulting in a dynamic design workflow with direct participation and

feedback from both architects with and without AD skills. It is also noteworthy that the design resulting

from this collaboration is the kind of solution that is quite difficult to achieve manually, especially with

the existing time constraint.

It also evidenced the framework’s ability to enhance creative design processes and gradually

evolve a non-conventional, complex facade design responding to multiple requirements in a short

period of time (six days): as it allowed the design team to quickly visualize the impact of the suggestions

made, the search for solutions that met both creative intents and design constraints was easier.

Throughout this process, the design team could make design changes according to the needs of each

stage: e.g., applying more drastic changes at initial stages, which was critical to narrow the design space

being explored, and more subtle changes at later stages, which was important for the step-by-step

improvement process.

The application study also proved the framework’s capability to detail the solutions with

algorithmically developed construction elements, in this case, metal profiles and angle brackets, while

producing the corresponding construction information, including dimensions, locations, and material

quantities. Given its design complexity, these processes would not have been trivial if we had not used

AD, due to being often difficult to generate and get this type of information about nonstandard

elements.

214

Lastly, it also demonstrated how the framework’s principles can easily be applied to different

design tools, making it possible to alternate between tools depending on the momentary needs for

speed or detail and generate equivalent model with no additional effort. In this case, it allowed us to

benefit from the higher performance of AutoCAD at initial stages and only later transit to Revit to obtain

more detailed and heavyweight 3D model. Figures 8.27 presents the resulting AD workflow and Figure

8.28 two rendered views of the final model in Revit.

Figure 8.27 AD workflow: the architect presents the design idea to be implemented and, after visualizing the

results in the CAD tool, suggests design improvements; this process is repeated until the architect is satisfied with

the result, at which point we use the same algorithm to generate its BIM model with the correct BIM families and

information.

Figure 8.28. Rendered views of the final model. Left: view from the main street where two of the facades

developed are visible; Right: view of the building inside the courtyard with the third AD facade.

In short, we believe that a non-AD approach would not reach the same solution because, firstly, the

design exploration process would have been much more tiresome and time-consuming, leaving less

time available to test other design options; secondly, the obtained model would hardly allow the

iterative incorporation of design changes, hindering the design’s iterative improvement; and, lastly, the

transition between different design tools would be time consuming and laborious, making it difficult to

benefit from their different advantages in the different stages of the design process.

215

8.4. STUDY 4

This application study is the result of a collaboration with the Portuguese design studio Atelier dos

Remédios, which focused on the development of an alternative facade design solution for the

residential building of Study 3 made of geometrically different cobogó bricks [381]. The choice for this

type of hollow brick was due to its air circulation and light penetration control properties and the aim

to integrate some local culture in the facade design [382]. Nevertheless, the architects wanted to avoid

the use of standardized cobogó bricks and take advantage of their different geometric variations to

simultaneously improve the building’s daylight and ventilation performance and search for an

architectural identity. The result of this collaboration was a three-stage process where the framework

was used, first, to implement the design intent and explore variations of it; second, to improve the

design regarding different criteria; and lastly, rationalize and fabricate the resulting solution.

Figure 8.29. Top. the implemented geometric rule: when receiving a set of four points defining the brick’s vertices

(A), it creates the brick frame and calculates its center (B), while allowing for the selection between two possible

rules (C) and different opacity levels (D). Bottom. the range of possible solutions for a given set of four points (E).

8.4.1. DESIGN EXPLORATION

The first stage involved the implementation of the design intent and the geometric exploration of the

facade design. It started with the definition of a simple geometric rule that, by varying its parameters,

216

generated bricks of different shapes and opacity levels (Figure 8.29). Then, to create different facade

design solutions, we combined the previous algorithm with those producing different surface grids,

obtaining a set of cobogó bricks whose shape perfectly fitted the selected grids (Figure 8.30).

Figure 8.30. Four stacking options tested: the selected grid configuration (top-left grids) and the resulting bricks

perfectly adapted to it.

After deciding on the stacking option(s) to explore, we applied gradual geometric variations to the

facade design to better respond to the initial design intent, namely (1) using both geometric rules (Figure

8.29-C); (2) exploring different opacities (Figure 8.29-D); and (3) combining two types of stacking (Figure

8.30, A and D), as illustrated in Figure 8.31. At this stage, we could have generated several design

solutions to then present, all at once, to the design team. However, given the potentially large set of

solutions we could explore in a short amount of time, their presentation would be quite a challenging

task that would hinder the design decision-making process. Instead, we opted to gradually explore the

design space according to the guidance of the design team, i.e., by iteratively presenting design

solutions and using the feedback received to generate new ones until the team was satisfied with the

results. In the end, despite not visualizing the entire design space, it was the team that controlled the

navigation process through the set of potential solutions and chose the one that most pleased them.

217

Figure 8.31. Pattern evolution: On top, two stacking types using rule 1 and rule 2; on the bottom, different options

explored using both rules and the stacking type I (A), rule 1 and both stacking types (B), rule 2 and both stacking

types (C), both rules and the stacking type II (D), and all rules and stacking types (E).

8.4.2. DESIGN IMPROVEMENT

The following stage addressed the improvement of the application study regarding its privacy, daylight,

and natural ventilation levels. To that end, we extended the solution with a set of algorithms that allowed

us to control its geometric characteristics and meet the following criteria established by the design

team:

• The fraction and size of the voids should be smaller in both private and circulation areas,

suggesting a greater use of triangular bricks than squared ones in these areas.

• Living rooms, terraces, and courtyards should have clearer views and greater daylight

illumination, meaning that squared and less opaque bricks should prevail in these areas.

• There should be a preference for more opaque bricks in areas exposed to direct sunlight.

• There should be higher opacity levels in the central area of the facade than at its top or

base to promote natural ventilation.

These requirements, which were entirely based on the architects’ own experience, originated a set of

values matching the desired daylight, privacy, and natural ventilation levels for each interior space

function (Figure 8.32) that, when assigned to the design variables, created different ratios of squared

to triangular elements, as illustrated in Figure 8.33. By assigning this information to our algorithm, we

ensured the obtained solutions respected the existing requirements and thus were always within the

218

range of acceptable designs. This enabled the design team to conscientiously explore the design space

and apply iterative design changes that balanced the solutions’ performance with the design intent.

Figure 8.32. On the left: application study plan with red lines representing the facade intervention and colored

areas identifying each inside space opacity level; on the right: legend of the different opacity levels with the

corresponding daylight, privacy, and ventilation levels.

Figure 8.33. Left: the ratios of squared- to triangular-shaped elements of each interior space function; Right: each

type of brick privacy (lock symbol) and daylight illumination (sun symbol) levels, with type A corresponding to the

highest daylight and lowest privacy levels, types B and C to intermediate levels, and type D corresponding to the

opposite.

8.4.3. DESIGN RATIONALIZATION

At this stage, we addressed the solution’s feasibility in terms of cost, construction time, and resources,

selecting the framework’s algorithms to control the number and positioning of different facade

elements, while searching for the most appropriate manufacturing strategy.

219

As the initial aim was to manufacture ceramic cobogó elements whose unconventional shapes required

the production of customized molds, we used the framework’s algorithms to automatically obtain the

latter’s 3D models, together with their frequency of use and list of positions on the facade (Figure 8.34).

Based on this information, the design team evaluated the feasibility of using ceramic facade elements,

concluding that their manufacturing costs and waste would not be viable since they required the

production of eighteen customized molds (Figure 8.34 bottom) and their massiveness and fragility

would not suit the need for facade areas that acted as movable window shutters.

Figure 8.34. Part of the facade 3D model with each type of brick identified with a different color (top) and their

frequency of use (bottom).

Given the previous problems, the team selected a different material and fabrication strategy for the

facade elements, opting to produce lightweight wood panels that allowed to (1) maintain the geometric

diversity and plastic expression of the original solution, (2) eliminate the need for mold production; and

(3) obtain facade elements whose weight and robustness were adequate to act as movable window

shutters.

To obtain the desired geometric configuration and visual expression, the team decided to

manufacture the panels in layers that, when overlapped, originated different thicknesses and shapes

(Figure 8.35). During this process, we used the framework to, first, generate wood panels with different

geometric compositions and opacity levels and, then, automatically produce the information needed

220

for their manufacturing. Figures 8.36-7.37 present some of the prototypes developed during this stage

and two rendered views of the final solution, respectively.

Figure 8.35. A. the outer layers of a wood panel delineating the cobogó elements’ frame shape; B. its middle

layers outlining the cobogó elements’ interior elements; C. its inner layer producing both the existing voids and

opaque areas; D. the resulting wood panel after overlapping the previous layers in a A-B-C-B-A order (front and

side views).

8.4.4. DISCUSSION

This application study demonstrated the ability of the framework to support collaborative design

processes merging a team of architects with AD skills and a traditional design studio: while the former

applied the framework throughout the project, first to geometrically develop the facade elements and

then to manufacture them, the latter were responsible for guiding the entire process, proving its

adaptability to multiple design scenarios, while also highlighting the growing need of design teams to

integrate architects with different backgrounds. It also assessed the framework’s ability to (1) convert

conceptual design intents into mathematical principles, (2) generate wide design spaces resulting from

the same principles, and (3) balance creative intents and functional requirements.

Moreover, by comparing the AD workflow with a non-AD one, we also concluded that it:

• Made it easier to achieve higher levels of design complexity, due to integrating different

types of information and constraints in a single workflow.

• Augmented the control over the geometric variations tested, due to providing constant

feedback on their success.

• Supported the generation of a wider range of cobogó elements, due to requiring less time

and effort to explore the design space and facilitating the application of small-to-large

design changes.

• Increased the likelihood of achieving better-performing solutions, due to guiding the

design exploration process towards the existing requirements.

• Facilitated the balance between the solutions’ visual composition, performance, and

feasibility, due to providing information about their associated costs and resources.

221

• Smoothed the transition between design exploration and fabrication stages, due to

automating the extraction of manufacturing and construction information.

Figure 8.36. Prototypes with different opacities: on top, four typologies with decreasing opacity levels (A to D); at

the bottom, three pictures of the produced prototypes.

Figure 8.37. Two rendered views of the final facade design in Revit.

222

In sum, the important lessons drawn from this application study are that the design exploration stage

benefits from AD when the design (1) can be geometrically parameterized, making it possible to explore

a wider range of solutions; (2) includes both aesthetic and performance requirements, as the initial

investment required is recovered in the iterative evaluation and balancing of the different requirements;

and (3) is geometrically complex and/or its manufacture is likely to benefit from rationalization

processes, allowing the design feasibility to be increased while maintaining its design identity.

223

8.5. STUDY 5

The last application study demonstrates the ability of the framework to support facade design processes

considering multiple construction schemes and their impact on the solutions’ visual expression, while

facilitating the solutions’ manufacturing through different fabrication strategies. This application study

results from an attempt to collaborate with the manufacturing industry in order to produce a full-scale

model of an unconventional facade shading panel, whose different element shapes, construction

details, and surface finishings originated different outcomes and technical documentation. The aim was

to understand the challenges and limitations arising from this collaboration.

8.5.1. DESIGN EXPLORATION

The first stage entailed the implementation of (1) the design intent – creating a nonstandard facade

design with an irregular triangular configuration that could produce a dynamic three-dimensional visual

effect; and (2) the existing performance requirements – responding to different functional, privacy, and

daylight needs.

Figure 8.38. Design evolution: creation of squared-based pyramidal elements with (A) equal and (B) random

heights, followed by the (C) random deformation of their bases and (D) their distribution on a convex surface

together with their heights varying in both directions.

To address the first requirements, we developed a solution based on quadrangular pyramids (Figure

8.38-A), due to their lateral faces creating the desired triangular configuration and their volumetry

producing the intended three-dimensional effect. To obtain the desired geometric irregularity and

randomness, we made both their height and base shape vary according to different random factors

(Figure 8.38, B-C). Finally, to achieve the intended three-dimensional effect, we increased the surface

convexity on which these elements were distributed, while making their height vary in both inside and

outside directions (Figure 8.38-D).

224

To satisfy the remaining requirements, we decided to create holes on the pyramids’ triangular

faces to obtain different levels of permeability (Figure 8.39-A), while randomly controlling their size to

meet the desired irregularity (Figure 8.39-B). However, given the specific functional, privacy, and

shading requirements of each facade area, it was difficult to ensure the different levels of permeability

needed were achieved by simply using a randomly varied factor. Therefore, we increased control over

the random factor, thus facilitating the manipulation of the holes’ size according to the existing

requirements (Figure 8.39-C).

Figure 8.39. Performance-related design variables: obtaining different permeability levels through the creation of

panel holes with (A) fixed, (B) random, and (C) gradually changing sizes.

By iteratively assigning different values to the design’s parameters, we could easily and quickly test

multiple design variations until it successfully balanced the design intent and the existing requirements.

Figure 8.40 illustrates this process with four design variations resulting from the same algorithmic

description but responding to different functional needs: Example A, for instance, is an attempt to

smooth the visual effect of Figure 8.39-C; Example B further accentuates the previous effect by making

the holes’ size gradually decrease also in the horizontal direction; Example C explores the creation of

multiple radial permeable areas; and Example D creates a central permeable area.

8.5.2. MANUFACTURING-RELATED INFORMATION

After the team decided on a solution (Figure 8.40-A) and its material (metal), we addressed its feasibility

and preparation for fabrication. To facilitate its manufacturing and assembly on-site, we first focused

on discretizing the resulting facade tiling without neglecting its structural stability. Considering its

geometric irregularity, we decided to fabricate the triangular panels individually, using the framework

to extend them with folded ends that ensured their subsequent connection and fixation into a larger

225

sound structure. Given their algorithmic nature, the construction extensions were automatically adapted

to the panels’ ever-changing geometry, while their shape, width, and thicknesses could also be easily

and almost instantaneously manipulated by us (Figure 8.41).

Figure 8.40. Design iterations resulting from different apertures factors.

Figure 8.41. Construction details: on the left, two panel configurations and, on the right, their extension with

folded ends of varying sizes and shapes.

To obtain smaller, self-supporting parts that could be easily transported and assembled on-site, we

then used the framework to divide the solution into three facade modules of 3x3 meters, each

composed of 36 quad-based pyramids (or 144 triangular panels) of different sizes and shapes (Figure

226

8.42-A) and create an outer metal frame grouping them (Figure 8.42-B). Besides enhancing their

structural stability, this solution also enabled (1) the subsequent assembly of the different 144 panels at

the factory, which was critical for achieving higher levels of production quality and accuracy, and (2) the

use of identical linear elements joining the panels and punctual fixing points attaching them to the

building structure. It, however, slightly reduced the geometric irregularity of the original solution due

to forcing straight alignments to exist at every 3 meters. Nevertheless, considering the resulting

manufacturing and construction gains, the team considered this to be acceptable.

Figure 8.42. The division of the solution into equally sized parts (A) and the creation of an outer frame increasing

their structural stability and facilitating their fixation to the building structure (B).

8.5.3. DESIGN PROTOTYPING

Before proceeding with the manufacturing of the final solution, it was important to first test its feasibility

on a smaller scale. To that end, the following stage encompassed the technical documentation and

prototyping of a single facade module.

227

Considering both its geometric characteristics and materiality, we selected laser cutting as the

manufacturing strategy. Then, we used the framework’s fabrication algorithms to:

• Produce the technical drawings required by this strategy, obtaining a set of 144 scaled

drawings with the panels’ unfolded plans and with different line types identifying the edges

to cut or fold (Figure 8.43).

• Identify the different panels according to their installation sequence (Figure 8.44-A),

simplifying their challenging and time-consuming assembly process, while minimizing the

occurrence of potential errors, we used the existing algorithms.

• Reduce the material waste resulting from their manufacturing, distributing the panels’

unfolded representations in the best way by minimizing the gaps between them (Figure

8.44-B).

Figure 8.43. Pyramidal element 3D model (left) and corresponding unfolded technical drawings (right).

Figure 8.44. A. Triangular panel labelling; B. Nesting of the triangular panels’ unfolded drawings.

228

Finally, to produce the 144 scaled panels, we send the resulting drawings to the laser cutter, which we

then fold and assemble according to the labelling instructions (Figure 8.45).

Figure 8.45. Facade panel scaled prototype: outside (left) and inside (right) views.

8.5.4. AESTHETICAL CONSIDERATION

Producing the prototype was important to improve our perception of the solution’s outcome, allowing

us to realize that, although it satisfied the design intent from an outside perspective, the same did not

happen from an inside perspective. This happened because, first, the fluidity of the triangular tiling was

broken by the panels’ folds and, second, while all the other facade elements had irregular geometric

characteristics, these elements did not, thus deviating from the design intent (Figure 8.46-A). Given the

flexibility of our proposal, we could quickly and easily test other construction schemes for our solution,

while assessing their aesthetic impact. During this process, we could also effortlessly produce the

technical documentation needed to prototype other design alternatives.

Since connection elements like these were necessary, we focused on breaking their regularity by

dynamically varying their widths, making them either directly or inversely proportional to the panels’

opening size (Figure 8.46, examples B-C), while testing different shapes for them, such as rectangular

(Figure 8.47-A) or trapezoidal (Figure 8.47-B). We also applied more drastic changes and either

produced each pyramidal element as a single foldable panel, whose inner connections were hidden by

U-profiles (Figure 8.47-C), or converted the originally two-dimensional panels into three-dimensional

elements, whose inner volume adapted to both their thicknesses and opening sizes (Figure 8.47-D).

229

Figure 8.46. Prototype interior view: panels with folded ends with (A) fixed sizes or with their size (B) inversely

proportional or (C) directly proportional to the panels’ hole.

After deciding on the best solution, the team could proceed to the next stage and, first, produce another

prototype to confirm its viability and then, manufacture the final solution. As, during this process, the

design’s technical documentation was constantly regenerated to accommodate the design changes

made and the specificities of the selected manufacturing strategy, not only was it always up to date and

accurate, but also the time and effort spent on its production was largely reduced. Lastly, in case we

needed to complement the resulting drawings with additional context-specific information and details,

such as screw holes, we could select the available manufacturing-related functionalities for that purpose

or even combine the framework with external AD libraries when necessary.

Figure 8.47. Algorithmic exploration of different construction schemes: A. triangular panels with rectangular folds;

B. triangular panels with trapezoidal folds; C. pyramidal folded panels with U-profiles hiding their connections; D.

three-dimensional triangular panels. On the left, their close-up view and, on the right, the resulting prototype

interior view.

230

8.5.5. DISCUSSION

In a first stage, the framework facilitated the implementation of the design intent, making it easier to

apply iterative design changes and integrate different design constraints and requirements, such as the

desired geometric irregularity and the different shading and privacy needs, while reducing the time and

effort spent with the programming task.

By constantly receiving immediate feedback, the process evolved in a conscious and informed

way, increasing our perception of the results and the impact of our changes on them. This therefore

allowed satisfactory results to be achieved more quickly, enabling us to spend more time and effort on

creative tasks and on the exploration of a wider design space encompassing solutions beyond those

initially considered. This also facilitated the balance between the design intent and other existing

requirements, such as privacy, shading, and feasibility.

Regarding more advanced stages, the framework reduced the time and effort needed to

produce the design’s construction details, automatically generating panels with folded ends fitting the

design’s geometry and selected fabrication scheme. Given its algorithmic nature, we could also easily

manipulate the size of the produced details according to context-specific structural and aesthetic

requirements, while automatically producing the corresponding technical documentation for the

selected manufacturing strategy, including the panels’ unfolded drawings with the corresponding line

types for cutting, folding, and engraving purposes and labels guiding their assembly process.

Moreover, besides facilitating the materialization of the solution, it also allowed us to minimize

material waste by arranging the resulting documentation in an optimized way. Finally, it also smoothed

the transition between creative and materialization processes by facilitating the testing of different

construction schemes to assess their aesthetic impact, sparing us from the time-consuming and

hardworking task of updating the resulting construction details and corresponding technical

documentation, minimizing the accumulation of design errors.

231

9. DISCUSSION

This chapter assesses the suitability of the proposed methodology and framework for architectural

practice and its ability to solve complex design problems. It also evaluates the capability of the proposal

to integrate different design practices and problems, while improving the flexibility and efficiency of

architectural design processes. The next sections elaborate on the findings of the previous chapter,

while reflecting on the proposal’s applicability and usefulness for practice-based design scenarios, as

well as on the merits and limitations of the Algorithmic Design (AD) workflow. Based on the

considerations made, the research questions are then answered, and the initially established research

goals are addressed.

9.1. APPLYING THE FRAMEWORK

Although the presentation of the previous examples shows a clear transition between design stages,

this was not the case in the actual experiences, where the framework allowed for flexible design

workflows with fluid and ill-defined stage transitions. The aim of the previous studies presentation was

to make the step-by-step application of the framework in different design scenarios clearer, along with

its results.

In Study 1, the framework supported the development of an irregular truss-like facade structure

considering creative intents and performance criteria since early stages. Based on the results, the

framework facilitated:

• The geometric exploration of the truss configuration.

• The integration of aesthetic, structural, and economic constraints since conceptual stages.

• The execution of iterative structural analyses and the interpretation of their results.

• The structural improvement of the solutions’ without neglecting its aesthetic quality.

• The search for solutions successfully balancing the aesthetic, structural, and cost constraints.

Then, Studies 2, 3, and 4 applied the framework in different collaborative design contexts involving

architects with and without AD skills. The results show that the framework was successful in:

• Materializing both the architects’ design intent and aesthetic preferences.

• Augmenting the architects’ design freedom and the range of solutions considered.

• Integrating conceptual, functional, and performance requirements since early stages.

• Incrementally refining the solutions according to different design criteria.

232

• Smoothing the transition between design stages and design tasks.

• Alternating between design tools used according to the task at hand.

• Completing the design process in a short time frame.

Finally, Study 5 evaluated the framework in the development and prototyping of a set of

unconventional, visually complex facade shading panels considering both conceptual and construction

requirements. The results evidence the ability of the framework to simplify:

• The implementation of the design intent for the facade shading panels.

• Their geometric exploration based on aesthetic, performance, and fabrication criteria.

• The test of different panel materials and surfaces finishes.

• The detailing of the panels according to different construction schemes.

• The extraction of technical drawings according to the selected manufacturing strategy.

• The production of a small-scale prototype.

Figure 9.1. Application of the framework’s algorithms in the five application studies selected.

Figure 9.1 illustrates the application of the framework in the previous application studies. It represents

the different categories of algorithms through a color scheme, demonstrating the framework’s ability

for handling specific design tasks/problems throughout the design process. Given the mathematical

233

and parametric nature of the framework’s principles, the testing of different design scenarios was

facilitated in all application studies, as was the coordination of different design constraints and

information. This is visible, for instance, in Study 5, where the framework supported the concurrent

combination of algorithms from the Geometry, Distribution, Pattern, and Fabrication categories from

early to final design stages, allowing them to directly or indirectly influence each design task performed

as well as the architects’ decision-making process. As illustrated in Figure 9.2, while the geometry-

related algorithms materialize the architects’ design intent and aesthetic preferences for the facade

panels as well as create different construction schemes and panel details, the manufacturing-related

algorithms address the geometric exploration of different visual outcomes and volumetric effects for

the panels, as well as their feasibility and preparation for manufacturing.

Figure 9.2. Concurrent use of different categories of algorithms in Study 5 and the resulting outcomes.

The application studies also prove the framework’s applicability in architectural design, successfully

responding to the context-specificity and variability of real-world design practices, while adapting to

their different tools and methods. In Study 3, for instance, the framework succeeded in coordinating

the existing time, economic, and technical constraints with the design intent of developing a

nonconventional, visually complex building facade. Additionally, the framework also allowed the use of

the design team’s preferred CAD and BIM tools according to the task at hand. Nevertheless, the

application of the framework will always depend on the collaboration of an architect with AD skills.

The application studies also show that, in either case, the use of the framework (1) simplifies and

facilitates the deployment of AD, by promoting code reuse and thus avoiding repeated work, (2)

234

reduces the time and effort spent in AD tasks by guiding the selection and combination of its algorithms,

and (3) increases the likelihood of achieving better results by leaving more time available for creative

and critical thinking tasks. These advantages are evident in Study 4, where the framework allowed the

team to consider a wide range of facade design possibilities within the existing time constraints that

varied in terms of: (1) geometric composition, exploring several customized bricks of different sizes,

shapes, and opacities; (2) facade materiality, by pondering the use of ceramic bricks or wood panels;

(3) constructive solution, by considering stacking massive bricks or placing lightwood panels; and (4)

manufacturing strategy, by assessing the hypotheses of producing multiple customized bricks or sets

of layered panels.

The application studies also evidence an increase in the architects’ design freedom, facilitating

iterative design changes and the test of multiple solutions and freeing designers from repetitive and

time-consuming tasks by automating them, such as those of analysis and optimization processes. By

leaving more time available for both creative and design enhancement tasks, the framework also

promotes wider design space exploration and the search for improved design solutions. This is visible

in Study 1, where the framework was coupled to an optimization routine to automate iterative structural

analyses, promoting a gradual balance between the design intent of creating an irregular truss-like

facade resembling a crystal and the need to ensure its structural stability and feasibility.

On the other hand, the results also evidenced some challenges deriving from the framework’s

flexibility, particularly the visualization and analysis of the large set of solutions that potentially results

from its use. Although this issue had already been addressed by other authors [383], there is still no

widely accepted solution. The application studies tackled this challenge by using the framework to

explore the design space in a process entirely guided by the design team, where architects iteratively

visualized and changed the solutions according to analysis results, technical constraints, or their

personal preferences. By controlling the navigation process through the set of potential solutions, the

design team could gradually reduce the design space while ensuring it contained solutions with the

intended features. Even in those cases where an optimization routine was applied, as it happened in

Study 2, it was the architects who guided the entire design process by defining and redefining, at each

iteration, (1) the variables that were allowed to change during the optimization process – in this case,

the size and position of the smaller bars – and (2) the variation ranges allowed – in this case, setting

the number of possible bar lengths and the maximum distance between them.

Finally, although the proposed principles have been implemented in one specific AD tool, they

can be easily implemented in other AD tools, whether visual or textual, or even adapted for other

purposes within or outside the architecture field. This is possible because of the principles’ mathematical

nature and modular structure, which make them universal and independent of specific punctual

applications, as well as changeable and adaptable to various scenarios.

235

9.2. COMPARING AD AND NON-AD WORKFLOWS

The architectural design process starts with the ideation and materialization of design ideas mostly

through sketches, handmade schemes, and conceptual models. It then continues with the exploration

of the design intent by either using the same approach throughout the entire process or transiting to

AD to benefit from its greater design freedom and efficiency, among others. Despite its multiple

advantages, the decision of using AD should always consider the initial investment it requires, which

may not pay off when dealing with geometrically simple designs that do not need substantial design

iterations. In the remaining cases, however, the transition to AD is often advantageous.

Although a non-AD workflow resorting to freehand sketching and physical modeling is more

intuitive for design exploration processes than an AD one, when the project is further detailed, design

exploration becomes difficult, as it relies on repetitive manual design tasks. Therefore, within the same

time frame, not only fewer and less complex designs are produced, but their corresponding models are

also less flexible than those produced with AD. In contrast, AD facilitates the application of small-to-

large design changes, making it easier to understand their impact and thus efficiently and effectively

guide the design process. Nevertheless, identifying the changes we need to apply to the algorithms in

order to affect the design in the intended way is not always straightforward. Contrarily, although a

design change in a non-AD scenario is more easily tracked because it is directly made to the model, it

still requires manually modifying the model or even redoing the model from scratch. This repetitive and

time-consuming process, therefore, hinders the iterative application of design changes, thus resulting

in only slightly improved design solutions.

When it comes to improving the design performance, a non-AD workflow requires (1) manually

modeling each design alternative to then evaluate it; (2) incorporating the evaluation results through

manual changes to the model before proceeding to the next iteration; and (3) repeating this process

until finding better solutions. As this usually requires multiple iterations, it becomes extremely time-

consuming, tedious, and error-prone to improve designs using non-AD approaches. In contrast, in an

AD workflow these tasks are automated, increasing the number of solutions evaluated as well as the

reliability of the results. Given the latter’s flexibility, it is also easier to improve the designs regarding

multiple criteria. In contrast, although it is possible to enhance designs with respect to several criteria in

a non-AD workflow, and sometimes even more intuitively than in an AD one, the resulting process

suffers from the above-mentioned limitations.

Regarding the fabrication of the solutions, an AD workflow facilitates the control of the design’s

feasibility by allowing for the automatic extraction of construction information and the balance of the

resulting manufacturing costs with both conceptual and performance criteria. In a non-AD workflow,

however, this scenario would suffer from the same limitations of design exploration and improvement

236

processes. Moreover, in the adopted AD workflow, both the testing of different construction schemes

and the production of technical documentation is facilitated. AD increases the variety of manufacturing

scenarios and materials considered, while assessing their impact on the solutions’ aesthetics and

performance. In contrast, in a non-AD workflow, this ability is dependent on the capabilities of the

modeling tool in use, which rarely handles multiple scenarios and strategies efficiently.

By comparing the supported AD workflow with a non-AD one (Figure 9.3), it is possible to

conclude that both have advantages and disadvantages for architectural practice. While the non-AD

workflow is closer to the architects’ creative nature and traditional way of thinking, the AD one is more

powerful and, thus, better at handling the complexity and multiplicity of criteria of architectural design

practice but it is also less intuitive and more difficult to learn. To promote the dissemination of AD in

current design practices, the collaboration between architects with and without AD skills is an

increasingly common solution, allowing design teams to benefit from AD’s advantages in:

• Creative exploration – increasing the efficiency and flexibility of the process.

• Design development – extending the design space explored.

• Design refinement – achieving improved design solutions.

• Design manufacturing – automating construction-related tasks.

A final but equally important advantage of the supported AD workflow is allowing the previous tasks to

be easily coordinated, smoothing the transition between them. This advantage results, on the one hand,

from the universality of the framework’s principles, which are tool-independent and thus widely

applicable; and, on the other hand, from the portability of the AD tool used for its implementation,

which ensured interoperability between design tools and thus reduced not only the time and effort

spent in the transition between them, but also the error-proneness of these processes.

237

Figure 9.3. Comparison between a non-AD and an AD workflow on each design stage.

9.3. ANSWERING THE RESEARCH QUESTIONS

This section discusses how the proposed methodology and framework reduces the complexity of AD

in solving complex and unconventional facade design problems by answering the research questions

Design Tasks non-AD Approach AD Approach

D
e
si

g
n
 e

xp
lo

ra
ti
o

n

Design concept definition

Design communication

Design space explored

Design manipulation

Design space navigation

Model flexibility

Traceability

Intuitive

Easy

Narrow

Hard

Slow and restricted

Small

Obvious

Rational

Hard

Large

Easy

Efficient and informed

Large

Non-obvious

D
e
si

g
n
 im

p
ro

ve
m

e
n
t

Design changes

Multi-criteria coordination

Model adaptation

Analysis results integration

Iterative analyses

Design optimization

Optimized design space

Error-prone and tedious

Hard

Manual

Manual

Slow and error-prone

Manual

Limited

Coherent and accurate

Easy

Automatic

Automatic

Efficient and accurate

Automatic

Extensive

D
e
si

g
n
 p

ro
d

u
ct

io
n

Design rationalization

Design detailing

Technical documentation

Construction information

Prototyping

Scenarios considered

Manufacturing control

Hard

Manual

Manual

Tool-dependent

Hard

Few

Limited

Easy

Automatic

Automatic

Automatic

Easy

Numerous

Extensive

238

formulated in chapter 1. It starts with the most specific ones, i.e., the research’s sub-questions, and

then, based on their answers, it responds to the most generic ones, i.e., the main research questions.

SUB-QUESTION 1

How to structure AD according to the specificities of each facade design stage,

while smoothing the transition between them?

Building facades have many associated functions and thus their design requires considering several

requirements. While some are general, others are context-specific, which makes facade design

processes unique and complex. AD has the advantage of facilitating the coordination of such

requirements and supporting the search for design solutions that satisfy them.

Nevertheless, AD requires the conversion into algorithms of the geometrical, technical, and

performance aspects of facade design. To this end, this thesis analyzed and reproduced a large corpus

of contemporary building facades (the design corpus) to better understand the existing requirements

and challenges and simultaneously identify relevant design patterns and knowledge. Chapter 7

presented the outcome of this analysis and its systematization in a mathematical methodology tailored

for facade design. The premise of such proposal was that providing a framework that organized prior

design knowledge in a generic and structured way would allow its reuse in various design contexts,

while responding to the specificities of each facade design stage.

To facilitate its application, the methodology was implemented in an algorithmic framework,

whose modular structure organizes the available ready-to-use strategies according to their type and

function in facade design. Then, chapter 8 applied the framework in five application studies developed

in real-world design scenarios with the participation of architects with different levels of AD experience,

proving its ability to respond to the challenges and requirements of each design stage and to flexibly

coordinate them with those of the other stages. The results showed that the framework successfully

systematizes facade design processes, while improving the flexibility of the design workflow.

SUB-QUESTION 2

How to convert conceptual design criteria into algorithmic strategies that respond

to different creative intents and design briefs?

Architectural practice has a visual and tactile nature, whereas AD is abstract and less intuitive. While

some technical requirements, such as environmental performance, structural stability, and economic

viability, can be straightforwardly converted into algorithmic descriptions, since they often involve

measurable and tangible quantities, those related to creative aspects, such as aesthetic and conceptual

239

requirements, are not. For an AD approach to be successful, it is important that the latter requirements,

which have a strong visual component, are properly converted into algorithms and adequately

combined. To that end, this investigation studied several mathematical strategies to represent

geometry-related elements, such as spatial coordinates, curves, surfaces, and solids, as well as to

manipulate them in different ways, e.g., by applying geometric transformations.

The seventh chapter of this thesis elaborated on such strategies, placing particular emphasis on

how they relate to facade design processes and how they were integrated in the framework. Several

conceptual examples were developed to illustrate the strategies considered and their application in

facade design. Then, in chapter 8, the previous strategies were applied in realistic design scenarios,

demonstrating how they can respond to different creative intents and design practices. The results

showed that the framework can successfully integrate different conceptual and aesthetic criteria into an

AD workflow, while responding to context-specific creative intents as well as to different real-world

design problems and briefs.

SUB-QUESTION 3

How can the provision of a framework reduce the time and effort spent in AD

tasks, while handling several design criteria since early design stages?

AD is a complex design approach that requires programming skills. No matter how much experience

an architect has in AD, this approach is less intuitive and technically more challenging than traditional

ones. Nevertheless, the architectural community using AD is growing, particularly due to the advantages

this approach brings to architectural design practice, namely design freedom, efficiency, and accuracy.

Previous proposals to smooth the technical complexity of AD mostly focus on visual programming

strategies. However, to deal with large-scale design problems, the use of textual programming

frequently becomes mandatory due to its higher expressiveness and scalability.

To address the lack of solutions for simplifying AD within the textual programming paradigm,

this thesis proposed an algorithmic framework and demonstrated its applicability by targeting the field

of facade design. The premise was that the provision of ready-to-use algorithms and strategies would

reduce the time and effort spent in AD tasks, by decreasing the amount of code developed and the

occurrence of potential errors, leaving more time available for design exploration and thus increasing

the design space considered. This is illustrated in the eighth chapter of the thesis through the

application of the framework in different design scenarios responding to different creative intents and

design briefs. The results showed that the framework facilitated the implementation of the design intent

as well as the early-stage integration of different criteria, such as aesthetic, functional, and structural,

240

allowing the architects to devote more time and energy to both the development and improvement of

their facade designs.

Given the complexity of architectural design and the multiple design tools that are currently

required in its practice, it is important that the proposed AD strategies are generic and flexible, so as to

(1) integrate different design workflows and tools, (2) respond to the context-specificity of the practice,

and (3) handle its multiple constraints. Therefore, the proposed methodology adopts the formalism of

mathematics to ensure the universal application of its principles, while providing them with the ability

to adapt to the variability and specificity of architectural practice. Chapter 7 elaborated on the

mathematical formulation of the framework’s principles, demonstrating their validity and flexibility by

reproducing an already existing corpus of facade designs.

RESEARCH QUESTION

Based on the previous findings, the lessons learned, and the answers to the research sub-questions,

this section answers the overarching research question posed by this investigation, namely:

How can we systematize AD to address intricate design problems, particularly

those of facade design processes?

AD is a design approach that provides the expressiveness and flexibility needed to handle complex

design problems, which are common in facade design processes. To allow architects to benefit from it,

this thesis proposed to simplify its use in more complex design problems by providing algorithmic

frameworks systematizing specific design tasks. Particularly, this thesis provided an algorithmic

framework for the field of facade design, whose mathematical nature ensured its universal application

and whose modular structure facilitated its application and adaptation to different design practices and

briefs.

Chapter 7 elaborated on both the framework’s structure and content, demonstrating its ability

to use the collected design knowledge in a flexible way, as well as to simplify the algorithmic

reproduction of an already existing corpus of building facades. By systematizing prior design knowledge

and guiding its use and combination in new design problems, the framework reduced the time and

effort spent in AD tasks, minimizing repeated work and the introduction of errors, while increasing the

efficiency of the design process and the probability of achieving better results.

Chapter 8 applied the framework in a set of practice-based studies involving differently skilled

architects and tools. The application studies proved, first, the applicability and usefulness of the available

algorithmic strategies in an AD context and, second, their flexibility to adapt and respond to different

design practices and problems, such as creating an irregular truss-like facade or exploring a set of

241

facade panels with a random-based configuration and responding to different functional and shading

requirements, among others.

The application studies also demonstrated the framework’s ability to combine different

categories of algorithms in multiple ways and throughout the entire design process, for example using

geometry- and analysis-related algorithms to explore different geometric configurations or applying

manufacturing-related algorithms to support creative explorations processes, among others. By

handling all design stages in a flexible and structured way, the framework allowed the design teams to

consider more design possibilities within the limited time available as well as conduct a more

comprehensive critical analysis of the designs. Lastly, given the framework’s modular structure,

strategies that were punctually developed to respond to more specific requirements in each application

study could then be easily incorporated in the framework, becoming available for future situations.

Based on the previous considerations, the framework proved to facilitate and simplify the use of

AD in tackling diverse complex facades design problems, enhancing the architects’ creative exploration

and design development processes. Therefore, the thesis answered the main research question. Given

the universality and flexibility of the proposed solution, it is expected that these findings and

contributions can be generalized to other fields inside or outside architecture and be extended and/or

adapted to meet their specific needs. Therefore, this also makes it possible to affirm that the thesis also

answered the broader research question of:

How can we reduce the complexity of AD to address intricate design problems?

9.4. ADDRESSING THE RESEARCH GOALS

This section reflects on how the previous findings contributed to reduce the complexity of AD in solving

complex and unconventional facade design problems, by fulfilling the initially established research goals

of:

Goal 1. Enhancing creative and critical thinking processes.

Goal 2. Articulating different design constraints, tools, and tasks since early stages.

Goal 3. Improving design space exploration and the chance of finding better solutions.

Goal 4. Materializing the solutions through different manufacturing strategies.

Based on the application studies of chapter 8, the use of the framework extended the architects’

creative exploration process because it reduced the time and effort spent in the algorithmic

implementation of different design ideas, therefore increasing the time available for design exploration.

Along with providing AD’s general advantages, particularly in terms of design-change propagation and

242

task automation, the framework allowed the architects to test multiple design alternatives quickly and

effortlessly, increasing the range of design possibilities considered and enhancing their creative and

critical thinking (Goal 1).

Additionally, the framework also facilitated the early integration of conceptual, functional,

environmental, and construction requirements in the design process, as well as the use of different

design tools according to the tasks at hand (Goal 2). By facilitating the coordination between different

types of data and tasks since initial stages, the architects could navigate the design space in a more

informed and conscious way and thus, more easily find design solutions that successfully balance the

existing design constraints and requirements (Goal 3).

Finally, the application studies also demonstrated the success of the framework in preparing

facade design solutions for fabrication, facilitating their detailing while considering different

constructions schemes and automating the production of the corresponding technical documentation

according to the selected manufacturing strategy (Goal 4).

Conclusion

245

PART V | CONCLUSION

10. FINAL CONSIDERATIONS

This chapter reflects on the results of this thesis, making some final considerations on its research

findings, contributions, and limitations, while suggesting some relevant future work directions.

10.1. RESEARCH OVERVIEW

Architecture is in constant change because it must adapt to the ever-changing nature of society and

culture, incorporating the latest technological advancements in its practice to capture the spirit of its

time. With the increased sophistication of current representation and fabrication methods, the process

of designing and constructing grew in complexity, motivating the use of computation-based design

approaches, such as Algorithmic Design (AD), because of their advantages in terms of design flexibility,

efficiency, and expressiveness.

Nevertheless, using AD is not trivial, mostly because of its technical complexity and abstraction

level, which largely deviate from the visual and tactile nature of architectural practice. With the aim of

making AD more accessible to architects, some visual-based AD tools have been proposed but, despite

being intuitive and easy to use, they lack the expressiveness and scalability needed to handle large-

scale design problems. Unfortunately, there are no successful solutions addressing textual-based AD,

which would be critical to deal with such problems.

To address this limitation, this thesis responded to the research question of How can we reduce

the complexity of AD to address intricate design problems? Given the focus on the AD paradigm, the

thesis considered the variability and unpredictability of architectural design in a computation-based

perspective. The thesis proposed a mathematical methodology and framework to systematize AD-

related tasks and assessed its applicability within the scope of building facades. The aim was to facilitate

the use of AD in solving complex and unconventional design problems by providing a set of design

principles that could be easily combined in the development of new design solutions. Given the endless

variety of design problems, it is only natural that the principles provided do not cover all possibilities

and, therefore, the framework was structured and implemented to be continuously extended with

additional design knowledge and principles whenever necessary.

To evaluate the viability and usefulness of the proposal for real-world design scenarios, its

principles were applied in a set of architectural application studies involving different design practices

246

and problems. After critically reflecting on the previous results, the thesis identified the research merits

and limitations and answered the research question by proving the ability of the proposal to facilitate

and simplify the use of AD in tackling diverse complex design problems, while enhancing the architects’

creative exploration and design development processes.

10.2. RESEARCH FINDINGS

This section summarizes the main research findings of this thesis in terms of usefulness and merits of

the proposed methodology and framework and the success of their application in facade design

processes.

MATHEMATICAL FRAMEWORK

The framework presented in chapter 7 was developed to systematize AD processes. To assess its

applicability, this thesis applied the framework in the context of facade design. However, the framework

can also be applied to other fields to structure the corresponding specific tasks. This thesis presented

the set of methodological steps to follow in order to create similar frameworks specialized in other

tasks.

The framework presents a modular structure classifying the collected design knowledge

according to their type and role in facade design processes, providing sets of design strategies that can

be differently combined in the development of new solutions. For each category, the most relevant

strategies were presented and illustrated in chapter 7 through a set of conceptual examples. The

purpose of this modular classification is to facilitate knowledge reuse, guiding the selection and

combination of the available principles in future design problems, while increasing the flexibility of the

design process. The modular structure also aims to ensure the mutability of the formulated principles

and the framework’s ability to be continuously extended with additional strategies.

Based on the research findings, the thesis concluded that the framework’s modular organization

simplifies the matching problem between existing design requirements and possible solutions. The

application studies of chapter 8 proved this through (1) the short time spent in the design intent

implementation and (2) the diversity and quality of the solutions obtained. Moreover, the application

studies also proved the framework’s ability to coordinate different types of design data and constraints

throughout the design process, such as the architects’ design intentions, performance criteria, and

specific site constraints.

As illustrated in chapter 7, the framework has a high expressive power, allowing the generation

of a wide variety of design possibilities. However, when using the framework in chapter 8, the economic,

technical, and time constraints of the application studies narrowed the scope of the strategies used,

leading to a more limited range of design variations than the framework allows. This narrowing results

247

from the application of the framework to real design problems and constraints, proving its ability to

adapt to context-specific design constraints and to control design complexity.

DESIGN WORKFLOW

The aim of the mathematical methodology presented in chapter 7 was to ensure that the previous

systematization of facade design processes had the widest possible application in architectural practice

and, possibly, in other design fields. In this methodology, the collected design knowledge was described

through mathematical formalisms, each one representing a relevant design strategy and principle.

Chapter 7 elaborated on the structure and combination of some of these formalisms. The aim was to

make the collected strategies and principles as universal as possible, allowing them to be easily

integrated in different design practices and tools or extended to respond to the specificity and variability

of architectural design problems.

Based on the findings of chapter 8, the proposed methodology can be applied in architectural

practice, responding to the technical specificities of each design problem, such as performance

requirements and construction limitations, as well as to the design teams’ different creative intents and

methodologies, such as preferred design tools and varying levels of AD experience.

The application studies also proved the methodology’s success in supporting design workflows

providing greater design freedom and efficiency, enabling designers to explore wider design spaces

and thus consider a wider range of design possibilities within a limited time frame. By freeing time for

design exploration, the methodology allowed architects to enhance both their creativity and decision-

making process, increasing the chances of finding better solutions. Finally, the use of the methodology

alongside non-AD design processes also proved that, rather than replacing traditional design processes,

the research proposal complements them, particularly when the design complexity demands it.

ALGORITHMIC IMPLEMENTATION

The main goal of this thesis was to structure AD processes in order to reduce their complexity and make

their implementation and use more accessible to architects with AD skills. Therefore, the author

addressed the variability and unpredictability of architectural design processes in a computation-based

perspective, implementing the proposed methodology in an algorithmic framework and applying it in

several examples to assess its usefulness and expressiveness. In a first stage, the framework was applied

in conceptual and simpler design tests, such as exploring different geometric composition, generating

different facade patterns, among others. The goal was to check if the proposed principles could

reproduce prior design knowledge in a more efficient and expressive way. In a second stage, the

principles were applied in practice-based design problems to assess their suitability and usefulness to

support real-world design scenarios.

248

According to the findings of chapters 7 and 8, the framework’s algorithmic implementation was

successful in supporting facade design processes because it provided the expressiveness needed to (1)

support higher levels of design complexity, (2) quickly and effortlessly explore wider design spaces, (3)

coordinate multiple types of design requirements, (4) smoothly transit between design stages and tasks

from conceptual exploration to fabrication, (5) incrementally improve the solutions in an interactive and

conscious way, and (6) achieve better solutions in terms of aesthetics, performance, and feasibility within

a limited time frame.

Furthermore, as the AD tool used to implement the framework (Khepri) is portable between

different design tools and AD libraries, it was possible to demonstrate its ability to benefit from other

frameworks specialized in, for instance, analysis, optimization, and visualization strategies.

10.3. THESIS CONTRIBUTIONS AND MERITS

The outcomes of this thesis are outlined below according to three criteria: theoretical, methodological,

and practical.

THEORETICAL: MATHEMATICAL FRAMEWORK

Based on an extensive literature review and an analysis of a large set of contemporary facades, this

investigation identified common design problems and relevant design strategies, particularly in the field

of facade design. The collected design knowledge was then analyzed and organized by type and role

in design processes and mathematically formulated in a framework specialized in facade design.

The proposed framework constitutes a theoretical contribution that identifies and structures prior

design knowledge, while proposing solutions to formalize it in a universal and flexible way. Additionally,

the framework enables the production of novel design knowledge by systematizing the use and

combination of the collected design knowledge in new design problems. Lastly, and most importantly,

the framework outlines the principles that are necessary for the creation of other specialized frameworks

containing different types of strategies and categorical structures.

METHODOLOGICAL: ALGORITHMIC-ORIENTED METHODOLOGY

This thesis presented an algorithmic-oriented methodology to support large-scale and unconventional

design problems, organizing a set of mathematical formalisms addressing different tasks of facade

design processes in a modular way.

The first methodological contribution is the provision of a classification structure that organizes

different design processes and their related information and that guides their combination and

application in different design scenarios. A second contribution is the proposed modular structure to

organize the formulated principles, whose flexibility allows it to adapt to the diversity and variability of

249

architectural design processes as well as to serve as the basis for future methodologies and applications.

The last methodological contribution encompasses the strategy proposed to systematize the

complexity of facade design processes through an AD perspective. By presenting the methodological

steps that lead to the proposed strategy, the thesis enables the latter’s replication in the systematization

of other design tasks.

PRACTICAL: SUPPORTING FACADE DESIGN PROCESSES

This thesis assessed the practical contributions of the proposal by, first, implementing the formulated

principles in an AD tool for architectural design and then, applying the resulting algorithmic framework

in several architectural application studies responding to different design intents and problems.

The findings demonstrated how the framework simplified the use of AD in facade design

processes involving architects with and without AD skills and resorting to different design methods and

tools. The findings also proved the ability of the framework to address more complex design problems

and generate unconventional solutions that would be difficult to achieve otherwise. Lastly, the findings

also evidenced an increase in the flexibility and efficiency of the resulting design workflows, which

facilitated the transitions between design stages and the coordination of different specific design tasks

and requirements. By increasing creative design exploration and freeing time for critical analysis, the

design possibilities considered also increased, as did the likelihood of achieving better design solutions.

10.4. LIMITATIONS AND FUTURE WORK

This section outlines some of the research limitations of the thesis and suggests relevant improvements,

as well as future research directions.

RESEARCH LIMITATIONS

One of the most obvious limitations is the framework’s abstract and non-visual nature. Although the

provision of a Graphical User Interface (GUI) would make its application more user-friendly and intuitive,

this task was not considered, given the context and time available for this investigation. Furthermore,

the goal of this thesis was to lay the foundations for a methodology and framework systemizing AD

processes and thus the research focused on ensuring its universal application and continued extension.

Moreover, although a GUI could facilitate the use of the framework, it would also limit its widespread

application and integration with other specialized tools and frameworks and, above all, it would hamper

its expressiveness, flexibility, and scalability.

The second limitation of this investigation stems from the fact that the proposed framework was

only implemented in one AD tool. Nevertheless, given the framework’s mathematical and modular

250

nature, its principles can be implemented in other AD tools, whether visual or textual, or even adapted

for other purposes within or outside the scope of architecture.

As explained in chapter 7, the process of developing the framework focused, first, on the

geometry-related aspects of facade design processes and, only then, on those related with the analysis,

rationalization, and fabrication of design solutions. As a result, the proposed categories of principles

show different levels of development, the former ones containing a greater diversity of strategies than

the latter ones. This imbalance is mainly due to the higher complexity and technical difficulty of the

processes covered by the latter categories, particularly optimization and rationalization processes,

making it challenging to achieve the level of competence of existing specialized tools, considering the

time and human resources involved in this research. Hence, given the modular nature of the framework,

it was possible to couple it with other specialized frameworks and libraries, particularly for building

performance analysis and optimization (see section 7.3.4). This enabled the combination of the

framework’s principles with more specific strategies to address particular design problems. Indeed,

providing a framework that can be continuously extended whenever the need arises was essential in

addressing the research problem.

One limitation of the research evaluation is the absence of a full-scale prototype with a direct

application in a construction scenario. Although several attempts have been made to collaborate with

the industry to produce some of the solutions developed with the framework, none were successful

mostly because of production costs and the lack of availability of the manufacturing companies

contacted. Nevertheless, it is still a goal of this research to produce a full-scale prototype and efforts

are currently being developed in that direction.

Finally, the lack of quantitative data to evaluate the use of the framework supporting the

qualitative analysis made in chapters 8 and 9 is another limitation of this study. For instance, the

assessment made in chapter 9 was purely qualitative and based on the options and assumptions of the

architects involved in the application studies. However, given the abstract, contextual, and imprecise

nature of creative design processes, it would be difficult to measure the quality of the results in a

quantitative way. For that reason, this research adopted an evaluation method heavily based on the

participants’ practical experience and know-how.

SUGGESTIONS FOR FUTURE RESEARCH

This thesis addressed the systematization of AD to solve complex design problems, proposing solutions

to the research problems tackled, while raising others to address as future work.

The first one regards the framework’s geometry-related capabilities for shape generation and

manipulation, which can be further improved with additional strategies addressing a wider range of

surface shapes, grids, and elements. The same applies to the available rationalization strategies, which,

251

in their current state, support a limited range of surface shapes, discretization methods, and surface

paneling strategies; and to the analysis/optimization strategies, which could integrate additional

performance simulations, such as thermal, energy, and acoustic, and metrics, such as construction cost

and waste control, among others.

The second suggestion for future work involves the improvement of the framework’s

manufacturing capabilities. Further research should be done in order to increase the range of

construction details and elements allowed, as well as the diversity and quality of the technical

documentation produced, e.g., embracing the representation requirements resulting from other

fabrication strategies and materials. Additionally, it is important to extend the framework with more

manufacturing-related criteria, such as geometric properties, materiality, surface finish, machining time,

material waste, and production cost, while increasing its sensibility to the specific manufacturing

requirements of each fabrication technology. For example, while in 3D printing and CNC cutting the

planning of the printing/cutting path is critical to increase the surface quality and shape accuracy and

decrease production time and material expenditure, in CNC cutting it is important to optimize the

machines’ cutting paths by considering parameters such as cutting speed, material thickness, laser

cutting type, and material used, among others.

Finally, it would also be relevant to continue using the framework in real-world design scenarios

and test its ability to produce different prototypes involving different materials and manufacturing

strategies. This is important to improve the framework in terms of structure, content, and application,

as well as to identify new design requirements and research directions that may eventually arise. This is

also important to evaluate the opportunities its use brings to architectural practice, smoothing the

transition between design stages, facilitating design collaboration between different specialists, and thus

increasing control over the whole process from design to fabrication.

253

RELEVANT PUBLICATIONS BY THE AUTHOR

Journal articles

Caetano, I., & Leitão, A. (2019). Integration of an Algorithmic BIM Approach in a Traditional

Architecture Studio. Journal of Computational Design and Engineering, 6.

Caetano, I., & Leitão, A. (2020). Architecture Meets Computation: an Overview of the Evolution of

Computational Design Approaches in Architecture. Architectural Science Review, 63(2).

Caetano, I., Leitão, A., & Bastos, F. (2020). From Architectural Requirements to Physical Creations.

Journal of Façade Design and Engineering, 8(2).

Caetano, I., Santos, L., & Leitão, A. (2020). Computational design in architecture: Defining

parametric, generative, and algorithmic design. Frontiers of Architectural Research, 9(2).

Castelo-Branco, R., Caetano, I., & Leitão, A. (2022). Digital representation methods: The case of

algorithmic design. Frontiers of Architectural Research, 11(3).

Castelo-Branco, R., Caetano, I., Pereira, I., & Leitão, A. (2022). Sketching Algorithmic Design. Journal

of Architectural Engineering, 28(2).

Castelo-Branco, R., Caetano, I., & Leitão, A. (2022). Algorithmic Representation Space. Prospectives

Journal, 2.

Caetano, I., Pereira, I., & Leitão A. (2022). Balancing Creativity and Performance Analysis: an

algorithmic design approach. A|Z ITU Journal of the Faculty of Architecture (Submitted).

Caetano, I. & Leitão A. (2022). Large Scale Algorithmic Design. Automation in Construction (In

preparation).

Book chapters

Caetano, I., & Leitão, A. (2021). Mathematically Developing Building Facades: An algorithmic

framework. In S. Eloy, D. Leite Viana, F. Morais, & J. Vieira Vaz (Eds.), Formal Methods in Architecture:

Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable

Development). Springer, Cham.

Caetano, I., & Leitão, A. (2022). Behind Algorithmic Geometric Patterns: A Framework for Facade

Design Exploration. In P. Lizancos, D. Leite Viana, F. Morais, & J. Vieira Vaz (Eds.), Formal Methods

in Architecture: Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for

Sustainable Development). Springer, Cham (To be published).

Caetano, I., Leitão, A., & Bastos, F. (2022). Converting Algorithms into Tangible Solutions: A

Workflow for Materializing Algorithmic Facade Designs. In A. Correia, M. Azenha, P. Cruz, P. Novais,

& P. Pereira (Eds.) Trends on Construction in Post-Digital Era: ISIC 2022. Lecture Notes in Civil

Engineering, vol 306. Springer, Cham.

254

Caetano, I., & Leitão, A. (2022). The Right Algorithm for the Right Shape: An algorithmic framework

for efficient design and conception of building facades. In Barberio, M., Colella, M., Figliola, A., &

Battisti, A. (Eds.), Architecture and Design for Industry 4.0: Theory and Practice. Springer (To be

published).

Conference proceedings

Caetano, I., & Leitão, A. (2017). Integration of an Algorithmic BIM Approach in a Traditional

Architecture Studio. Protocols, Flows and Glitches: Proceedings of the 22nd CAADRIA Conference.

Alfaiate, P., Caetano, I., & Leitão, A. (2017). Luna Moth Supporting Creativity in the Cloud. Disciplines

& Disruption: Proceedings of the 37th ACADIA Conference.

Caetano, I., Belém, C., Ilunga, G., Feist, S., Leitão, A., & Bastos, F. (2018). Casos de Estudo sobre a

Integração de Processos de Projeto Algorítmico em Fluxos de Trabalho de Projeto em Modelo BIM.

2º Congresso Português de BIM.

Caetano, I., Ilunga, G., Belém, C., Aguiar, R., Feist, S., Bastos, F., & Leitão, A. (2018). Case Studies on

the Integration of Algorithmic Design Processes in Traditional Design Workflows. Learning,

Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference.

Caetano, I., & Leitão, A. (2018). Algorithmic Patterns for Facade Design: Merging design exploration,

optimization and rationalization. FACADE TECTONICS 2018 World Congress Conference

Proceedings.

Sammer, M., Leitão, A., & Caetano, I. (2019). From Visual Input to Visual Output in Textual

Programming. Intelligent & Informed - Proceedings of the 24th CAADRIA Conference.

Caetano, I., & Leitão, A. (2019). Weaving Architectural Façades: Exploring algorithmic stripe-based

design patterns. “Hello, Culture”: Proceeding of the 18th CAADFutures Conference.

Santos, L., Caetano, I., Pereira, I., & Leitão, A. (2020). A Generative System for the Design of High-

Performing Shading Devices: Exploring the Daylight Potential of Weaving Patterns. Planning Post

Carbon Cities - Proceedings of the 35th PLEA Conference.

Castelo-Branco, R., Caetano, I., Pereira, I., & Leitão, A. (2020). The Collaborative Algorithmic Design

Notebook. Imaginable Futures: Design Thinking, and the Scientific Method - Proceedings of the

54th ASA Conference.

Caetano, I., & Leitão, A. (2020). When the Geometry Informs the Algorithm: A hybrid visual/textual

programming framework for facade design. Anthropologic - Architecture and Fabrication in the

cognitive age: Proceedings of the 38th eCAADe Conference.

Caetano, I., Garcia, S., Pereira, I., & Leitão, A. (2020). Creativity inspired by analysis: An algorithmic

design system for designing structurally feasible façades. RE: Anthropocene: Proceedings of the

25th CAADRIA Conference.

Santos, L., Caetano, I., Leitão, A., & Pereira, I. (2021). Uncertainty in daylight simulations of

algorithmically generated complex shading screens. Proceedings of the 17th IBPSA Building

Simulation Conference.

255

REFERENCES

1. Horváth, I. (2007). Comparison of Three Methodological Approaches of Design Research. International Conference on

Engineering Design, ICED’07, 1–11.

2. Wang, Z., He, W. P., Zhang, D. H., Cai, H. M., & Yu, S. H. (2002). Creative design research of product appearance based

on human–machine interaction and interface. Journal of Materials Processing Technology, 129(1), 545–550.

3. Kelly, N., & Gero, J. S. (2021). Design thinking and computational thinking: A dual process model for addressing design

problems. Design Science, 1–15.

4. Alexander, C., Ishikawa, S., & Silverstienm, M. (1977). A Pattern Language: Towns, Buildings, Construction. Oxford

University Press.

5. Qian, Z. C., Chen, Y. V, & Woodbury, R. (2008). Developing a simple repository to support authoring learning objects.

International Journal of Advanced Media and Communication, 2(2), 154–173.

6. Johnson, B. & Foote, B. (1988). Designing Reusable Classes. Journal of object-oriented programming, 1(2), 22-35.

7. Qian ZC (2009) Design Patterns: Augmenting Design Practice in Parametric CAD Systems. Simon Fraser University,

Burnaby, Canada.

8. Stiny, G. (1980). Introduction to shape and shape grammars. Environment and Planning B, 343–351.

9. Correia, R. (2013). DESIGNA: A Shape Grammar Interpreter. Instituto Superior Técnico, Universidade de Lisboa.

10. Castelo-Branco, R., Caetano, I., & Leitão, A. (2022). Digital representation methods: The case of algorithmic design.

Frontiers of Architectural Research, 11(3), 527–541.

11. Groat, L., & Wang, D. (2013). Architectural Research Methods. John Wiley & Sons, Inc.

12. Baper, S. Y., & Hassan, A. S. (2012). Factors Affecting the Continuity of Architectural Identity. American Transactions on

Engineering & Applied Sciences, 1(3), 2229–1652.

13. Boswell, C. K. (2013). Exterior Building Enclosures: Design process and composition for innovative facades. John Wiley

& Sons, Inc.

14. Schittich, C. (2006). Building Skins (C. Schittich (Eds.)). Birkhäuser.

15. ElGhazi, Y. S. (2009). Building Skins in the Age of Information Technology. Faculty of Engineering at Cairo University.

16. Trubiano, F. (2013). Performance Based Envelopes: A Theory of Spatialized Skins and the Emergence of the Integrated

Design Professional. Buildings, 3, 689–712.

17. Picco, M., Lollini, R., & Marengo, M. (2014). Towards energy performance evaluation in early-stage building design: A

simplification methodology for commercial building models. Energy and Buildings, 76, 497–505.

18. Habraken, A. P. H. W. (2011). Structural Dynamic Façades. International Conference on Textile Composites and Inflatable

Structures Structural Membranes, 397-408.

19. Knaack, U., & Bilow, M. (2007). Façades: Principles of Construction (1st ed., Vol. 53). Birkhäuser Verlag.

20. El Sheikh, M. M. (2011). Intelligent building skins: Parametric-based algorithm for kinetic facades design and daylighting

performance integration. University of Southern California.

21. Al-Kodmany, K., & Ali, M. M. (2016). An Overview of Structural and Aesthetic Developments in Tall Buildings Using

Exterior Bracing and Diagrid Systems. International Journal of High-Rise Buildings, 5(4), 271–291.

22. Herzog, T., Krippner, R., & Lang, W. (2004). Facade Construction Manual. Birkhäuser, Publisher for Architecture.

23. Schulz, C. N. (1971). Existence, space & architecture. Praeger. Stamps.

24. Rapoport, A. (1969). House Form and Culture. Prentice-Hall ,INC.

25. Schimek, H., Stavric, M., & Wiltsche, A. (2008). The Intelligence of Ornaments: Exploring ornamental ways of Affordable

Non-Standard Building Envelopes. Proceedings of the 13th CAADRIA Conference, 417–425.

26. Stojšić, M. (2017). (New) Media Facades: Architecture and/as a Medium in Urban Context. AM Journal of Art and Media

Studies, 12, 135–148.

27. Venturi, R., Brown, D. S., & Izenour, S. (1972). Learning from Las Vegas. MIT Press.

28. Alishah, M., Ebrahimi, A., & Ghaffari, F. (2016). The Role of Buildings Facades of on Urban Landscape. The Turkish Online

Journal of Design, Art and Communication - TOJDAC.

29. Sung, D. (2016). A New Look at Building Facades as Infrastructure. Engineering, 2, 63–68.

30. Alberti, L. B. (1452). De re Aedifictoria (On the Art of Building in Ten Books).

31. Serlio, S. (1619). Tutte L’opere D’architettura, Et Prospetiva. Giacomo de Franceschi.

32. Palladio, A. (1570). I quattro libri dell’architettura. Dominico de’ Francheschi.

33. Carpo, M. (2011). The Alphabet and the Algorithm. MIT Press.

34. Serlio, S. (1537). Regole generali di architettura.

35. Loos, A. (1913). Ornament and Crime. Cahiers d’aujourd’ui (Issue 5).

36. Corbusier, L. (1923). Vers une architecture (C. Arts (eds.)).

https://www.designsociety.org/publication/25512/Comparison+of+Three+Methodological+Approaches+of+Design+Research
https://www.sciencedirect.com/science/article/abs/pii/S0924013602006313
https://www.sciencedirect.com/science/article/abs/pii/S0924013602006313
https://www.cambridge.org/core/journals/design-science/article/design-thinking-and-computational-thinking-a-dual-process-model-for-addressing-design-problems/A9F31133D2D05793A2F78D188B1CE525
https://www.cambridge.org/core/journals/design-science/article/design-thinking-and-computational-thinking-a-dual-process-model-for-addressing-design-problems/A9F31133D2D05793A2F78D188B1CE525
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/arl.human.cornell.edu/linked%20docs/Alexander_A_Pattern_Language.pdf
https://www.inderscienceonline.com/doi/abs/10.1504/IJAMC.2008.018505
https://www.academia.edu/download/68326912/Designing_Reusable_Classes20210726-5212-mwdg3x.pdf
https://summit.sfu.ca/item/9676
https://journals.sagepub.com/doi/abs/10.1068/b070343
https://fenix.tecnico.ulisboa.pt/downloadFile/395145526538/dissertacao.pdf
https://www.sciencedirect.com/science/article/pii/S2095263522000012
https://www.wiley.com/en-us/Architectural+Research+Methods%2C+2nd+Edition-p-9780470908556
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/tuengr.com/ATEAS/V01/227-236.pdf
https://www.wiley.com/en-us/Exterior+Building+Enclosures%3A+Design+Process+and+Composition+for+Innovative+Facades-p-9781118332795
https://www.academia.edu/download/36580859/Building_skins_in_the_age_of_information_technology.pdf
https://www.mdpi.com/2075-5309/3/4/689
https://www.mdpi.com/2075-5309/3/4/689
https://www.sciencedirect.com/science/article/abs/pii/S0378778814002369?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0378778814002369?via%3Dihub
https://upcommons.upc.edu/bitstream/handle/2117/186092/MEMBRANES_2011-36_Structural%20dynamic%20fa%C3%A7ade.pdf
http://koreascience.or.kr/article/JAKO201608967048415.page
http://koreascience.or.kr/article/JAKO201608967048415.page
http://papers.cumincad.org/cgi-bin/works/paper/caadria2008_51_session5a_417
http://papers.cumincad.org/cgi-bin/works/paper/caadria2008_51_session5a_417
http://fmkjournals.fmk.edu.rs/index.php/AM/article/view/173
https://acikerisim.iku.edu.tr/entities/publication/c171009a-cf26-4898-adba-2f66916d1644
https://www.sciencedirect.com/science/article/pii/S2095809916301497

256

37. Berrett, J. (2018). Media architecture: Content with purpose for the public. Proceedings of the Media Architecture

Biennale (MAB’18), 28–34.

38. Herr, C. M. (2012). Non-Trivial Media Façades. Beyond Codes and Pixels: Proceedings of the 17th International Conference

on Computer-Aided Architectural Design Research in Asia, 99–108.

39. Meridith, M., & Sasaki, M. (2008). From Control to Design: parametric/algorithmic architecture. Actar-D.

40. Kolarevic, B., & Parlac, V. (2015). Adaptative, Responsive Building Skins. In B. Kolarevic & V. Parlac (Eds.), Buildings Dynamics:

Exploring an architecture of change (p. 70). Routledge.

41. Fortmeyer, R., & Linn, C. (2014). Kinetic Architecture: Design for Active Envelopes. The Images Publishing Group.

42. Vitruvius, M. (1914). The Ten Books on Architecture (M. H. Morgan (Eds.)). Harvard University Press & Oxford University

Press.

43. Balik, D., & Allmer, A. (2016). A critical review of ornament in contemporary architectural theory and practice. ITU A|Z,

13(1), 157–169.

44. Chevrier, J.-F., & Herzog, J. (2006). Ornament, structure, space: A conversation with Jacques Herzog. El Croquis, 129-130,

22-40.

45. Pell, B. (2010). The Articulate Surface: Ornament and Technology in Contemporary Architecture. Birkhäuser GmbH.

46. Salingaros, N. (2013). The Quest to “Liberate” Architecture from Modernism’s Evils: An Interview with Nikos Salingaros.

47. Moussavi, F., & Kubo, M. (Eds.). (2006). The Function of Ornament. Actar.

48. Moughtin, C., Oc, T., & Tiesdell, S. (1995). Urban Design: Ornament and Decoration. ArchitecturePress.

49. Abu-ghazzeh, T. M. (1997). Signs, Advertising and the Imageability of Buildings: A Perceptual Selection in the View

from the Street in Amman, Jordan. Habitat International, 21(2), 255–267.

50. Askari, A. H., & Dola, K. B. (2009). Influence of Building Façade Visual Elements on Its Historical Image : Case of Kuala

Lumpur City , Malaysia. Journal of Design and Built Environment Influence, 5(December), 49–59.

51. Pedersen, W. (1987). Intentions. In R. Sonia, D. T. Abramson, & P. Goldberger (Eds.), Kohn Pedersen Fox: Buildings and

Projects (pp. 302–303). Rizzoli.

52. Koolhaas, R. (2018). Elements of Architecture. Tashen.

53. Wright, F. L. (1931). Modern Architecture: Being the Kahn Lectures for 1930. Princeton University Press.

54. Gordon, E. (1953). The Threat to the Next America. House Beautiful, April, 126–251.

55. Venturi, R. (1966). Complexity and Contradiction in Architecture (1st ed.). Museum of Modern Art.

56. Jencks, C. (2005). The Iconic Building.

57. Picon, A. (2013). Ornament: The Politics of Architecture and Subjectivity. In AD Primers. John Wiley & Sons Ltd.

58. Riisberg, V., & Munch, A. (2015). Decoration and Durability: Ornaments and their “appropriateness” from fashion and

design to architecture. ARTIFACT, III(3).

59. McNicholas, M. T. (2006). The relevance and transcendence of ornament: A new public high school for the South Side of

Chicago (Issue April). University of Notre Dame.

60. Elrayies, G. M. (2017). Architectural ornaments in the twenty-first century: An analytical study. Cities’ Identity Through

Architecture and Arts: Proceedings of the International Conference on Cities’ Identity through Architecture and Arts (CITAA

2017), Cairo, Egypt, 9–25.

61. Mitrache, A. (2012). Ornamental art and architectural decoration. Procedia - Social and Behavioral Sciences, 51, 567–572.

62. Miller, K. (2011). Organized Crime: The Role of Ornament in Contemporary Architecture. ACADIA Regional 2011:

Parametricism, 67–73.

63. Sağlam, H. (2014). Re-thinking the Concept of “Ornament” in Architectural Design. Procedia - Social and Behavioral

Sciences, 122, 126–133.

64. Dietterlin, W. (2006). Architecture of Division Symmetry and Proportion of the Five Columns (1598). In T. Nebois (Eds.),

Architectural Theory: From the Renaissance to The Present (pp. 520–529). Taschen.

65. Gibbs, J. (1978). A Book of Architecture.

66. Semper, G. (1989). The Four elements of Architecture and Other Writings. Cambridge University Press.

67. Sullivan, L. (1892). Ornament in Architecture. The Engineering Magazine.

68. Touloupaki, E., & Theodosiou, T. (2017). Performance simulation integrated in parametric 3D modeling as a method

for early-stage design optimization - A review. Energies, 10(637).

69. Dritsas, S. (2012). Design-Built: Rationalization Strategies and Applications. International Journal of Architectural

Computing, 10(04), 575–594.

70. Boeck, L. De, Verbeke, S., Audenaert, A., & Mesmaeker, L. De. (2015). Improving the Energy Performance of Residential

Buildings: A literature review. Renewable and Sustainable Energy Reviews, 52, 960–975.

71. Huang, Y., & Niu, J. (2015). Optimal Building Envelope Design Based on Simulated Performance: History, current status

and new potentials. Energy and Buildings, 117(September), 387–398.

72. Belém, C. G. (2019). Optimization of Time-Consuming Objective Functions: Derivative-free approaches and their

application in architecture. Instituto Superior Técnico, University of Lisbon.

73. Otani, M., & Kishimoto, T. (2008). Fluctuating Patterns of Architecture Façade and their Automatic Creation. Proceedings

of the 13th CAADRIA Conference, 375–382.

74. Waseef, A., & El-Mowafy, B. N. (2017). Towards a new classification for responsive kinetic facades. Proceedings of the

Memaryat International Conference “MIC 2017,” March.

https://dl.acm.org/doi/10.1145/3284389.3284390
http://papers.cumincad.org/data/works/att/caadria2012_127.content.pdf
https://www.az.itu.edu.tr/index.php/jfa/article/view/23/321
https://www.sciencedirect.com/science/article/abs/pii/S0197397596000318
https://www.sciencedirect.com/science/article/abs/pii/S0197397596000318
https://ejournal.um.edu.my/index.php/jdbe/article/view/4971
https://ejournal.um.edu.my/index.php/jdbe/article/view/4971
https://scholarworks.iu.edu/journals/index.php/artifact/article/view/3918/26698
https://scholarworks.iu.edu/journals/index.php/artifact/article/view/3918/26698
https://www.sciencedirect.com/science/article/pii/S1877042812033459
http://papers.cumincad.org/cgi-bin/works/paper/acadiaregional2011_007
https://www.sciencedirect.com/science/article/pii/S1877042814013317?via%3Dihub
https://www.mdpi.com/1996-1073/10/5/637
https://www.mdpi.com/1996-1073/10/5/637
https://journals.sagepub.com/doi/10.1260/1478-0771.10.4.575
https://www.sciencedirect.com/science/article/abs/pii/S136403211500684X
https://www.sciencedirect.com/science/article/abs/pii/S136403211500684X
https://www.sciencedirect.com/science/article/abs/pii/S0378778815302668?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0378778815302668?via%3Dihub
https://www.semanticscholar.org/paper/Optimization-of-Time-Consuming-Objective-Functions-Garc%C3%ADa/94201209c61b1948dd231b6ecfc4abec252d06d1
https://www.semanticscholar.org/paper/Optimization-of-Time-Consuming-Objective-Functions-Garc%C3%ADa/94201209c61b1948dd231b6ecfc4abec252d06d1
http://papers.cumincad.org/data/works/att/caadria2008_46_session5a_375.content.pdf
https://www.researchgate.net/publication/331803253_TOWARDS_A_NEW_CLASSIFICATION_FOR_RESPONSIVE_KINETIC_FACADES

257

75. Velasco, R., Brakke, A. P., & Chavarro, D. (2015). Dynamic façades and computation: Towards an inclusive categorization

of high performance kinetic façade systems. The next City - New Technologies and the Future of the Built Environment:

16th International Conference CAAD Futures, 172–191.

76. Woodbury, R., Aish, R., & Kilian, A. (2007). Some Patterns for Parametric Modeling. Expanding Bodies: Art • Cities•

Environment: Proceedings of the 27th Annual Conference of the Association for Computer Aided Design in Architecture,

222–229.

77. Hudson, R. (2010). Strategies for parametric design in architecture: An application of practice led research. PhD thesis,

University of Bath.

78. Su, H., & Chien, S. (2016). Revealing patterns: Using parametric design patterns in building façade design workflow.

Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on

Computer-Aided Architectural Design Research in Asia, 167–176.

79. Caetano, I., Santos, L., & Leitão, A. (2015). From Idea to Shape, From Algorithm to Design: A Framework for the

Generation of Contemporary Facades. The next City - New Technologies and the Future of the Built Environment: 16th

International Conference CAADFutures, 483.

80. Schodek, D., Bechthold, M., Griggs, J. K., Kao, K., & Steinberg, M. (2005). Digital Design and Manufacturing: CAD/CAM

Applications in Architecture and Design. John Wiley & Sons, Inc.

81. Mitchell, W. J. (2006). From Sketchpad to City of Bits: A Story of Shifting Intentions. Proceedings of the 11th CAADRIA

Conference, 1–5.

82. Davis, D. (2013). Modelled on Software Engineering: Flexible Parametric Models in the Practice of Architecture. PhD

thesis, RMIT University.

83. Woodbury, R. (2010). Elements of Parametric Design. Routledge.

84. Dunn, N. (2012). Digital Fabrication in Architecture (1st ed.). Laurence King Publishing Ltd.

85. Frazer, J. (2016). Parametric Computation: History and Future. AD Magazine: Parametricismo 2.0: Rethinking Architecture’s

Agenda for the 21st Century, 86(02), 18–23.

86. Kalay, Y. (2004). Architecture’s New Media: Principles, Theories, and Methods of Computer-Aided Design. MIT Press.

87. Sutherland, I. (1975). Structure in Drawings and the Hidden-Surface Problem. In N. Negroponte (Eds.), Reflections on

Computer Aids to Design and Architecture. Petrocelli/Charter.

88. Eastman, Charles. (1978). The Representation of Design Problems and Maintenance of their Structure. In J. Latombe (Eds.),

Application of Artificial Intelligence and Pattern Recognition in Computer-Aided Design, IFIPS Working Conference (pp.

335 – 337). Amsterdam, North-Holland.

89. Leler, W. (1988). Constraint Programming Languages: their specification and generation. Addison-Wesley Longman,

Incorporated.

90. Gross, M. D. (1989). Relational Modeling: A Basis for Computer-Assisted Design. CAAD Futures Digital Proceedings 1989,

123–136.

91. Rocker, I. M. (2006). When Code Matters. Programming Cultures: Architectural Design and Programming. Architectural

Design Magazine, 76(4), 16–25.

92. Tedeschi, A. (2014). Introduction: ADD Algorithms-Aided Design. In A. Tedeschi (Eds.), ADD Algorithms-Aided Design:

Parametric Strategies using Grasshopper (pp. 15–32). Le Penseur.

93. Rogers, D. F., & Adams, J. A. (1990). Mathematical Elements for Computer Graphics (2nd ed.). McGraw-Hill, Inc.

94. Brown, Andre. (1986). A Year’s Experience with CATIA and CADAM. Teaching and Research Experience with CAAD: 4th

eCAADe Conference Proceedings.

95. Aish, R., & Bredella, N. (2017). The evolution of architectural computing: From Building Modelling to Design

Computation. Arq: Architectural Research Quarterly, 21(1), 65–73.

96. Dorst, K., & Dijkhuis, J. (1995). Comparing paradigms for describing design activity. Design Studies, 16(2), 261–274.

97. Reffat, R. M. (2006). Computing in Architectural Design: Reflection and approach to New Generations of CAAD. ITcon,

11(October 2005), 655–668.

98. McCullough, M. (2006). 20 Years of Scripted Space. Programming Cultures. Architectural Design Magazine, 76(4), 12–15.

99. Asanowicz, A. (1999). Evolution of Computer Aided Design: three generations of CAD. In A. Brown, M. Knight, & P.

Berridge (Eds.), Architectural Computing: From Turing to 2000 - proceedings of the international eCAADe conference, 94–

100.

100. Achten, H. (2009). Experimental Design Methods - A Review. International Journal of Architectural Computing, 7(4), 505–

534.

101. Terzidis, K. (2006). Algorithmic Architecture (1st ed.). Elsevier Ltd.

102. Burry, Mark. (2011). AD Primers: Scripting Cultures: Architectural Design and Programming. John Wiley & Sons Ltd.

103. Leach, N. (2009). Digital Morphogenesis. Theoretical Meltdown. Architectural Design Magazine, 79(1), 32–37.

104. Celani, G., & Veloso, P. (2015). CAAD conferences: A brief history. In Gabriela Celani, D. M. Sperling, & J. M. S. Franco

(Eds.), The Next City: 16th International Conference, 47–58.

105. Peters, B., & Peters, T. (2014). Introduction. In Inside Smartgeometry: Expanding the Architectural Possibilities of

Computational Design (pp. 8–19). John Wiley & Sons Ltd.

106. Koutamanis, A. (2005). A Biased History of CAAD: The bibliographic version. Digital Design - The Quest for New

Paradigms: Proceedings of the 23th eCAADe Conference, 629–637.

https://link.springer.com/chapter/10.1007/978-3-662-47386-3_10
https://link.springer.com/chapter/10.1007/978-3-662-47386-3_10
http://papers.cumincad.org/cgi-bin/works/paper/acadia07_222
https://researchportal.bath.ac.uk/en/studentTheses/strategies-for-parametric-design-in-architecture-an-application-o
http://papers.cumincad.org/data/works/att/caadria2016_167.pdf
http://papers.cumincad.org/cgi-bin/works/paper/cf2015_483
http://papers.cumincad.org/cgi-bin/works/paper/cf2015_483
http://papers.cumincad.org/cgi-bin/works/paper/caadria2006_001
https://www.danieldavis.com/thesis/
http://papers.cumincad.org/cgi-bin/works/paper/ab63
http://papers.cumincad.org/cgi-bin/works/paper/c211
https://www.cambridge.org/core/journals/arq-architectural-research-quarterly/article/abs/evolution-of-architectural-computing-from-building-modelling-to-design-computation/7D8E83E96064D89151B203C892FA1499
https://www.cambridge.org/core/journals/arq-architectural-research-quarterly/article/abs/evolution-of-architectural-computing-from-building-modelling-to-design-computation/7D8E83E96064D89151B203C892FA1499
https://www.sciencedirect.com/science/article/abs/pii/0142694X94000123
https://www.itcon.org/paper/2006/45
http://papers.cumincad.org/cgi-bin/works/paper/1071
https://journals.sagepub.com/doi/10.1260/1478-0771.7.4.505
http://papers.cumincad.org/cgi-bin/works/paper/cf2015_047
http://papers.cumincad.org/cgi-bin/works/paper/2005_629

258

107. Papamichael, K., & Protzen, J. P. (1993). The Limits of Intelligence in Design. Computer-Assisted Building Design Systems:

The Fourth International Symposium on System Research, Informatics and Cybernetics, 1–10.

108. Banham, R. (1960). Theory and Design in the First Machine Age (2nd ed.). MIT Press.

109. Alexander, C. (1964). Notes on the Synthesis of Form. Harvard University Press.

110. Negroponte, N. (2011). Towards a Humanism Through Machines (1969). In AD Reader: Computational Design Thinking (pp.

511–512). John Wiley & Sons Ltd.

111. Sutherland, I. (1963). SketchPad: A man-machine graphical communication system. Proceedings of the AFIPS Spring Joint

Computer Conference, 23, 323–328.

112. Ahlquist, S., & Menges, A. (2011). Introduction: Computational Design Thinking. In AD Reader: Computational Design

Thinking (pp. 10–29). John Wiley & Sons Ltd.

113. Dietz, A. G. H. (1974). Dwelling House Construction (4th ed.). MIT Press.

114. Mitchell, W. J. (1977). Computer-Aided Architectural Design. Van Nostrand Reinhold.

115. Yessios, C. L. (1973). Syntactic Structures and Procedures for Computable Site Planning. Carnegie-Mellon University,

Pittsburgh.

116. Akin, O. (1979). Models of Architectural Knowledge - An Information Processing Model of Design. Carnegie-Mellon

University, Pittsburgh.

117. March, L., & Steadman, P. (1971). The Geometry of Environment : An Introduction to Spatial Organization in Design. MIT

Press.

118. Eastman, C. (Eds.). (1975). Spatial synthesis in computer-aided building design. Applied Science.

119. Lawson, B. (1980). How Designers Think (1st ed.). Architectural Press.

120. Novak, M. (1988). Computational Compositions. In P. J. Bancroft & A. Arbor (Eds.), Computing in Design Education, ACADIA

88’ Workshop Proceedings, 5–30.

121. McCullough, M., Mitchell, W. J., & Purcell, P. (1990). The Electronic Design Studio: Architecture, Media and Knowledge in

the Computer Era. MIT Press.

122. Mitchell, W. J. (1990). The Logic of Architecture. MIT Press.

123. Mitchell, W. J., & McCullough, M. (1991). Digital Design Media (1st ed.). Van Nostrand Reinhold Company.

124. Eisenman, P. (1992). Visions Unfolding: Architecture in the Age of Electronic Media. Architectural Design Magazine, 62, xvi–

xviii.

125. Lynn, G. (1993). Architectural Curvilinearity: The Folded, the Pliant and the Supple. Folding in Architecture. Architectural

Design Magazine, 63(March/April), 8–15.

126. Frazer, J. (1995). An Evolutionary Architecture. Architectural Association Publications.

127. Fox, M., & Kemp, M. (2009). Interactive Architecture. Princeton Architectural Press.

128. Lynn, G. (1999). Animate Form. Princeton Architectural Press.

129. Kolarevic, B. (Eds.). (2003). Architecture in the Digital Age: Design and Manufacturing. Spon Press.

130. Terzidis, K. (2004). Algorithmic Design: A Paradigm Shift in Architecture?. Architecture in the Network Society: 22nd

eCAADe Conference Proceedings, 201–207.

131. Oxman, R., & Oxman, R. (2014). Theories of the Digital in Architecture. Routledge.

132. Oxman, R. (2017). Thinking difference: Theories and models of parametric design thinking. Design Studies, 1–36.

133. McCormack, J., Dorin, A., & Innocent, T. (2004). Generative design: a paradigm for design research. Proceedings of

Futureground.

134. Kolarevic, B., & Malkawi, A. (2005). Performative Architecture: Beyond Instrumentality (Vol. 60, Issue 1). Spon Press.

135. Oxman, Rivka. (2008). Performance-based Design: Current Practices and Research Issues. International Journal of

Architectural Computing, 06(01), 1–17.

136. Speaks, M. (2002a). Design Intelligence. A+U: Architecture and Urbanism, 12(387), 10–18.

137. Speaks, M. (2002b). Theory was interesting… but now we have work: No hope no fear. Architectural Research Quarterly,

6(3), 209–212.

138. Oxman, Rivka. (2008). Digital architecture as a challenge for design pedagogy: theory, knowledge, models and

medium. Design Studies, 29(2), 99–120.

139. Picon, A. (2010). Digital Culture in Architecture. Birkhäuser GmbH.

140. Carpo, M. (2012). The Digital Turn in Architecture 1992-2012. In M. Carpo (Eds.), AD Reader. John Wiley & Sons Ltd.

141. Oxman, R., & Oxman, R (2010). New Structuralism: Design, Engineering and Architectural Technologies. The New

Structuralism: Design, Engineering and Architectural Technologies. Architectural Design Magazine, 80(04), 14-23.

142. Hensel, M. (2013). AD Primers: Performance-Oriented Architecture: Rethinking Architectural Design and the Built

Environment. John Wiley & Sons Ltd.

143. Kolarevic, B. (2005). Towards the performative in Architecture. In B. Kolarevic & A. M. Malkawi (Eds.), Performative

Architecture: Beyond Instrumentality (pp. 203–214). Spon Press.

144. Tschumi, B. (1996). Architecture and Disjunction. MIT Press.

145. Kronenburg, R. (2007). Flexible: Architecture that Responds to Change. Laurence King Publishing Ltd.

146. Leatherbarrow, D. (2009). Architecture Oriented Otherwise. Princeton Architectural Press.

147. Picon, A. (2012). Architecture as Performative Art. In Y. Grobman & E. Neuman (Eds.), Performalism: Form and Performance

in Digital Architecture (pp. 15–19). Routledge.

https://web.archive.org/web/20200319201020/https:/cds.cern.ch/record/258562/files/P00020890.pdf
http://papers.cumincad.org/cgi-bin/works/paper/2004_201
https://dl.designresearchsociety.org/drs-conference-papers/drs2004/researchpapers/171/
https://journals.sagepub.com/doi/10.1260/147807708784640090
https://www.cambridge.org/core/journals/arq-architectural-research-quarterly/article/abs/theory-was-interesting-but-now-we-have-work/4C74D6FDD960918F798FA0ADB65EFC84
https://www.sciencedirect.com/science/article/abs/pii/S0142694X07001032
https://www.sciencedirect.com/science/article/abs/pii/S0142694X07001032
https://onlinelibrary.wiley.com/doi/10.1002/ad.1101

259

148. Goethe, J. W. von. (1790). Die Metamorphose der Pftanzen Zu Erklaren. Carl Wilhelm Ettinger.

149. Thompson, D. (1961). On Growth and Form. Cambridge University Press.

150. Migayrou, F. (2003). The Orders of the Non-Standard: Towards a Critical Structuralism. In Architecture non-Standard. Centre

Georges Pompidou Service Commercial.

151. Hensel, M., Menges, A., & Weinstock, M. (2004). Emergence in Architecture. Architectural Design Magazine: Emergence:

Morphogenetic Design Strategies, 74(3), 6–9.

152. Menges, A. (2006). Polymorphism. Techniques and Technologies in Morphogenetic Design. Architectural Design

Magazine, 76(2), 78–87.

153. Jabi, W. (2013). Parametric Design for Architecture. Laurence King Publishing Ltd.

154. Schumacher, P. (2009). Parametric Patterns. The Patterns of Architecture. Architectural Design Magazine, 79(6), 28–41.

155. Schumacher, P. (2012). The Autopoiesis of Architecture: A new agenda for architecture - Volume I. John Wiley & Sons Ltd.

156. Picon, A. (2004). Architecture and the Virtual Towards a new Materiality? Praxis: Journal of Writing Building, 6, 114–121.

157. Scheurer, F. (2010). Materialising Complexity. The New Structuralism: Design, Engineering and Architectural Technologies.

Architectural Design Magazine, 80(4), 86–93.

158. Bechthold, M. (2014). Design Robotics: A New Paradigm in Process-Based Design. In R Oxman (Eds.), Theories of the Digital

in Architecture. Abingdon: Routledge/Taylor & Francis.

159. Oxman, Rivka. (2012). Informed tectonics in material-based design. Design Studies, 33, 427–455.

160. Gramazio, F., & Kohler, M. (Eds.). (2014). Made by Robots: Challenging Architecture at a Larger Scale. Architectural

Design Magazine, 84(3).

151. Iwamoto, L. (2009). Digital fabrications - Architectural and Material Techniques. Princeton Architectural Press.

162. Willmann, J., Gramazio, F., Kohler, M., & Langenberg, S. (2012). Digital by Material: Envisioning an extended performative

materiality in the digital age of architecture. In S. Brell-Cokcan & J. Braumann (Eds.), Robotic Fabrication in Architecture,

Art, and Design (pp. 12–27). Springer-Verlag/Wien.

163. Oxman, R. (2012). Novel Concepts in Digital Design. In N. Gu & X. Wang (Eds.), Computational Design Methods and

Technologies: Applications in CAD, CAM and CAE Education (pp. 18–33). Information Science reference.

164. Oxman, N. (2011). Variable property rapid prototyping: Inspired by nature, where form is characterized by

heterogeneous compositions, the paper presents a novel approach to layered manufacturing entitled variable

property rapid prototyping. Virtual and Physical Prototyping, 6(1), 3–31.

165. Oxman, N., Ortiz, C., Gramazio, F., & Kohler, M. (2015). Material ecology. Computer-Aided Design, 60, 1–2.

166. Beesley, P., Hirosue, S., & Ruxton, J. (2006). Toward Responsive Architectures. In Philip Beesley, S. Hirosue, J. Ruxton, M.

Trankle, & C. Turner (Eds.), Responsive Architectures: Subtle Technologies (pp. 3–11). Architectural Press.

167. Oosterhuis, K. (2011). Towards a new kind of building: tag, make, move, evolve. NAi Publishers.

168. Pottmann, H. (2010). Architectural Geometry as Design Knowledge. The New Structuralism: Design, Engineering and

Architectural Technologies. Architectural Design Magazine, 80(4), 72–77.

169. Andrade, D., Harada, M., & Shimada, K. (2017). Framework for automatic generation of facades on free-form surfaces.

Frontiers of Architectural Research, 6(3), 273–289.

170. Eigensatz, M., Deuss, M., Schiftner, A., Kilian, M., Mitra, N., Pottmann, H., & Pauly, M. (2010). Case Studies in Cost-

Optimized Paneling of Architectural Freeform Surfaces. In C. Ceccato, L. Hesselgren, M. Pauly, H. Pottmann, & J. Wallner

(Eds.), Advances in Architectural Geometry 2010 (pp. 47–72). Springer.

161. Eigensatz, M., Kilian, M., Schiftner, A., Mitra, N., Pottmann, H., & Pauly, M. (2010). Paneling Architectural Freeform Surfaces.

ACM Transactions on Graphics, 29(4).

172. Flöry, S., & Pottmann, H. (2010). Ruled Surfaces for Rationalization and Design in Architecture. LIFE in:Formation, On

Responsive Information and Variations in Architecture: Proceedings of the 30 th Annual Conference of the Association for

Computer Aided Design in Architecture, 103–109.

173. Fu, C., & Cohen-or, D. (2010). K-set Tilable Surfaces. ACM Transactions on Graphics, 29(4), 1–6.

174. Son, S., Fitriani, H., Kim, J. T., Go, S., & Kim, S. (2017). Mathematical Algorithms of Patterns for Free-Form Panels.

Proceedings of the 2nd World Congress on Civil, Structural, and Environmental Engineering (CSEE’17), 1–8.

175. Larsen, N. M. (2012). Generative Algorithmic Techniques for Architectural Design. PhD thesis, Aarhus School of

Architecture.

176. Chien, Sheng-fen, Su, H., & Huang, Y. (2015). PARADE: A pattern-based knowledge repository for parametric designs.

Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20 th International Conference

of the Association for Computer-Aided Architectural Design Research in Asia.

177. Yu, R., & Gero, J. S. (2015). An empirical foundation for design patterns in parametric design. In Y. Ikeda, C. M. Herr, D.

Holzer, S. Kaijima, M. J. Kim, & S.  M, A (Eds.), Proceedings of the 20th International Conference of the Association for

Computer-Aided Architectural Design Research in Asia, 551–560.

178. Ebel, K.-H., & Ulrich, E. (1987). Social and Labour Effects of CAD/CAM. IFAC Proceedings Volumes, 20(5), 291–297.

179. Tamke, M., Nicholas, P., & Zwierzycki, M. (2018). Machine learning for architectural design: Practices and infrastructure.

International Journal of Architectural Computing, 16(2), 123–143.

180. Belém, C. G., Leitão, A. M., Santos, L., & Leitão, A. M. (2019). On the Impact of Machine Learning: Architecture without

Architects ?. “Hello, Culture”: Proceedings of the 18th Computer-Aided Architectural Design Futures Conference, 247–293.

https://onlinelibrary.wiley.com/doi/epdf/10.1002/ad.243
https://onlinelibrary.wiley.com/doi/10.1002/ad.976
https://www.jstor.org/stable/24329194
https://onlinelibrary.wiley.com/doi/epdf/10.1002/ad.1111
https://www.sciencedirect.com/science/article/abs/pii/S0142694X12000373
https://onlinelibrary.wiley.com/toc/15542769/2014/84/3
https://www.tandfonline.com/doi/abs/10.1080/17452759.2011.558588
https://www.tandfonline.com/doi/abs/10.1080/17452759.2011.558588
https://www.tandfonline.com/doi/abs/10.1080/17452759.2011.558588
https://dspace.mit.edu/handle/1721.1/107168
https://onlinelibrary.wiley.com/doi/epdf/10.1002/ad.1109
https://www.sciencedirect.com/science/article/pii/S2095263517300237
https://link.springer.com/chapter/10.1007/978-3-7091-0309-8_4
https://link.springer.com/chapter/10.1007/978-3-7091-0309-8_4
https://dl.acm.org/doi/10.1145/1778765.1778782
http://papers.cumincad.org/cgi-bin/works/paper/acadia10_103
https://dl.acm.org/doi/10.1145/1778765.1778781
http://avestia.com/CSEE2017_Proceedings/files/paper/ICSENM/ICSENM_101.pdf
https://adk.elsevierpure.com/en/publications/generative-algorithmic-techniques-for-architectural-design
http://papers.cumincad.org/cgi-bin/works/paper/caadria2015_206
http://papers.cumincad.org/cgi-bin/works/paper/caadria2015_073
https://www.sciencedirect.com/science/article/pii/S1474667017552787
https://journals.sagepub.com/doi/abs/10.1177/1478077118778580?journalCode=jaca
http://papers.cumincad.org/cgi-bin/works/paper/cf2019_020
http://papers.cumincad.org/cgi-bin/works/paper/cf2019_020

260

181. Caetano, I., Santos, L., & Leitão, A. (2020). Computational design in architecture: Defining parametric, generative, and

algorithmic design. Frontiers of Architectural Research, 9(2), 287–300.

182. Alfaris, A. (2009). Emergence Through Conflict the Multi-Disciplinary Design System (MDDS). PhD thesis, Massachusetts

Institute of Technology.

183. Knight, T., & Stiny, G. (2015). Making grammars: From computing with shapes to computing with things. Design Studies,

41, 8–28.

184. Stiny, G., & March, L. (1981). Design Machines. Environment and Planning B: Planning and Design, 8(3), 245–255.

185. Albayrak, C. (2011). Performative Architecture as a Guideline for Transformation of the Defence Line of Amsterdam.

Master thesis, Middle East Technical University and Delft University of Technology.

186. Peters, B. (2013). Introduction: Computation Works: The building of algorithmic thought. Computation Works: The

building of algorithmic thought. Architectural Design Magazine, 83(2), 8–15.

187. Cagan, J., Campbell, M. I., Finger, S., & Tomiyama, T. (2005). A Framework for Computational Design Synthesis: Model

and Applications. Journal of Computing and Information Science in Engineering, 5(3), 171.

188. Humppi, H. (2015). Algorithm-Aided Building Information Modeling: Connecting Algorithm-Aided Design and Object-

Oriented Design. Master thesis, Tampere University of Technology.

189. Oxman, R. (2006). Theory and design in the first digital age. Design Studies, 27(3), 229–265.

190. Otto, F., & Rasch, B. (1996). Finding Form: Towards an Architecture of the Minimal. Edition Axel Menges.

191. Burry, Mark. (1993). The Expiatory Church of the Sagrada Família. Phaidon Press.

192. Moretti, L. (1971). Ricerca Matematica in Architettura e Urbanisticâ. Moebius, IV(1), 30–53.

193. Kalay, Y. E. (1989). Modeling Objects and Environments (Principles of Computer Aided Design). Wiley-Academy.

194. Alfaris, A., & Merello, R. (2008). The Generative Multi-Performance Design System. Silicon + Skin: Biological Processes

and Computation: Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in

Architecture, 448–457.

195. Burry, M. (2003). Between Intuition and process: Parametric Design and Rapid Prototyping. In B. Kolarevic (Eds.),

Architecture in the Digital Age: Design and Manufacturing (pp. 149-162.). Taylor&Francis.

196. Nassar, K., Thabet, W., & Beliveau, Y. (2003). Building assembly detailing using constraint-based modeling. Automation

in Construction, 12(4), 365–379.

197. Barrios, C. (2005). Transformations on Parametric Design Models: A Case Study on the Sagrada Familia Columns.

Computer Aided Architectural Design Futures: Proceedings of the 11 th International Conference on Computer Aided

Architectural Design Futures, 393–400.

198. Aish, R., & Woodbury, R. (2005). Multi-level interaction in parametric design. Smart Graphics. SG 2005. Lecture Notes in

Computer Science, 3638, 151–162.

199. Hernandez, C. (2006). Thinking parametric design: introducing parametric Gaudi. Design Studies, 27, 309–324.

200. Eggert, R. J. (2004). Engineering Design. Prentice Hall.

201. Schumacher, P. (2008). Parametricism as Style: Parametricist Manifesto. The Darkside Club, 11th Architecture Biennale,

Venice.

202. Zboinska, M. A. (2015). Hybrid CAD/E Platform Supporting Exploratory Architectural Design. CAD Computer Aided

Design, 59, 64–84.

203. Elghandour, A., Saleh, A., Aboeineen, O., & Elmokadem, A. (2016). Using Parametric Design to Optimize Building’s

Façade Skin to Improve Indoor Daylighting Performance. Proceedings of the 3rd IBPSA-England Conference BSO, 353–

361.

204. Szalapaj, P. (2001). CAD Principles for Architectural Design. Architectural Press.

205. Eastman, Chuck, Teicholz, P., Sacks, R., & Liston, K. (2008). BIM Handbook: A Guide to Building Information Modeling for

Owners, Managers, Designers, Engineers, and Contractors (1st ed.). John Wiley & Sons, Inc.

206. Marin, P., Blanchi, Y., & Janda, M. (2015). Cost Analysis and Data Based Design for Supporting Programmatic Phase.

Real Time: Proceedings of the 33rd International Conference on Education and Research in Computer Aided Architectural

Design in Europe, Volume 1, 613–618.

207. Monedero, J. (1997). Parametric Design. a Review and Some Experiences. Challenges of the Future: Proceedings of the

15th eCAADe Conference.

208. Kensek, K. M., & Noble, D. E. (Eds.). (2014). Building Information Modeling: BIM in Current and Future Practice (1st ed.). John

Wiley & Sons.

209. Jabi, W., Soe, S., Theobald, P., Aish, R., & Lannon, S. (2017). Enhancing parametric design through non-manifold

topology. Design Studies, 52, 1–19.

210. Gerber, David Jason, & Pantazis, E. (2016). A Multi-Agent System for Facade Design: A design methodology for Design

Exploration, Analysis and Simulated Robotic Fabrication. POSTHUMAN FRONTIERS: Data, Designers, and Cognitive

Machines: Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture, 12–

23.

211. Fischer, T., & Herr, C. M. (2001). Teaching Generative Design. Proceedings of the 4th International Conference on

Generative Art. Generative Design Lab, DiAP, Politechnico di Milano University.

212. Frazer, J., Frazer, J., Xiyu, L., Mingxi, T., & Janssen, P. (2002). Generative and Evolutionary Techniques for Building

Envelope Design. International Conference on Generative Art, 1–16.

https://www.sciencedirect.com/science/article/pii/S2095263520300029
https://www.sciencedirect.com/science/article/pii/S2095263520300029
https://dspace.mit.edu/handle/1721.1/49718
https://www.sciencedirect.com/science/article/abs/pii/S0142694X15000605
https://journals.sagepub.com/doi/10.1068/b080245
https://repository.tudelft.nl/islandora/object/uuid%3A11f50230-8a9a-41f3-96fe-2cecaae39fbe
https://onlinelibrary.wiley.com/doi/epdf/10.1002/ad.1545
https://asmedigitalcollection.asme.org/computingengineering/article-abstract/5/3/171/450948/A-Framework-for-Computational-Design-Synthesis?redirectedFrom=fulltext
https://asmedigitalcollection.asme.org/computingengineering/article-abstract/5/3/171/450948/A-Framework-for-Computational-Design-Synthesis?redirectedFrom=fulltext
https://trepo.tuni.fi/handle/123456789/23492
https://trepo.tuni.fi/handle/123456789/23492
https://www.sciencedirect.com/science/article/abs/pii/S0142694X05000840
http://papers.cumincad.org/cgi-bin/works/paper/acadia08_448
https://www.sciencedirect.com/science/article/abs/pii/S0926580502000900
http://papers.cumincad.org/cgi-bin/works/paper/cf2005_1_73_113
https://link.springer.com/chapter/10.1007/11536482_13
https://www.sciencedirect.com/science/article/abs/pii/S0142694X05000876
http://www.patrikschumacher.com/Texts/Parametricism%20as%20Style.htm
https://www.sciencedirect.com/science/article/abs/pii/S0010448514001985
http://www.ibpsa.org/proceedings/BSO2016/p1172.pdf
http://www.ibpsa.org/proceedings/BSO2016/p1172.pdf
http://papers.cumincad.org/cgi-bin/works/paper/ecaade2015_201
http://papers.cumincad.org/cgi-bin/works/paper/4cce
https://www.sciencedirect.com/science/article/abs/pii/S0142694X17300285
https://www.sciencedirect.com/science/article/abs/pii/S0142694X17300285
http://papers.cumincad.org/cgi-bin/works/paper/acadia16_12
http://papers.cumincad.org/cgi-bin/works/paper/acadia16_12
http://generativeart.com/on/cic/ga2001_PDF/fischer.pdf
http://papers.cumincad.org/data/works/att/ga0202.content.pdf
http://papers.cumincad.org/data/works/att/ga0202.content.pdf

261

213. Zhang, P., & Xu, W. (2018). Quasicrystal Structure Inspired Spatial Tessellation in Generative Design. Learning, Adapting

and Prototyping: Proceedings of the 23rd CAADRIA Conference, Volume 1, 143–152.

214. Mitchell, W. J. (1975). The theoretical foundation of computer-aided architectural design. Environment and Planning B,

2(2), 127–150.

215. Fasoulaki, E. (2008). Integrated Design: A Generative Multi-Performative Design Approach. Master thesis, Massachusetts

Institute of Technology.

216. Shea, K., Aish, R., & Gourtovaia, M. (2003). Towards integrated performance-based generative design tools. Digital

Design: Proceedings of the 21st eCAADe Conference.

217. Chase, S. C. (2005). Generative design tools for novice designers: Issues for selection. Automation in Construction, 14(6),

689–698.

218. Leitão, A., Lopes, J., & Santos, L. (2014). Illustrated Programming. Design Agency: Proceedings of the 34th Annual

Conference of the Association for Computer Aided Design in Architecture, 291–300.

219. Humppi, H., & Österlund, T. (2016). Algorithm-Aided BIM. Complexity & Simplicity: Proceedings of the 34th eCAADe

Conference, Volume 2, 601–609.

220. Bukhari, F. a. (2011). A Hierarchical Evolutionary Algorithmic Design (HEAD) System for Generating and Evolving

Building Design Models. PhD thesis, Queensland University of Technology.

221. Bernal, M., Haymaker, J. R., & Eastman, C. (2015). On the role of computational support for designers in action. Design

Studies, 41, 163–182.

222. Zee, A. v. d., & Vrie, B. d. (2008). Design by Computation.

223. Puusepp, R. (2011). Generating Circulation Diagrams for Architecture and Urban Design Using Multi-Agent Systems.

PhD thesis, University of East London.

224. Abdelmohsen, S. (2013). Reconfiguring Architectural Space using Generative Design and Digital Fabrication: A Project

Based Course. Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics.

225. Caldas, L. (2008). Generation of energy-efficient architecture solutions applying GENE_ARCH: An evolution-based

generative design system. Advanced Engineering Informatics, 22(1), 59–70.

226. Chaszar, A., & Joyce, S. C. (2016). Generating freedom: Questions of flexibility in digital design and architectural

computation. International Journal of Architectural Computing, 14(2), 167–181.

227. Garber, R. (2014). The Digital States and Information Modelling. In R. Garber (Eds.), BIM Design: Realising the Creative

Potential of Building Information Modelling (pp. 122–131). John Wiley & Sons Ltd.

228. Terzidis, K. (2003). Expressive Form: A Conceptual Approach to Computational Design. Spon Press.

229. Queiroz, N., Carlos, N., Dantas, N., & Vaz, C. (2015). Designing a Building envelope using parametric and algorithmic

processes. Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics, 797–801.

230. Leitão, A., & Santos, L. (2011). Programming Languages for Generative Design: Visual or Textual?. Respecting Fragile

Places: 29th eCAADe Conference Proceedings, 549-557.

231. Janssen, P. (2014). Visual Dataflow Modelling: Some thoughts on complexity. Fusion: Proceedings of the 32nd eCAADe

Conference, Volume 2, 547-556.

232. Kaurel, H. G. (2016). Easing the Transition from Visual to Textual Programming. Master thesis, Norwegian University of

Science and Technology.

233. Autodesk. (2019). The Dynamo Primer: for Dynamo v2.0.

234. Sutherland, I. E. (1963). Sketchpad: A man-machine graphical communication system. PhD thesis, Massachusetts Institute

of Technology.

235. Janssen, P., Li, R., & Mohanty, A. (2016). Möbius: A parametric modeller for the web. Living Systems and Micro-Utopias:

Towards Continuous Designing - Proceedings of the 21st International Conference of the Association for Computer-Aided

Architectural Design Research in Asia, 157–166.

236. Cristie, V., & Joyce, S. C. (2019). ‘GHShot’: a collaborative and distributed visual version control for Grasshopper

parametric programming. Architecture in the Age of the 4th Industrial Revolution: Proceedings of 37th eCAADe and XXIII

SIGraDi Joint Conference, 35–44.

237. Harding, J. E., & Shepherd, P. (2017). Meta-Parametric Design. Design Studies, 52, 73–95.

238. Wortmann, T., & Tunçer, B. (2017). Differentiating Parametric Design: Digital workflows in contemporary architecture

and construction. Design Studies, 52, 173–197.

239. Nezamaldin, D. (2019). Parametric Design with Visual Programming in Dynamo with Revit: The conversion from CAD

models to BIM and the design of analytical applications. Master thesis, KTH Skolan för arkitektur och samhällsbyggnad.

240. Feist, S., Ferreira, B., & Leitão, A. (2017). Collaborative Algorithmic-based Building Information Modelling. Protocols,

Flows and Glitches: 22nd International Conference on Computer-Aided Architectural Design Research in Asia, 613–622.

241. Leitão, A., Santos, L., & Lopes, J. (2012). Programming Languages for Generative Design: A Comparative Study.

International Journal of Architectural Computing, 10(1), 139–162.

242. Celani, G., & Vaz, C. (2012). CAD Scripting and Visual Programming Languages for Implementing Computational

Design Concepts: A Comparison from A Pedagogical Point of View. International Journal of Architectural Computing,

10(1), 121–138.

243. Noone, M., & Mooney, A. (2018). Visual and textual programming languages: a systematic review of the literature.

Journal of Computers in Education, 5(2), 149–174.

http://papers.cumincad.org/cgi-bin/works/paper/caadria2018_039
https://journals.sagepub.com/doi/abs/10.1068/b020127
https://dspace.mit.edu/bitstream/handle/1721.1/43750/265806046-MIT.pdf?sequence=2&isAllowed=y
http://papers.cumincad.org/cgi-bin/works/paper/ecaade03_553_149_shea
https://www.sciencedirect.com/science/article/abs/pii/S0926580504001438
http://papers.cumincad.org/cgi-bin/works/paper/acadia14_291
http://papers.cumincad.org/cgi-bin/works/paper/ecaade2016_158
https://core.ac.uk/download/pdf/10910987.pdf
https://core.ac.uk/download/pdf/10910987.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0142694X15000551
https://repository.uel.ac.uk/item/860z4
http://papers.cumincad.org/cgi-bin/works/paper/sigradi2013_215
http://papers.cumincad.org/cgi-bin/works/paper/sigradi2013_215
https://www.sciencedirect.com/science/article/abs/pii/S1474034607000493
https://www.sciencedirect.com/science/article/abs/pii/S1474034607000493
https://journals.sagepub.com/doi/abs/10.1177/1478077116638945
https://journals.sagepub.com/doi/abs/10.1177/1478077116638945
http://papers.cumincad.org/cgi-bin/works/paper/sigradi2015_sp_8.284
http://papers.cumincad.org/cgi-bin/works/paper/sigradi2015_sp_8.284
http://papers.cumincad.org/cgi-bin/works/paper/ecaade2011_118
http://papers.cumincad.org/cgi-bin/works/paper/ecaade2014_169
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2446411/14572_FULLTEXT.pdf?sequence=1
https://dspace.mit.edu/handle/1721.1/14979
http://papers.cumincad.org/cgi-bin/works/paper/caadria2016_157
http://papers.cumincad.org/cgi-bin/works/paper/ecaadesigradi2019_397
http://papers.cumincad.org/cgi-bin/works/paper/ecaadesigradi2019_397
https://www.sciencedirect.com/science/article/abs/pii/S0142694X16300655
https://www.sciencedirect.com/science/article/abs/pii/S0142694X17300352
https://www.sciencedirect.com/science/article/abs/pii/S0142694X17300352
http://www.diva-portal.org/smash/get/diva2:1278919/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:1278919/FULLTEXT01.pdf
http://papers.cumincad.org/cgi-bin/works/paper/caadria2017_132
https://journals.sagepub.com/doi/10.1260/1478-0771.10.1.139
https://journals.sagepub.com/doi/abs/10.1260/1478-0771.10.1.121
https://journals.sagepub.com/doi/abs/10.1260/1478-0771.10.1.121
https://link.springer.com/article/10.1007/s40692-018-0101-5

262

244. Aish, R. (2011). DesignScript: Origins, Explanation, Illustration. Design Modelling Symposium.

245. Castelo-Branco, R., & Leitão, A. (2020). Visual meets Textual: A Hybrid Programming Environment for Algorithmic

Design. {RE}: Anthropocene - Design in the Age of Humans: Proceedings of the 25th International Conference of the

Association for Computer-Aided Architectural Design Research in Asia, Volume 1, 375–384.

246. Sammer, M., Leitão, A., & Caetano, I. (2019). From Visual Input to Visual Output in Textual Programming. Intelligent &

Informed: Proceedings of the 24th International Conference of the Association for Computer-Aided Architectural Design

Research in Asia, Volume 1, 645–654.

247. Lin, C.-J. (2018). The STG-framework: a pattern-based algorithmic framework for developing generative models of

parametric architectural design at the conceptual design stage. Computer-Aided Design and Applications, 15(5), 653–

660.

248. Krull, F. N. (1994). The Origin of Computer Graphics within General Motors. IEEE Annals of the History of Computing,

16(3), 40–56.

249. Mutic, P., Moldovan, S., & Moldovan, I. (2010). Advanced 3D Modeling in ArchiCAD. Basic GDL scripting. Proceedings of

the 8th International Symposium: Computational Civil Engineering 2010, 346–357.

250. Leitão, A., & Proença, S. (2014). On the Expressive Power of Programming Languages for Generative Design: The Case

of Higher-Order Functions. Fusion: Proceedings of the 32nd eCAADe Conference, Volume 1, 257–266.

251. Tibbits, S., Harten, A. van der, & Baer, S. (2011). Python for Rhinoceros 5.

252. Wortmann, T. (2017). OPOSSUM: Introducing and Evaluating a Model-based Optimization Tool for Grasshopper.

Protocols, Flows and Glitches: Proceedings of the 22nd International Conference of the Association for Computer-Aided

Architectural Design Research in Asia, 283–292.

253. Menges, A. (2015). Fusing the Computational and the Physical: Towards a Novel Material Culture. Material Synthesis:

Fusing the Physical and the Computational. Architectural Design Magazine, 85(05), 8-15.

254. Dent, A., & Sherr, L. (2014). Material Innovation: Architecture. Thames & Hudson.

255. Fernando, R., Drogemuller, R., Salim, F. D., & Burry, J. (2010). Patterns, heuristics for architectural design support: Making

use of evolutionary modelling in design. New Frontiers: Proceedings of the 15th CAADRIA Conference, 283–292.

256. Qian, C. Z., Chen, V. Y., & Woodbury, R. F. (2007). Participant observation can discover design patterns in parametric

modeling. Expanding Bodies: Art, Cities, Environment - Proceedings of the ACADIA 2007 Conference, 230–241.

257. Globa, A., Moloney, J., & Donn, M. (2015). Urban Codes: Abstraction and Case-Based Approaches to Algorithmic Design

and Implications for the Design of Contemporary Cities. The next City - New Technologies and the Future of the Built

Environment: 16th International Conference CAAD Futures, 112–123.

258. Yu, R., & Gero, J. (2015). Design patterns from empirical studies in computer-aided design. The next City - New

Technologies and the Future of the Built Environment: 16th International Conference CAAD Futures, 527, 493–506.

259. Kilov, H. (2004). Using RM-ODP to bridge communication gaps between stakeholders. Workshop on ODP for Enterprise

Computing 2004.

260. Naur, P. (1968). Software Engineering. Report on a Conference sponsored by the NATO Science Committee.

261. Gabriel, R. (1996). Patterns of Software: Tales from the Software Community. Oxford University Press.

262. Khwaja, S., & Alshayeb, M. (2013). Towards design pattern definition language. Software - Practice and Experience, 43(7),

747–757.

263. Sousa, M., & Paio, A. (2020). Pattern-driven Design for Small Public Spaces An analysis of pattern books and toolboxes.

Anthropologic: Architecture and Fabrication in the Cognitive Age - Proceedings of the 38th eCAADe Conference, Volume

2, 491–498.

264. Anton, I., & Tănase, D. (2016). Informed Geometries. Parametric Modelling and Energy Analysis in Early Stages of

Design. Energy Procedia, 85, 9–16.

265. Zuk, W., & Clark, R. H. (1970). Kinetic Architecture. Van Nostrand Reinhold.

266. Ruiz-Geli, E. (2015). It is all about particles. In B. Kolarevic & V. Parlac (Eds.), Building Dynamics: Exploring Architecture of

Change (p. 268). Routledge.

267. Tibbits. (2015). Self-Assembly and Programmable Materials. In B. Kolarevic & V. Parlac (Eds.), Building Dynamics: Exploring

Architecture of Change (p. 146). Routledge.

268. European Commission (2020). Energy efficiency in buildings. European Commission, Department: Energy. Brussels.

269. Ciardiello, A., Rosso, F., Dell’Olmo, J., Ciancio, V., Ferrero, M., & Salata, F. (2020). Multi-objective approach to the

optimization of shape and envelope in building energy design. Applied Energy, 280(October).

270. Evins, R. (2013). A review of computational optimisation methods applied to sustainable building design . Renewable

and Sustainable Energy Reviews, 22, 230–245.

271. UNFCCC, U. N. F. C. on C. C. (1997). Kyoto Protocol.

272. Machairas, V., Tsangrassoulis, A., & Axarli, K. (2014). Algorithms for optimization of building design: A review. Renewable

and Sustainable Energy Reviews, 31, 101–112.

273. Larson, G. W., & Shakespeare, R. A. (1998). Rendering with Radiance the Art and Science of Lighting Visualization. Morgan

Kaufmann Publishers.

274. Marsh, K. (2014). Autodesk Robot Structural Analysis Professional 2015: Essentials. Marsh API LLC.

275. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning (1st ed.). Addison-Wesley

Longman Publishing Co., Inc.

https://www.autodesk.com/research/publications/designscript
http://papers.cumincad.org/cgi-bin/works/paper/caadria2020_224
http://papers.cumincad.org/cgi-bin/works/paper/caadria2020_224
http://papers.cumincad.org/cgi-bin/works/paper/caadria2019_171
https://www.tandfonline.com/doi/abs/10.1080/16864360.2018.1441231?journalCode=tcad20
https://www.tandfonline.com/doi/abs/10.1080/16864360.2018.1441231?journalCode=tcad20
https://courses.cs.washington.edu/courses/cse490h1/19wi/resources/gm-origins.pdf
https://www.researchgate.net/publication/308099495_Advanced_3D_Modeling_in_ArchiCAD_Basic_GDL_scripting
http://papers.cumincad.org/cgi-bin/works/paper/ecaade2014_214
http://papers.cumincad.org/cgi-bin/works/paper/ecaade2014_214
http://papers.cumincad.org/cgi-bin/works/paper/caadria2017_124
https://onlinelibrary.wiley.com/doi/epdf/10.1002/ad.1947
http://papers.cumincad.org/cgi-bin/works/paper/caadria2010_027
http://papers.cumincad.org/cgi-bin/works/paper/caadria2010_027
http://papers.cumincad.org/cgi-bin/works/paper/acadia07_230
http://papers.cumincad.org/cgi-bin/works/paper/acadia07_230
http://papers.cumincad.org/cgi-bin/works/paper/cf2015_112
http://papers.cumincad.org/cgi-bin/works/paper/cf2015_112
http://papers.cumincad.org/cgi-bin/works/paper/cf2015_481
https://www.semanticscholar.org/paper/Using-RM-ODP-to-bridge-communication-gaps-between-Kilov/b6c6258f4b7cb7822ad9e36a3cede37b472e2539
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.1122
http://papers.cumincad.org/cgi-bin/works/paper/ecaade2020_498
https://www.sciencedirect.com/science/article/pii/S1876610215029343
https://www.sciencedirect.com/science/article/pii/S1876610215029343
https://www.sciencedirect.com/science/article/abs/pii/S030626192031432X
https://www.sciencedirect.com/science/article/abs/pii/S030626192031432X
https://www.sciencedirect.com/science/article/abs/pii/S1364032113000920
https://www.sciencedirect.com/science/article/abs/pii/S1364032113007855

263

276. Wortmann, T., & Nannicini, G. (2017). Introduction to Architectural Design Optimization. In A. Karakitsiou, A. Migdalas, P.

M. Pardalos, & S. Rassia (Eds.), City Networks. Springer Optimization and Its Applications (Issue 128). Springer, Cham.

277. Henriksson, V., & Hult, M. (2015). Rationalizing Freeform Architecture: Surface discretization and multi-objective

optimization. Master thesis, Chalmers University of Technology.

278. Nguyen, A.-T., Reiter, S., & Rigo, P. (2014). A review on simulation-based optimization methods applied to building

performance analysis. Applied Energy, 113, 1043–1058.

279. Lin, S.-H., & Gerber, D. J. (2014). Evolutionary energy performance feedback for design: Multidisciplinary design

optimization and performance boundaries for design decision support. Energy and Buildings, 84, 426–441.

280. Stevanović, S. (2013). Optimization of passive solar design strategies: A review. Renewable and Sustainable Energy

Reviews, 25, 177–196.

281. Yang, X. S., Koziel, S., & Leifsson, L. (2013). Computational optimization, modelling and simulation: Recent trends and

challenges. Procedia Computer Science, 18 (International Conference on Computational Science, ICCS 2013

Computational), 855–860.

282. Wortmann, T., & Fischer, T. (2020). Does architectural design optimization require multiple objectives? A critical

analysis. RE: Anthropocene, Design in the Age of Humans: Proceedings of the 25th International Conference on Computer-

Aided Architectural Design Research in Asia, Volume 1, 365–374.

283. Emmerich, M. T. M., & Deutz, A. H. (2018). A tutorial on multiobjective optimization: fundamentals and evolutionary

methods. Natural Computing, 17, 585–609.

284. Wetter, M. (2001). GenOpt - a generic optimization program. Seventh International IBPSA Conference, 601-608.

285. von Buelow, P. (2012). Paragen: Performative Exploration of Generative Systems. Journal of the International Association

for Shell and Spatial Structures, 53(4), 271–284.

286. Chantrelle, F. P., Lahmidi, H., Keilholz, W., Mankibi, M. El, & Michel, P. (2011). Development of a multicriteria tool for

optimizing the renovation of buildings. Applied Energy, 88(4), 1386–1394.

287. Cichocka, J. M., Migalska, A., Browne, W. N., & Rodriguez, E. (2017). SILVEREYE - The Implementation of Particle Swarm

Optimization Algorithm in a Design Optimization Tool. Future Trajectories of Computation in Design: 17th International

Conference CAAD Futures 2017 Proceedings, 151–169. Springer Singapore.

288. Rahmani Asl, M., Stoupine, A., Zarrinmehr, S., & Yan, W. (2015). Optimo: A BIM-based Multi-Objective Optimization Tool

Utilizing Visual Programming for High Performance Building Design. Real Time: Proceedings of the 33rd eCAADe

Conference, Volume 1, 673–682.

289. Ma, W., Wang, X., Wang, J., Xiang, X., & Sun, J. (2021). Generative Design in Building Information Modelling (BIM):

Approaches and Requirements. Sensors, 21(5439).

290. Wortmann, T. (2019). Genetic evolution vs. function approximation: Benchmarking algorithms for architectural design

optimization. Journal of Computational Design and Engineering, 6(3), 414–428.

291. Pereira, I., & Leitão, A. (2020). More is more: The no free lunch theorem in architecture. Proceedings of the International

Conference of Architectural Science Association, 765–774.

292. Baños, R., Manzano-Agugliaro, F., Montoya, F. G., Gil, C., Alcayde, A., & Gómez, J. (2011). Optimization methods applied

to renewable and sustainable energy: A review. Renewable and Sustainable Energy Reviews, 15(4), 1753–1766.

293. Hopfe, C. J., & Hensen, J. L. M. (2011). Uncertainty analysis in building performance simulation for design support.

Energy and Buildings, 43(10), 2798–2805.

294. Loonen, R., Favoino, F., Hensen, J., & Overend, M. (2016). Review of current status, requirements and opportunities for

building performance simulation of adaptive facades. Journal of Building Performance Simulation, 10(2), 205–223.

295. Chen, J.-Y., & Huang, S.-C. (2016). Adaptive building facade optimisation: An integrated Green-BIM approach. Living

Systems and Micro-Utopias: Towards Continuous Designing: Proceedings of the 21st International Conference of the

Association for Computer-Aided Architectural Design Research in Asia, 259–268.

296. Han, T., Huang, Q., Zhang, A., & Zhang, Q. (2018). Simulation-based decision support tools in the early design stages

of a green building-A review. Sustainability, 10(10).

297. D’Oca, S., Hong, T., & Langevin, J. (2018). The human dimensions of energy use in buildings: A review. Renewable and

Sustainable Energy Reviews, 81, 731–742.

298. Heiselberg, P., Brohus, H., Hesselholt, A., Rasmussen, H., Seinre, E., & Thomas, S. (2009). Application of sensitivity analysis

in design of sustainable buildings. Renewable Energy, 34(9), 2030–2036.

299. Pisello, A. L., Castaldo, V. L., Rosso, F., Piselli, C., Ferrero, M., & Cotana, F. (2016). Traditional and Innovative Materials for

Energy Efficiency in Buildings. Key Engineering Materials, 678, 14–34.

300. Kheiri, F. (2019). Optimization of building fenestration and shading for climate-based daylight performance using the

coupled genetic algorithm and simulated annealing optimization methods. Indoor and Built Environment, 30(2).

301. Turrin, M., Von Buelow, P., & Stouffs, R. (2011). Design explorations of performance driven geometry in architectural

design using parametric modeling and genetic algorithms. Advanced Engineering Informatics, 25(4), 656–675.

302. Shi, X. (2010). Performance-based and performance-driven architectural design and optimization. Frontiers of

Architecture and Civil Engineering in China, 4, 512–518.

303. Schlueter, A., & Thesseling, F. (2009). Building information model-based energy/exergy performance assessment in

early design stages. Automation in Construction, 18(2), 153–163.

https://publications.lib.chalmers.se/records/fulltext/231658/231658.pdf
https://publications.lib.chalmers.se/records/fulltext/231658/231658.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0306261913007058
https://www.sciencedirect.com/science/article/abs/pii/S0306261913007058
https://www.sciencedirect.com/science/article/abs/pii/S0378778814006768
https://www.sciencedirect.com/science/article/abs/pii/S0378778814006768
https://www.sciencedirect.com/science/article/abs/pii/S1364032113002803
https://www.sciencedirect.com/science/article/pii/S1877050913003931
https://www.sciencedirect.com/science/article/pii/S1877050913003931
http://papers.cumincad.org/cgi-bin/works/paper/caadria2020_177
http://papers.cumincad.org/cgi-bin/works/paper/caadria2020_177
https://link.springer.com/article/10.1007/s11047-018-9685-y
https://link.springer.com/article/10.1007/s11047-018-9685-y
https://simulationresearch.lbl.gov/wetter/download/IBPSA-2001.pdf
https://www.ingentaconnect.com/content/iass/jiass/2012/00000053/00000004/art00010
https://www.sciencedirect.com/science/article/abs/pii/S0306261910003971
https://www.sciencedirect.com/science/article/abs/pii/S0306261910003971
http://papers.cumincad.org/cgi-bin/works/paper/cf2017_667
http://papers.cumincad.org/cgi-bin/works/paper/cf2017_667
http://papers.cumincad.org/cgi-bin/works/paper/ecaade2015_130
http://papers.cumincad.org/cgi-bin/works/paper/ecaade2015_130
https://www.mdpi.com/1424-8220/21/16/5439
https://www.mdpi.com/1424-8220/21/16/5439
https://www.sciencedirect.com/science/article/pii/S2288430018300721
https://www.sciencedirect.com/science/article/pii/S2288430018300721
https://web.ist.utl.pt/antonio.menezes.leitao/ADA/documents/publications_docs/2020_MoreIsMore_TheNoFreeLunchTheoremInArchitecture.pdf
https://www.sciencedirect.com/science/article/abs/pii/S1364032110004430
https://www.sciencedirect.com/science/article/abs/pii/S1364032110004430
https://www.sciencedirect.com/science/article/abs/pii/S0378778811002830
https://www.tandfonline.com/doi/full/10.1080/19401493.2016.1152303
https://www.tandfonline.com/doi/full/10.1080/19401493.2016.1152303
http://papers.cumincad.org/cgi-bin/works/paper/caadria2016_259
https://www.mdpi.com/2071-1050/10/10/3696
https://www.mdpi.com/2071-1050/10/10/3696
https://www.sciencedirect.com/science/article/abs/pii/S1364032117311632
https://www.sciencedirect.com/science/article/abs/pii/S0960148109000640#:~:text=A%20sensitivity%20analysis%20makes%20it,fewer%2C%20but%20most%20important%20parameters.
https://www.sciencedirect.com/science/article/abs/pii/S0960148109000640#:~:text=A%20sensitivity%20analysis%20makes%20it,fewer%2C%20but%20most%20important%20parameters.
https://www.scientific.net/KEM.678.14
https://www.scientific.net/KEM.678.14
https://journals.sagepub.com/doi/abs/10.1177/1420326X19888008
https://journals.sagepub.com/doi/abs/10.1177/1420326X19888008
https://www.sciencedirect.com/science/article/abs/pii/S1474034611000577
https://www.sciencedirect.com/science/article/abs/pii/S1474034611000577
https://link.springer.com/article/10.1007/s11709-010-0090-6
https://www.sciencedirect.com/science/article/abs/pii/S0926580508001064
https://www.sciencedirect.com/science/article/abs/pii/S0926580508001064

264

304. Petersen, S., & Svendsen, S. (2010). Method and simulation program informed decisions in the early stages of building

design. Energy and Buildings, 42(7), 1113–1119.

305. Attia, S., Gratia, E., De Herde, A., & Hensen, J. (2012). Simulation-based decision support tool for early stages of zero-

energy building design. Energy and Buildings, 49, 2–15.

306. Lin, S. E., & Gerber, D. J. (2013). Designing-in performance: evolutionary energy performance feedback for early stage

design. Proceedings of Building Simulation 2013: 13th Conference of IBPSA, 386–393.

307. Konis, K., Gamas, A., & Kensek, K. (2016). Passive performance and building form: An optimization framework for early-

stage design support. Solar Energy, 125(February), 161–179.

308. Lin, B., Chen, H., Yu, Q., Zhou, X., Lv, S., He, Q., & Li, Z. (2021). MOOSAS – A systematic solution for multiple objective

building performance optimization in the early design stage. Building and Environment, 200, 107929.

309. Ampanavos, S., & Malkawi, A. (2022). Early-Phase Performance-Driven Design using Generative Models. Design

Imperatives: The Future is Now. CAAD Futures 2021. Communications in Computer and Information Science, vol 1465.

Springer.

310. López, M., Rubio, R., Martín, S., & Croxford, B. (2017). How plants inspire facades. From plants to architecture:

Biomimetic principles for the development of adaptive architectural envelopes. Renewable and Sustainable Energy

Reviews, 67, 692–703.

311. Ochoa, C., & Capeluto, I. (2009). Advice tool for early design stages of intelligent facades based on energy and visual

comfort approach. Energy and Buildings, 41(5), 480–488.

312. Bouchlaghem, N. (2000). Optimizing the design of building envelopes for thermal performance. Automation in

Construction, 10(1), 101–112.

313. Wang, W., Zmeureanu, R., & Rivard, H. (2005). Applying multi-objective genetic algorithms in green building design

optimization. Building and Environment, 40(11), 1512–1525.

314. Gagne, J., & Andersen, M. (2012). A generative facade design method based on daylighting performance goals. Journal

of Building Performance Simulation, 5(3), 141–154.

315. Gagne, J. M. L., & Andersen, M. (2010). Multi-Objective Optimization for Daylighting Design Using a Genetic Algorithm.

Proceedings of SimBuild 2010 - 4th National Conference of IBPSA-USA, 9.

316. Ko, W. H., Schiler, M., Kensek, K., & Simmonds, P. (2012). Tilted Glazing in Building Simulations and its Effect on Form-

refinement of Complex Facades. Proceedings of SimBuild Conference 2012: 5th National Conference of IBPSA-USA, 361–

368.

317. Kasinalis, C., Loonen, R., Cóstola, D., & Hensen, J. (2014). Framework for assessing the performance potential of

seasonally adaptable facades using multi-objective optimization. Energy and Buildings, 79, 106–113.

318. Jin, Q., & Overend, M. (2014). A prototype whole-life value optimization tool for façade design. Journal of Building

Performance Simulation, 7(3), 217–232.

319. Gamas, A., Konis, K., & Kensek, K. (2014). A Parametric Fenestration Design Approach for Optimizing Thermal and

Daylighting Performance in Complex Urban Settings. 43rd ASES National Solar Conference 2014, 87–94.

320. Pantazis, E., & Gerber, D. (2018). A framework for generating and evaluating façade designs using a multi-agent system

approach. International Journal of Architectural Computing, 16(4), 248–270.

321. Gerber, D.., Pantazis, E., & Wang, A. (2017). A multi-agent approach for performance-based architecture: Design

exploring geometry, user, and environmental agencies in façades. Automation in Construction, 76, 45–58.

322. Bertagna, F., D’Acunto, P., Ohlbrock, P. O., & Moosavi, V. (2021). Holistic Design Explorations of Building Envelopes

Supported by Machine Learning. Journal of Facade Design and Engineering, 9(1), 31–46.

323. Laing, R. (2019). Digital Participation and Collaboration in Architectural Design. Routledge: Taylor & Francis Group.

324. Self, J. A. (2019). Communication through design sketches: Implications for stakeholder interpretation during concept

design. Design Studies, 63, 1–36.

325. Station, S. S., & Street, S. (2006). The new Southern Cross Station: The iconic redevelopment of Melbourne’s Spencer

Street Station. Steel Australia, 11–14.

326. Rothenthal, G., Ziegler, R., & Spasic, D. (2018). Oasis of light – Manufacturing the cladding of the Louvre Abu Dhabi. In L.

Hesselgren, A. Kilian, S. Malek, K.-G. Olsson, O. Sorkine-Hornung, & C. Williams (Eds.), AAG 2018: Advances in Architectural

Geometry (pp. 274–285). Klein Publishing GmbH (Ltd.).

327. Imbert, F., Frost, K. S., Fisher, A., Witt, A., Tourre, V., & Koren, B. (2012). Concurrent Geometric, Structural and Environmental

Design: Louvre Abu Dhabi. In L. Hesselgren, S. Sharma, J. Wallner, N. Baldassini, P. Bompas, & J. Raynaud (Eds.), Advances

in Architectural Geometry 2012 (pp. 77–90). Springer Vienna.

328. Piermarini, E., Nuttall, H., May, R., Janssens, V. M., Manglesdorf, W., & Kelly, T. (2018). Morpheus Hotel, Macau – a

paradigm shift in computational engineering. Steel Construction, 11(3), 218–231.

329. Blandini, L., & Nieri, G. (2020). Kuwait International Airport Terminal 2: Engineeirng and Fabrication of a Complex

Parametric Megastructure. In J. Burry, J. Sabin, B. Sheil, & M. Skavara (Eds.), FABRICATE 2020: Making Resilient Architecture

(pp. 84–91). UCLPress.

330. Kolarevic, B. (2003). Information Master Builders. In Architecture in the Digital Age: Design and Manufacturing (pp. 57–62).

Spon Press.

331. Austern, G., Capeluto, I. G., & Grobman, Y. J. (2018). Rationalization Methods in Computer Aided Fabrication: A critical

review. Automation in Construction, 90, 281–293.

https://www.sciencedirect.com/science/article/abs/pii/S0378778810000332
https://www.sciencedirect.com/science/article/abs/pii/S0378778810000332
https://www.sciencedirect.com/science/article/abs/pii/S037877881200045X
https://www.sciencedirect.com/science/article/abs/pii/S037877881200045X
https://publications.ibpsa.org/conference/paper/?id=bs2013_1036
https://publications.ibpsa.org/conference/paper/?id=bs2013_1036
https://www.sciencedirect.com/science/article/abs/pii/S0038092X15006933
https://www.sciencedirect.com/science/article/abs/pii/S0038092X15006933
https://www.sciencedirect.com/science/article/abs/pii/S0360132321003334
https://www.sciencedirect.com/science/article/abs/pii/S0360132321003334
https://link.springer.com/chapter/10.1007/978-981-19-1280-1_6
https://www.sciencedirect.com/science/article/abs/pii/S136403211630510X
https://www.sciencedirect.com/science/article/abs/pii/S136403211630510X
https://www.sciencedirect.com/science/article/abs/pii/S0378778808002582
https://www.sciencedirect.com/science/article/abs/pii/S0378778808002582
https://www.sciencedirect.com/science/article/abs/pii/S0926580599000436
https://www.sciencedirect.com/science/article/abs/pii/S0360132304003439
https://www.sciencedirect.com/science/article/abs/pii/S0360132304003439
https://www.tandfonline.com/doi/abs/10.1080/19401493.2010.549572
https://infoscience.epfl.ch/record/153674?ln=en
https://publications.ibpsa.org/conference/paper/?id=simbuild2012_06b_1_Ko
https://publications.ibpsa.org/conference/paper/?id=simbuild2012_06b_1_Ko
https://www.sciencedirect.com/science/article/abs/pii/S0378778814003715
https://www.sciencedirect.com/science/article/abs/pii/S0378778814003715
https://www.tandfonline.com/doi/abs/10.1080/19401493.2013.812145
https://journals.sagepub.com/doi/abs/10.1177/1478077118805874?journalCode=jaca
https://journals.sagepub.com/doi/abs/10.1177/1478077118805874?journalCode=jaca
https://www.sciencedirect.com/science/article/abs/pii/S092658051730016X
https://www.sciencedirect.com/science/article/abs/pii/S092658051730016X
https://jfde.eu/index.php/jfde/article/view/229
https://jfde.eu/index.php/jfde/article/view/229
https://www.sciencedirect.com/science/article/abs/pii/S0142694X19300043
https://www.sciencedirect.com/science/article/abs/pii/S0142694X19300043
https://www.steel.org.au/getattachment/fe097355-35fe-43f3-9389-717b92c392bb/The-new-Southern-Cross-Station_mar06.pdf
https://www.steel.org.au/getattachment/fe097355-35fe-43f3-9389-717b92c392bb/The-new-Southern-Cross-Station_mar06.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/stco.201810025?af=R
https://onlinelibrary.wiley.com/doi/abs/10.1002/stco.201810025?af=R
https://www.jstor.org/stable/j.ctv13xpsvw.15
https://www.jstor.org/stable/j.ctv13xpsvw.15
https://www.sciencedirect.com/science/article/abs/pii/S0926580517301905
https://www.sciencedirect.com/science/article/abs/pii/S0926580517301905

265

332. Hill, J. (2005). Building the Drawing. Design through Making. Architectural Design Magazine, 75(4), 13–21.

333. Austern, G., Elber, G., Capeluto, I. G., & Grobman, Y. J. (2018). Adapting Architectural Form to Digital Fabrication Constraints.

In L. Hesselgren, A. Kilian, S. Malek, K.-G. Olsson, O. Sorkine-Hornung, & C. Williams (Eds.), AAG 2018: Advances in

Architectural Geometry (pp. 10–33). Klein Publishing GmbH (Ltd.).

334. Overall, S., Rysavy, J. P., Miller, C., Sharples, W., Sharples, C., Kumar, S., Vittadini, A., & Saby, V. (2020). Direct-to-Drawing:

Automation in extruded terracotta fabrication. In J. Burry, J. Sabin, B. Sheil, & M. Skavara (Eds.), FABRICATE 2020: Making

Resilient Architecture. UCLPress.

335. Castañeda, E., Lauret, B., Lirola, J. M., & Ovando, G. (2015). Free-form Architectural Envelopes: Digital processes

opportunities of industrial production at a reasonable price. Journal of Facade Design and Engineering, 3(1), 1–13.

336. Lee, G., & Kim, S. (2012). Case Study of Mass Customization of Double-Curved Metal Façade Panels Using a New

Hybrid Sheet Metal Processing Technique. Journal of Construction Engineering and Management, 138(11), 1322–1330.

337. Aksamija, A. (2016). AD Smart04: Integrating Innovation in Architecture - Design, methods and technology for progressive

practice and research. John Wiley & Sons Ltd.

338. Soar, R., & Andreen, D. (2012). The Role of Additive Manufacturing and Physiomimetic Computational Design for

Digital Construction. Material Computation: Higher Integration in Morphogenetic Design. Architectural Design Magazine,

82(2), 126–135.

339. Paio, A., Eloy, S., Rato, V. M., Resende, R., & de Oliveira, M. J. (2012). Prototyping Vitruvius, New Challenges: Digital

Education, Research and Practice. Nexus Network Journal: Architecture and Mathematics, 14, 409–429

340. Jančič, L. (2016). Implications of the Use of Additive Manufacturing in Architectural Design. PhD Thesis. Univerza v Ljubljani.

341. Kolarevic, B. (2008). The (Riscky) Craft of Digital Making. In Manufacturing material effects: Rethinking design and making

in architecture. Routledge.

342. Afify, H. M. N., & Elghaffar, Z. (2007). Advanced Digital Manufacturing Techniques (CAM) in Architecture. Em‘Body’Ing

Virtual Architecture: The 3rd International Conference of the Arab Society for Computer Aided Architectural Design, 67–80.

343. Bayram, A. K. Ş. (2021). Digital Fabrication Shift in Architecture. In Architectural Sciences and Technology (Vol. 42, pp. 173–

193). Livre de Lyon.

344. Barkow F (2008). Cut to Fit. In B. Kolarevic & K. Klinger (Eds.), Manufacturing Material Effects: Rethinking Design and Making

in Architecture. Routledge.

345. Suare, R. (2008). Innovation Through Accountability in the Design and Manufacturing of Material Effects. In B. Kolarevic &

K. Klinger (Eds.), Manufacturing Material Effects: Rethinking Design and Making in Architecture. Routledge.

346. Simmons, M. (2008). Material Collaborations. In B. Kolarevic & K. Klinger (Eds.), Manufacturing Material Effects: Rethinking

Design and Making in Architecture. Routledge.

347. Kolarevic, B., & Klinger, K. R. (2008). Manufacturing / Material / Effects. In B. Kolarevic & K. Klinger (Eds.), Manufacturing

Material Effects: Rethinking Design and Making in Architecture. Routledge.

348. Peters, B., & Peters, T. (2013). Mind the Gap: Case Stories of Exchange. In AD Smart01: Inside Smartgeometry (pp. 206–217).

John Wiley & Sons, Ltd.

349. Mesnil, R., Douthe, C., Baverel, O., Léger, B., & Caron, J. F. (2015). Isogonal moulding surfaces: A family of shapes for

high node congruence in free-form structures. Automation in Construction, 59, 38–47.

350. Hesselgren, L., Charitou, R., & Dritsas, S. (2007). The Bishopsgate Tower Case Study. International Journal of Architectural

Computing, 5(1), 61–81.

351. Whitehead, H. (2003). Laws of form. In B. Kolarevic (Eds.), Architecture in the Digital Age: Design and Manufacturing (pp.

116–148). Spon Press - Taylor & Francis Group.

352. Pottmann, H., Eigensatz, M., Vaxman, A., & Wallner, J. (2015). Architectural geometry. Computers and Graphics, 47, 145–

164.

353. Ceccato, C. (2012). Material Articulation: Computing and Constructing Continuous Differentiation. Material

Computation: Higher Integration in Morphogenetic Design. Architectural Design Magazine, 82(2), 96–103

354. Bates, D. (2008). Different Differences. In B. Kolarevic & K. Klinger (Eds.), Manufacturing Material Effects: Rethinking Design

and Making in Architecture. Routledge.

355. Sharples, C. (2009). Unified frontiers: Reaching out with BIM. Closing the Gap. Architectural Design Magazine, 79(2), 42–

47.

356. Schittich, C., & Lenzen, S. (Eds.). (2015). Fassaden/Facades: Best of Detail. Herausgeber.

357. Romero, F., & Ramos, A. (2013). Bridging a culture: The design of museo soumaya. Computation Works: The buliding of

algorithmic thought. Architectural Design Magazine, 83(2), 66–69.

358. Leon, A. P. De. (2012). Two Case-Studies of Freeform-Facade Rationalization. Digital Physicality: Proceedings of the 30th

eCAADe Conference, Volume 2, 491–500.

359. Beorkrem, C. (2013). Material Strategies in Digital Fabrication. Routledge.

360. Brownell, B. (2012). Material Strategies: Innovative Applications in Architecture. Princeton Architectural Press.

361. Bennett, C., Fabrizio, M., & Kehoe, M. (2011). 100 11th Avenue: Ateliers Jean Nouvel.

362. Caetano, I., & Leitão, A. (2016). DrAFT: an Algorithmic Framework for Facade Design. Complexity & Simplicity:

Proceedings of the 34th eCAADe Conference, Volume 1, 465–474.

https://onlinelibrary.wiley.com/doi/epdf/10.1002/ad.98
https://www.jstor.org/stable/j.ctv13xpsvw.17
https://www.jstor.org/stable/j.ctv13xpsvw.17
https://jfde.eu/index.php/jfde/article/view/33
https://jfde.eu/index.php/jfde/article/view/33
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CO.1943-7862.0000551
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CO.1943-7862.0000551
https://onlinelibrary.wiley.com/doi/epdf/10.1002/ad.1389
https://onlinelibrary.wiley.com/doi/epdf/10.1002/ad.1389
https://link.springer.com/article/10.1007/s00004-012-0124-6
https://link.springer.com/article/10.1007/s00004-012-0124-6
http://papers.cumincad.org/cgi-bin/works/paper/ascaad2007_006
https://www.sciencedirect.com/science/article/abs/pii/S0926580515001521
https://www.sciencedirect.com/science/article/abs/pii/S0926580515001521
https://journals.sagepub.com/doi/abs/10.1260/147807707780912912?journalCode=jaca
https://www.sciencedirect.com/science/article/abs/pii/S009784931400140X
https://onlinelibrary.wiley.com/doi/epdf/10.1002/ad.1385
https://onlinelibrary.wiley.com/doi/10.1002/ad.849
https://onlinelibrary.wiley.com/doi/epdf/10.1002/ad.1556
http://papers.cumincad.org/cgi-bin/works/paper/ecaade2012_316
http://papers.cumincad.org/cgi-bin/works/paper/ecaade2016_198

266

363. Leitão, A. (2014). Improving generative design by combining abstract geometry and higher-order programming.

Rethinking Comprehensive Design: Speculative Counterculture - Proceedings of the 19th International Conference on

Computer- Aided Architectural Design Research in Asia, 575–584.

364. Barendregt, H., & Barendsen, E. (1994). Introduction to Lambda Calculus.

365. Coxeter, H. S. M. (1973). Regular Polytopes (3rd edition). Methuen, Dover Publications.

366. Grünbaum, B., & Shephard, G. (1977). Tilings by Regular Polygons. Mathematics Magazine, 50(5), 227–247.

367. Kaplan, C., & Salesin, D. (2004). Islamic star patterns in absolute geometry. ACM Transactions on Graphics, 23(2), 97–119.

368. Nasri, A., Benslimane, R., & El, A. (2017). Geometric rosette patterns analysis and generation. Journal of Cultural Heritage,

25, 65–74.

369. Grünbaum, B., & Shephard, G. (1987). Tilings and patterns. New York : W.H. Freeman.

370. Emery, I. (2009). The Primary Structures of Fabrics: An Illustrated Classification (4th edition). Thames & Hudson.

371. Grünbaum, B., & Shephard, G. (1980). Satins and Twills: An Introduction to the Geometry of Fabrics. Mathematics

Magazine, 53(3), 139–161.

372. Grünbaum, B., & Shephard, G. (1986). An extension to the catalogue of isonemal fabrics. Discrete Mathematics, 60, 155–

192.

373. Jiang, J., & Ma, Y. (2020). Path planning strategies to optimize accuracy, quality, build time and material use in additive

manufacturing: A review. Micromachines, 11(7).

374. Evins, R., Joyce, S. C., Pointer, P., Sharma, S., Vaidyanathan, R., & Williams, C. (2012). Multi-objective design optimisation:

Getting more for less. Proceedings of the Institution of Civil Engineers: Civil Engineering, 165(5), 5–10.

375. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE

Transactions on Evolutionary Computation, 6(2), 182–197.

376. Carlucci, S., Cattarin, G., Causone, F., & Pagliano, L. (2015). Multi-objective optimization of a nearly zero-energy building

based on thermal and visual discomfort minimization using a non-dominated sorting genetic algorithm (NSGA-II).

Energy and Buildings, 104, 378–394.

377. Barraza, M., Bojórquez, E., Fernández-González, E., & Reyes-Salazar, A. (2017). Multi-objective optimization of structural

steel buildings under earthquake loads using NSGA-II and PSO. KSCE Journal of Civil Engineering, 21(2), 488–500.

378. Nabil, A., & Mardaljevic, J. (2006). Useful daylight illuminances: A replacement for daylight factors. Energy and Buildings,

38(7), 905–913.

379. Shapiro, A. (2003). Monte Carlo Sampling Methods. In Handbooks in Operations Research and Management Science (pp.

353–425). Elsevier.

380. McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A Comparison of Three Methods for Selecting Value of Input

Variables in the Analysis of Output from a Computer Code. Technometrics, 21(2), 239–245.

381. Rytel, G. (2013). The Influence of Climate on the Forms of Brazilian Modernist Architecture in the Years 1925-1960. Kwartalnik

Architektury I Urbanistyki, 4, 57–78.

382. Sousa, S., & Batista-Bastos, M. (2015). O tempo e a Diferença: Análise e Readaptação num Edifício em Lisboa. Cadernos de

Arquitectura e Urbanismo, 22(33), 58.

383. Erhan, H., Wang, I. Y., & Shireen, N. (2015). Harnessing design space: A similarity-based exploration method for

generative design. International Journal of Architectural Computing, 13(2), 217–236.

http://papers.cumincad.org/cgi-bin/works/paper/caadria2014_085
https://www.jstor.org/stable/2689529
https://dl.acm.org/doi/10.1145/990002.990003
https://www.sciencedirect.com/science/article/abs/pii/S1296207417300109
https://www.jstor.org/stable/2690105
https://www.sciencedirect.com/science/article/pii/0012365X86900105
https://www.mdpi.com/2072-666X/11/7/633
https://www.mdpi.com/2072-666X/11/7/633
https://www.icevirtuallibrary.com/doi/10.1680/cien.11.00014
https://www.icevirtuallibrary.com/doi/10.1680/cien.11.00014
https://ieeexplore.ieee.org/document/996017
https://www.sciencedirect.com/science/article/abs/pii/S0378778815301080
https://www.sciencedirect.com/science/article/abs/pii/S0378778815301080
https://link.springer.com/article/10.1007/s12205-017-1488-7
https://link.springer.com/article/10.1007/s12205-017-1488-7
https://www.sciencedirect.com/science/article/abs/pii/S0378778806000636
https://www.jstor.org/stable/1268522
https://www.jstor.org/stable/1268522
http://papers.cumincad.org/data/works/att/ijac201513206.pdf
http://papers.cumincad.org/data/works/att/ijac201513206.pdf

