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ABSTRACT 
Non-visual text-entry for people with visual impairments has 

focused mostly on the comparison of input techniques reporting 

on performance measures, such as accuracy and speed. While 

researchers have been able to establish that non-visual input is 

slow and error prone, there is little understanding on how to 

improve it. To develop a richer characterization of typing 

performance, we conducted a longitudinal study with five novice 

blind users. For eight weeks, we collected in-situ usage data and 

conducted weekly laboratory assessment sessions. This paper 

presents a thorough analysis of typing performance that goes 

beyond traditional aggregated measures of text-entry and reports 

on character-level errors and touch measures. Our findings show 

that users improve over time, even though it is at a slow rate (0.3 

WPM per week). Substitutions are the most common type of error 

and have a significant impact on entry rates. In addition to text 

input data, we analyzed touch behaviors, looking at touch contact 

points, exploration movements, and lift positions. We provide 

insights on why and how performance improvements and errors 

occur. Finally, we derive some implications that should inform the 

design of future virtual keyboards for non-visual input. 

Categories and Subject Descriptors 

H.5.2 [Information Interfaces and Presentation]: User 

Interfaces - Input devices and strategies. K4.2 [Computers and 

Society]: Social Issues – Assistive technologies for persons with 

disabilities. 

General Terms 

Measurement, Experimentation, Human Factors. 

Keywords 

Blind, Novice, Text-Entry, Input, Touch, Behavior, Performance. 

1. INTRODUCTION 
Over the last decade, touchscreen devices began to dominate the 

smartphone market. In contrast to feature phones, current devices 

are operated by touching the screen directly, without requiring a 

physical keyboard; users resort to virtual keyboards to enter text 

on their devices. Although text-entry is an inherently visually 

demanding task, particularly when using touchscreen devices, 

accessibility services have been devised to enable blind users to 

perform this task. These services rely on an Explore by Touch 

paradigm where users move their fingers on the screen and the 

interface reads aloud the element in focus. While Explore by 

Touch can be useful, the fundamental task of text input remains 

slow and error prone, especially for novice users [1, 3, 19].  

Although touch interaction and non-visual text-entry have been 

studied for years, research has been mainly limited to performance 

comparisons of input techniques [1, 3, 19, 22, 28]. In these 

studies, performance is often measured in terms of words per 

minute and errors. While these measures can establish that 

differences exist, they provide little justification for why and how 

they exist. In order to improve current input techniques, an 

understanding of touch typing behaviors is essential. However, 

because there is little or no knowledge on how blind users type on 

standard virtual keyboards it is unclear how to improve them. 

This paper presents a longitudinal study that aims to understand 

the characteristics of novice blind users typing performance, touch 

behaviors (e.g. exploration gestures - Figure 1), character-level 

errors, and learning experience. Our goal is to inform future 

designs of touchscreen keyboards, with the ultimate aim of 

supporting fast and accurate input that can be easily used by 

novice blind users. We recruited five blind participants and gave 

them new mobile touchscreen devices. A service that ran in the 

background of the devices collected system-wide input usage, 

which enabled us to account for practice. We then collected 

typing data through controlled laboratory assessments over an 

eight-week period. To develop a detailed characterization of how 

blind users explore and type on virtual keyboards, we propose 

extending text-entry measures to include movement measures, as 

in pointing-related research [9, 10, 12], such as distance traveled, 

target re-entries, and movement profile. These measures can 

provide more insights on how blind people use a continuous 

interaction paradigm such as Explore by Touch. We were 

interested in answering three main research questions: 1) What are 

the most common types of errors? 2) How does typing 

performance evolve over time? 3) Why do errors exist? 
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Figure 1. Lift points for all participants in week eight. 
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Our findings have implications for the design of touchscreen 

keyboards and input techniques for blind and visually impaired 

users. Based on typing data, our results show that substitutions are 

the most common error type throughout the study. Participants’ 

performance significantly improved over time, both in terms of 

errors and speed. We also show why improvements occur by 

examining hit positions, movement time, movement paths, and 

pausing behaviors. Correction strategies were consistent among 

users, but required a significant amount of time. 

The main contribution of this paper is a thorough understanding of 

unconstrained text-entry performance, typing behaviors, and an 

empirical body of knowledge for future development of virtual 

keyboards. We provide an analysis of touch exploration measures 

in text-entry tasks and report on the learning experience of novice 

blind users, particularly on how input performance and behaviors 

change over an eight-week period. The findings herein presented 

should be of interest to mobile keyboard designers and 

accessibility researchers looking to gain from quantitative insights 

into blind users’ text-entry performance with touch devices. 

2. TEXT INPUT FOR BLIND USERS 
Today’s mainstream touchscreen devices support non-visual text 

input via the built-in screen readers e.g. VoiceOver and Talkback. 

They enable users to explore the keyboard with their finger and 

have the keys are read aloud as they touch them. While the visual 

layout of the QWERTY keyboard is identical to that presented to 

sighted users, the text-entry rates are much slower for visually 

impaired users [19]. To address this problem a number of works 

have proposed novel interfaces for non-visual text-entry on 

mobile touchscreen devices; including new keyboard layouts [3, 

8] and alternative methods of inputting text [1, 16, 19, 22, 23]. 

What is common amongst these works is that they focus on the 

overall input performance metrics such as words per minute 

(WPM) and minimum string distance (MSD) error rates [21] to 

compare input methods. However, in doing so these works neglect 

to justify how and why differences exist between interfaces; for 

instance, in character-level errors [13, 27]. Similarly, the 

aforementioned studies use constrained text-entry tasks – where 

the participants are not provided with feedback on their input 

actions, or given the ability to correct errors. In contrast, 

Wobbrock and Myers [27] presented the input stream taxonomy 

to support unconstrained text-entry evaluations. This approach 

allows participants to make corrections to their typing and capture 

both uncorrected and corrected error rates. Using this analysis, it 

is possible to not only capture character-level errors, but also 

identify corrective behaviors. 

3. MEASURES OF TOUCH BEHAVIORS 
Findlater et al. [5] evaluated the typing performances of expert 

sighted typists on large touch surfaces. Through an analysis of 

touchscreen measures, they identified individual differences in 

key centroids and hit point deviations (i.e. x and y offsets of touch 

gestures with regards to individual keys). Later, they proposed 

personalized keyboards that could adapt to individual typing 

patterns and improve entry rates [6]. Guerreiro et al. [7] applied 

similar touch measures to investigate tablet text-entry behaviors of 

blind users with one- and two-handed input. While the text input 

performance metrics revealed no statistical difference between 

conditions, using the x, y offsets of the initial touch down 

positions, the authors uncovered that users landed closer to 

intended keys with two-handed input. Furthermore, when 

measuring movement distances of non-visual exploration, 

participants using two hands performed more efficient paths 

through the keyboard. The authors leveraged the fact that non-

visual touchscreen interactions result in gestures with periods of 

continuous movement and traces through the interface, opposed to 

the discrete point interactions of sighted users. 

While using movement measures is uncommon when analyzing 

text input, they are well established within cursor movement 

research. MacKenzie et al. [12], proposed seven accuracy 

measurements to understand users’ behaviors with pointing 

devices. Included in these were path analysis measurements, such 

as target re-entries, task axis crossing, movement direction and 

orthogonal direction change. The authors also proposed 

continuous measures such as movement variability, errors and 

offsets. Hwang et al. [9] believed analysis of submovements 

within pointing device selections could reveal new insights into 

the challenges faced by motor-impaired users. To understand 

individual differences between motor-impaired users’ cursor 

movements Hwang et al. proposed analyzing the number and 

duration of pauses, verification times, submovements within the 

intended target, target slips, and velocity profile of movements.  

In this paper, we extend on existing text-input analysis techniques 

and propose the inclusion of discrete and continuous touch 

movement measurements to better understand touchscreen text 

input behaviors of blind users. 

4. LONGITUDINAL USER STUDY 
Prior research investigating non-visual text-entry on mobile 

devices has merely reported on the overall text input performance 

measurements, failing to examine the underlying characteristics of 

users’ typing behaviors. We believe that a detailed analysis of 

text-input, using the proposed touch measurements, are key to 

expose the challenges faced by novice blind users. Our ultimate 

goal is to identify new opportunities to reduce the learning 

overhead and support better non-visual input on mobile 

touchscreen devices. In order to achieve these goals, we 

conducted a longitudinal study with blind novice smartphone 

users. Participants were each provided with a mobile device 

preloaded with our data collection tool and asked to use the device 

as their primary phone for eight weeks. Due to the ethically 

sensitive nature of the research, no participants were asked 

to consent to their data being shared beyond the research group 

and as such supporting data cannot be made openly available.  

4.1 Participants 
We recruited five participants with visual impairments, four males 

and one female, from a local training institution for blind people. 

Participants’ age ranged from 23 to 55 (M=37.2, SD=15.2) years 

old, and all participants were legally blind as defined within our 

IRB approved recruitment criteria. They were experienced 

desktop screen reader users. However, none owned a smartphone 

or had prior experience with touchscreen screen readers.  

4.2 Procedure 
Our study was designed to capture the progression of typing 

performance of novice users. Prior laboratory studies of 

longitudinal text-entry evaluations report using seven sessions 

with noticeable improvements [1]. Thus, we decided that eight 

weeks (weekly sessions) would be sufficient to observe 

comparable progression. The user study consisted of two 

components: in-situ usage and weekly laboratory assessments. 

4.2.1 In-Situ Device Usage 
Our goal was to collect everyday text-entry usage by novice blind 

users. Participants received basic training on how to use a virtual 

keyboard. We did not define, incentivize or force usage protocols. 



Instead, we developed a data collection framework that ran as a 

background service on their smartphones and collected usage 

measures, i.e. time spent using applications and number of 

keystrokes entered. Previously, Evans and Wobbrock [4] 

demonstrated that it is possible to obtain text-entry performance 

measurements (speed and errors) from everyday computer usage.  

However, analysis of everyday mobile typing performance is out 

with the scope of this paper – in-situ data will be used to give 

context of the device usage for individual participants and support 

the analysis of our weekly laboratory text-entry evaluations. 

4.2.2 Weekly Lab Text-Entry Evaluations 
Participants met with the researchers weekly, for eight weeks, and 

performed 20 minutes of text-entry trials. Each trial contained one 

sentence comprised of five words, with an average size of 5 

characters, and a minimum correlation with language of 0.97. We 

developed an experimental application that would select the trial 

sentences from a written language corpus. The application 

randomly selected the sentences for the session to avoid order 

effects and captured transcribed sentences and completion times. 

The experimental application started the trial by reading the target 

sentence aloud via the device’s TTS (Text-to-Speech engine). 

Upon finishing each sentence, participants pressed the return key 

twice to advance to the next trial. They were encouraged to type 

as accurately and quickly as possible. We used an unconstrained 

text-entry protocol [27], where participants were free to correct 

any errors they encountered. To ensure that participants would not 

practice the trials outside the laboratory evaluations, the 

application was installed on the participants’ device at the 

beginning of each session, and uninstalled at the end. Automatic 

correction and cursor movement operations were not used during 

the trials. 

Our study was carried out in Portuguese, as such there are a 

number of letters that are uncommon in the written language, and 

therefore do not appear within our trial sentences (e.g. W and Y). 

Subsequently, these keys will contain no examples of intended 

interactions within our evaluation.  

4.3 Apparatus 
Participants were each provided with a Samsung S3 Mini 
touchscreen smartphone, running Android 4.1 operating system. 

We enabled the Talkback screen reader and pre-installed our data 

collection service, TinyBlackBox (TBB). TBB was designed to 

constantly run in the background, capturing users’ interactions 

with the device. This approach enabled us to capture text-entry 

usage data throughout the eight-week period.  

The S3 Mini default input method was Samsung’s own Android 

QWERTY keyboard. Although visually the keys have both 

horizontal and vertical spacing, when Talkback is enabled and the 

participants touch the screen, they receive feedback for the nearest 

key to their touch point. However, when moving from one key to 

another, the key with current focus occupies the spacing. This 

means that target boundaries can grow and shrink based on the 

exploration paths. S3 Mini’s default keyboard was used 

throughout our study, both in laboratory evaluations and in-situ. 

4.4 Dependent Measures 
Text-entry performance was measured by analyzing trials’ input 

stream [27]. We report on words per minute (WPM), total error 

rates, uncorrected error rates, and corrected error rates. Moreover, 

we investigate character-level errors and types of errors 

(substitutions – incorrect characters, insertions – added characters, 

and omissions – omitted characters). Touch exploration behaviors 

were measured using x, y positions and variability [5] (hit point 

deviations), movement time, movement distances, Path Length to 

Task Axis length ratio (PL/TA), count and duration of pauses 

within the movements [9, 10, 12], and visited keys. 

4.5 Design and Analysis 
We performed Shapiro-Wilk tests on all dependent measures. For 

normally distributed values we used a mixed-effects model 

analysis of variance [15]. Mixed-effects models extend repeated 

measures models, such as ANOVAs, to allow unequal number of 

repetitions; that is, unbalance data such as ours, where we have 

different numbers of trials per week for each participant. We 

modeled Week as a fixed effect and Trial was included as a nested 

factor within Week. In addition, Participant and the interaction 

between Participant and In-Situ Usage Time were modeled as 

random effects to account for correlated measurements within 

subjects over time [24]. 

For the measures that were not normally distributed, we applied 

loge or log10 transforms [2], which resulted in normally distributed 

measures [Shapiro-Wilk p>.05]. We then used the mixed-effects 

model terms previously described for further analysis. 

5. RESULTS 
Our goal is to characterize novice blind users’ text-entry 

performance and learning when using Explore by Touch. We 

describe participants’ in-situ usage and relate it with text-entry 

performance. We analyze input speed, accuracy, and character-

level errors over an eight-week period. Finally, we characterize 

users’ touch exploration behaviors and provide insights on how 

and why input performance changes over time. 

5.1 In-Situ Usage 
Table 1 and Table 2 summarize the number of characters entered 

and time spent typing, respectively. 

Table 1. Characters entered in-situ. Columns represent weeks. 

 1 2 3 4 5 6 7 8 
P1 245 405 555 678 799 133 732 1292 
P2 1283 648 1548 5396 1248 411 2120 208 
P3 75 697 579 1115 310 1205 1 447 
P4 1002 1022 566 601 2435 603 2578 1099 
P5 32 45 22 21 12 24 189 383 

 

Table 2. Time spent typing in-situ (minutes). 

 1 2 3 4 5 6 7 8 
P1 66.2 62 46.6 54.6 101 26.7 46.5 85.9 
P2 180 53.6 98.7 383 92.8 29.8 149 12.3 
P3 1.78 85.8 99.1 170 40.7 131 0 57.7 
P4 160 196 43 36.5 127 36.5 201 91 
P5 5.25 3.7 7.4 1.5 0.45 1.17 15.2 65.3 

 

Participants entered a total of 32,764 characters over eight weeks. 

They spent a total of 51 hours actively entering text. Generally, 

the number of characters entered is directly related with time 

spent. However, there is a high variance in usage results both 

between participants and weeks. For instance, while P2 and P3 

were particularly active in the fourth week, others such as P4 were 

more active in the last two weeks. P5 was the least active with an 

average usage of 12.5 minutes (SD=20) per week. On the other 

hand P2 and P4 spent on average 125 (SD=110) and 111 (SD=65) 

minutes typing per week. Although analysis of in-situ 

performance measures is out of the scope of this paper, we will 

leverage usage data to control for performance improvements in 

all statistical analysis. 



5.2 Text-Entry Performance 
In total, participants produced 11,560 characters from which 

1,323 were backspaces, resulting in 10,237 transcribed characters. 

In this section we thoroughly analyze input performance regarding 

speed and accuracy over an eight-week period. 

5.2.1 Input Speed 
To assess input speed, we used the words per minute (WPM) 

measure calculated as (length of transcribed text – 1) * (60 

seconds / trial time in seconds) / (5 characters per word). 

Slow learning rate. Participants improved on average 2.4 wpm 

(SD=.36) from week one with 1.6 wpm (SD=.23) to 4 wpm 

(SD=.35) after eight weeks. We found a significant effect of Week 

on WPM [F1,7=12.329, p<.001] as all participants improved over 

time. Nevertheless, considering that participants were familiar 

with QWERTY keyboards, learning rates are still low with an 

average improvement of 0.3 wpm per week. 

Still improving after eight weeks. Figure 2 shows WPM graphed 

over eight weeks. We can see that participants are still improving 

input speeds at the end of the user study. Fitting power laws [25] 

to entry rates and extrapolating to twice the weeks gives an 

average entry speed of 5 wpm in week 16th. 

External factors can negatively influence performance. We can 

also notice that P2 and P4 have atypical changes in performance 

in week four and seven, respectively. When debriefing P2 about 

this sudden drop in performance, she mentioned perceiving the 

speech feedback being slower while typing after installing a 3rd 

party app, WhatsApp. In fact, this is a known issue with this 

particular application. Although we are not able to confirm that 

speech feedback changed, we can show that both number of 

pauses and duration of pauses during movement, increased from 

week 3 to week 5, while movement speed and distance traveled 

decreased in the same time period (see Section 5.4). This suggests 

that external factors had an influence in this participant’s typing 

behavior (e.g., other apps or emotional issues). 

In-situ usage improves performance. Regarding P4, the abrupt 

increase in input speed is most likely related with the increase of 

usage in week seven (see Tables Table 1 and Table 2). After 

debriefing P4 in that week, he mentioned that he was finally using 

his phone to the fullest, particularly sending and receiving text 

messages. He stated “… the phone is finally fully accessible to me, 

I can send SMS, I can send text messages via Skype, I can send all 

the messages that I want”. Therefore, we believe the sudden 

increase in input speed is due to his increase in usage of 

messaging applications. In fact, we found a significant medium 

size effect between Input Speed and In-Situ Usage time [Pearson’s 

r(290)=.353, p<.001]. 

5.2.2 Input Accuracy 
In order to analyze input accuracy, we calculated: 1) uncorrected - 

erroneous characters in the final transcribed sentence, 2) corrected 

- erased characters that were erroneous, and 3) total error rates - 

erroneous characters that were entered (even those that were 

corrected) [27]. 

Total error rates tend to 7.4%. P2 achieved the highest total error 

rate of 45% on week 1 and finished the user study with the lowest 

rate of 5.4% by week 8. Overall participants started with an 

average total error rate of 26% (SD=11.7%) and finished with 

7.4% (SD=1.7%) [F1,7=4.176, p<.001]. Moreover, Figure 3 shows 

that error rates start to stabilize around that value. 

Errors are usually corrected. Table 3 shows the uncorrected error 

rates for each participants and week. Overall, when given the 

chance, users tend to correct most errors, resulting in high quality 

transcribed sentences. This goes in line with previous findings for 

sighted users [21]. For instance, P1 and P2 had the lowest 

uncorrected error rates with 0% and 0.3% by week 8. On average, 

participants left only 1.6% (SD=1.4%) errors in the transcribed 

sentences by week 8, which resulted in a significant effect of 

Week [F1,7=2.306, p<.05]. 

Table 3. Unc. error rates (%). Columns represent weeks. 

 1 2 3 4 5 6 7 8 
P1 4 0.4 1.9 1.4 2.3 0.3 2.6 0 
P2 1 1 0.3 0 0 0 1.5 0.3 
P3 7.6 8.5 3.4 4.1 0.5 2.8 1.9 2.5 
P4 20 4.7 5.2 6.3 7.8 3.2 3.2 1.9 
P5 11 5.6 4.3 5.3 5.3 2.3 5.1 3.3 

 

Table 4. Corrected error rate (%). Higher is better. 

 1 2 3 4 5 6 7 8 
P1 74 77 63 89 81 81 77 91 
P2 87 55 73 89 84 91 85 68 
P3 62 50 41 72 50 46 71 57 
P4 69 81 69 68 71 56 62 60 
P5 86 100 60 50 92 86 89 88 

 

23-39% of deletions were inefficient. Corrected error rates 

illustrates the amount of effective “fixing” and allows to answer 

the question “of the erased characters, what percentage were 

erroneous?” High rate means that most of erased characters were 

errors and should have been corrected. Participants achieved 

average corrected error rates between 61% (SD=12%, week 3) and 

77% (SD=11%, week 7), which means that 23% to 39% of deleted 

characters had been correctly entered. This occurs because errors 

are not immediately recognized. For instance, when phonetically 

similar characters are entered (e.g. NM), users only notice that 

mistake when the word is read aloud. To fix the error, several 

characters, including correct characters, are usually deleted. A 

detailed inspection of logs files shows that editing operations, 

such as cursor movement, were never used. Average corrected 

error rate per week is 73%, which remains fairly constant 

throughout the eight weeks [F1,7=.98, p=.447]. 

Figure 2. Words per minute over 8 weeks. Figure 3. Total error rate (%) over 8 weeks. 



13% of time is spent correcting errors. The time spent correcting 

errors is subsumed by input speed (see Section 5.2.1); however, 

such analysis does not provide insights on the cost of such 

corrections. Examining correcting actions shows that participants 

spent on average 32% (SD=17%, MIN=19% [P5], MAX=65% 

[P2]) of their time correcting text in the first week. Performance 

significantly improved over time and by week eight only 13% 

(SD=1.8%) of time was spent in this task [F1,7=4.806, p<.001]. 

5.3 Character-Level Errors 
In this section, we present a fine grained analysis by categorizing 

types of input errors: insertions, substitutions, and omissions [14]. 

We report aggregate measures, which represent the method’s 

accuracy over all entered characters, but also at the level of 

individual letters [27]. These findings can help designers in 

addressing specific types of errors and characters. 

Substitutions are the most common type of error. Figure 4 

illustrates the types of errors over the eight-week period. 

Substitution errors were consistently higher than insertions and 

omissions. Although there was a significant decrease in 

substitution error rates over time, from 24% (SD=12%) to 6% 

(SD=1%) [F1,7=3.518, p<.005], they still remain significantly 

higher than the remaining types of errors [F2,8=125.321, p<.001]. 

In fact, substitution error rate is higher than omissions and 

insertions combined. This result holds true for all participants. 

Similar substitution rates across keys. Overall, participants had 

similar error rates across all intended keys. No row, column, or 

side patterns emerged from weekly data. Moreover, keys near 

edges had similar accuracy rates to those in the center (Figure 5). 

No clear substitution pattern. To analyze the most common 

substitution errors, we created confusion matrices. In week eight, 

some of the most common substitutions were QE (33%), BH 

(17%), PO (9%), PL (4%), RT (4%). Unlike sighted users 

that experience substitution patterns towards a predominant 

direction [5, 17], blind users’ patterns are less clear. This is most 

likely related with the differences between visual and auditory 

feedback when acquiring keys. Further discussion on this topic is 

available in Section 5.4. 

Adjacent phonetically similar characters promote substitutions. 

Since feedback is solely auditory, phonetically similar characters 

have the potential to be confused when blind users are exploring 

the keyboard. In the Portuguese language, particularly when using 

Android’s Text-to-Speech engine, there are three cases prone to 

confusions: I-E, O-U, and M-N. For I-E substitution error rates 

are constantly low over time (0-1%) and inexistent from week 

five. Regarding O-U substitutions, error rates are slightly higher 

with 8.5% in week one and decreasing to 0.5% in week eight. 

Finally, concerning M-N substitutions, error rates remain between 

3% (week one-three) and 6.5% (week five) across the eight-week 

time period. Indeed, in week eight, error rates are still 4.5%. No 

other adjacent pair of letters obtained such a consistently high 

(and symmetrical) error rate over time. These results suggest that 

phonetically similar letters that are close together have higher 

probability of being substituted. 

68% of omission errors are left uncorrected. Omission error rates 

decreased 6.5% from week one (M=8% SD=6%) to week eight 

(M=1% SD=0.7%) [F1,7=3.858, p<.005]. Unlike substitutions, the 

majority of omission errors are not corrected. On average 68% 

(SD=14%) of errors are left uncorrected. These errors are usually 

described as cognitive errors [11]. A common explanation is 

misspellings or users forgetting to type certain letters. However, 

leaving errors uncorrected may also be related with (lack of) 

feedback after an attempt to enter a character, confirming that an 

input action had a consequence. This option seems less likely 

since users received feedback after each character entry. Although 

omissions only account for 2.4% of errors (see Figure 4), they are 

the least likely to be corrected. 

5.4 Touch Exploration Behaviors 
In this section we provide new insights on participants’ touch 

exploration behaviors. We examine the three stages that compose 

a key selection: touching the screen, moving the finger to find the 

intended key, and lifting the finger. For this analysis, we removed 

outlying points where the entered key (on lift) was more than one 

key distance away from the intended key in either x or y direction 

to account for transposition or misspelling errors. 

5.4.1 Hit Point Analysis 
Hit points correspond to landing positions. It is noteworthy that at 

this point, users do not have any feedback about the key they will 

land on. Unlike input from sighted users, which aims towards 

visual stimuli, blind users solely resort to their spatial model of 

the keyboard and some physical affordances (e.g. device size).  

Users land on intended keys nearly half the times. By week 

eight, 48% (SD=12%) of key presses landed within the boundaries 

of intended targets. This number may seem low, but it is not 

unexpected given that participants did not receive any auditory 

feedback until this point. Nevertheless, performance significant 

increased from week one (M=27%, SD=15) to week eight 

[F7,28=5.222, p<.01], showing that users gain a better spatial 

model of the keyboard. We found that at week eight, 91% 

(SD=5%) of the times, participants land either inside the intended 

key or an adjacent key. Also, landing on the correct row (M=78%, 

SD=7%) is easier than landing on the correct column (M=59%, 

SD=11%) [F1,4=27.611, p<.01], which is not surprising given that 

rows make larger targets than columns.  

Keys near physical edges are easier hit. Throughout the eight-

week period, keys that were positioned on physical edges were 

easier to land on. For instance, in week eight, participants 

correctly landed on characters A and Q in 75% and 71% of times, 

respectively. On the other hand, characters such as B or M were 

only correctly hit 14% and 16%, respectively. The space bar 

consistently outperformed the remaining keys (week eight 

M=99%), most likely due to a combination of its positioning (on 

the bottom edge) and width (five times larger).  

Figure 4. Types of error over 8 weeks. 

Figure 5. Substitution error rates per key. Gray keys were not 

used in the trials. Darker colors indicate higher error rates. 

Left - week 2, Right - week 8. 



Emergent keyboard is shifted towards the bottom and most key 

overlaps are horizontal. We examined the emerging key shapes 

and sizes using hit points. Figure 6 illustrates the emergent 

keyboard for week eight; that is, the keyboard layout that results 

from participants’ touches. In week one, the key sizes are larger 

and shifted towards the center of the screen, where users started 

their exploration, which resulted in larger overlaps between keys. 

By week eight, participants are able to land nearer to keys; 

however, there are still significant overlaps, mostly horizontally. 

Characters M and N are particularly interesting, since they present 

the largest overlap (Figure 6). Also, we can see that hit points tend 

to occur below the center of the intended target. 

5.4.2 Movement Analysis 
Previous research has investigated text-entry performance by 

blind users. However, analyses tend to focus on performance 

measures, such as time and errors. In this section, we aim to 

establish why performance improvements occur by conducting a 

thorough analysis of touch exploration behaviors. 

Users visit on average one extra key. In the first week, the 

average number of visited keys per keystroke was 4.9 (SD=1.9). 

Participants significantly improved their performance achieving 

an average of 2 visited keys (SD=0.3) by week eight [F7,28=5.133, 

p<.001]. Similarly, the number of target re-entries (entering the 

same target for the second time) also improved from 6.6 (SD=3.2) 

to 0.8 (SD=0.3) [F7,28=7.498, p<.001]. This corresponds to an 

average of 49 traveled pixels (SD=11), where 60% of movement is 

done in the x-axis, which is consistent with previous results where 

users are more likely to land on the intended row and then 

perform horizontal movements. 

Users learn how to perform more efficient explorations. In order 

to understand exploration efficiency, we calculated the Path 

Length (movement distance) to Task Axis length (Euclidean 

distance between hit point and center of target) ratio. Participants 

significantly improved over time from 3.6 (SD=1.3) to 0.95 

(SD=0.15) [F7,28=6.033, p<.001]. Notice that we obtained an 

average ratio below 1 because the Task Axis length is the distance 

to the center of the target. Users only require traveling to the edge 

of the target in order to select the key.  

Keystroke time is on average 1.9 seconds. In line with previous 

touch measures, movement times also improved from 4.1 seconds 

(SD=1.4) to 1.9 seconds (SD=0.3) [F7,28=5.424, p<.001]. This 

value may seem high, but it is expected since users need to wait 

for auditory feedback to confirm which letter they are touching. 

As a consequence, entry times are directly related to speech rate 

and delay. Figure 7 illustrates P1’s dwell times in week one and 

eight. Longer pauses are clearly visible in the first week. Also, 

because feedback is received when entering keys, pauses often 

occur near their edges. 

Keys near physical edges require less time to press but do not 

result in lower error rates. We found significant differences 

between keys located near the device’s edge, such as Q, A, P, and 

L, and all other keys regarding movement time [week eight, 

Z=2.032, p<.05]. Nevertheless, this difference does not result in 

accuracy improvements. In fact, border keys have a slightly 

higher substitution rate (week eight, 7% vs. 5.4%, n.s.). 

Insertion errors have smaller movement times and distances. 
Insertion errors are related to unintentionally and accidentally 

entered characters. Knowing how to filter these keystrokes can 

result in performance improvements. When analyzing movement 

times and distances, we found significant differences between 

correct entries and insertion errors [F1,4=23.287, p<.01; 

F1,4=24.119, p<.01] throughout the eight-week period. These 

results suggest that touch data can be used to classify insertions. 

5.4.3 Lift Point Analysis 
Where hit point and movement analysis examined where users 

land on the screen and how they explore the keyboard, 

respectively, an examination of lift point allows us to understand 

the final step of selecting a key. It is particularly relevant to 

understand in what conditions substitution errors occur. 

Lift points are spread-out over keys’ boundaries. Figure 1 

illustrates all lift points for week eight. Data shows that points are 

spread over intended keys and particularly close to their edges. 

Unlike sighted users [5, 17, 18], there is not a clear touch offset 

direction, which can have significant implications when building 

touch models for this user group. Moreover, hit point deviations 

(standard deviations) remain unchanged across time with 25.6px 

in week one and 24.3px in week eight, which is approximately 

half the size of a key. This suggests that users may be prone to 

slip errors; that is, slipping to a nearby key just before selecting it.  

There is more to substitution errors than slips. We classified as 

finger slips all entries where the last visited key was the intended 

target. Although we are not applying a time threshold, this 

measure gives us all entries that need to be considered as slip 

errors. Overall, in week one 37.5% (SD=17%) of substitution 

errors were slips. In week eight we obtained a similar value of 

38.4% (SD=12%) [F1,7=2.095, p>.05]. Notice that slip errors 

account for less than 50% of substitution errors by week eight. 

Taking into account that users should receive speech feedback 

before selecting the intended key, we analyzed whether 

participants’ finger paths crossed it at some point during 

movement. In week eight, for 64% (SD=9.8%) of substitution 

errors, participants were inside the boundaries of the target at 

some point in their touch paths; however, failed to select it in a 

timely manner. After identifying some of the instances where 

these errors occurred, we conducted a manual examination of the 

recorded videos. We noticed that most of the cases were related to 

a significant delay between speech feedback, which resulted in a 

mismatch between the key being heard and touched at that 

moment. Participants tried to compensate for this delay by 

performing corrective movements, but often resulted in entering 

Figure 6. Polygons encompass hit points within a standard 

deviation of key centroid. 

Figure 7. A circle indicates a pause; size represents its 

duration. Left - week 1 for P1, Right - week 8 for P1. 



the incorrect key. Further research should explore this issue by 

investigating the effect of auditory delay on input accuracy. 

For some substitutions, intended keys are not even visited. 

According to the results described above, in week eight there are 

still 36% of substitutions where participants do not even visited 

the key they were aiming for. This means that they performed a 

selection without hearing the intended key. From visual inspection 

of individual keystrokes’ movements, we derived several reasons 

for this behavior: 1) Accidental touches – similarly to insertion 

errors, participants unintentionally touch the keyboard close to the 

intended character. These keystrokes are short in distance and 

time. 2) Phonetically similar keys – this happens when users cross 

a key that sounds similar to the intended character (e.g. while 

aiming for M, the user lands on B, moves to the right, enters N, 

and lifts the finger), resulting in a substitution error. 3) 

Overconfidence on spatial model – in some substitution instances 

it seems that participants overly rely on their spatial understanding 

of the keyboard by performing a gesture and selecting a key 

without waiting for feedback. Lastly, 4) Feeling lost and giving up 

– some exploration paths show fine-grain movements near the 

intended key, going back and forth; however, participants never 

hit the intended character. 

6. DISCUSSION 
In this section we describe major results, implications for future 

design of virtual keyboards, and limitations of our work. 

Summary of Major Results 

Participants achieve an average typing speed of 4 WPM and 4.7% 

total error rate after eight weeks of usage. Although performance 

was still improving in the last week, learning rate was slow (0.3 

WPM per week). Previous research has shown similar results when 

analyzing overall typing performance [1]. An open question until 

now was: why and how did users improved typing performance? 

Overall participants seem to gain a better spatial model of the 

keyboard by landing closer to targets, performing more time- and 

movement-efficient paths towards intended targets, and less target 

re-entries, which resulted in lower number of pauses to hear 

auditory feedback. 

Character-level analysis revealed that most erroneous characters 

are substitutions. However, in contrast with sighted typing 

patterns, results do not show a clear offset pattern. Instead, touch 

points are scattered over intended keys and particularly near 

edges. Substitution errors can have different causes and slip errors 

only account for about 38% of these cases. One would assume 

that participants would only lift their fingers once they hear the 

intended key; however, by week eight, this is not the case for 36% 

of substitutions errors. 

Finally, participants naturally correct the overwhelming majority 

of errors (98.4%), which corresponds to about 13% of their typing 

time. Moreover, one third of corrections are counterproductive as 

users delete correct characters.  

Implications for Design 

Easier, effective, and efficient correction. Corrections are still 

time consuming and inefficient. None of our participants used 

cursor-positioning operations throughout the study. It seems that 

these actions are only expected to be used by expert typists, 

preventing novice users to do fine-grain corrections. Also, 

participants did not use auto-correct or auto-complete solutions, 

although these have great potential to be used in non-visual text-

entry to correct missed errors (such as omissions) and improve 

typing speeds.  

Synchronize speech output with touch input. Results suggest that 

64% of substitution errors can be due to a mismatch between 

speech output and touch information. Future non-visual keyboards 

should prioritize synchronization between input and output 

modalities. 

Filter unintentionally added characters. Accidental touches 

originate substitution and insertion errors, which in turn take time 

to correct. However, most of these errors can be filtered out by 

monitoring movement’s time and distance, since they are 

significantly shorter than correct entries. 

Use language-based solutions. The majority of omission errors 

(68%) go by undetected and therefore uncorrected. Language-

based solutions such as spellcheckers seem to be the only 

plausible solution. Nevertheless, mainstream auto-correct 

approaches should also be able to deal with some substitution 

errors. Current algorithms usually weight word corrections by 

keyboard distance. Although blind users do not show a 

predominant touch offset direction, most substitution errors were 

adjacent keys. 

Leverage land-on and movement information.  Non-visual typing 

comprises much more than just lift positions. Movement data can 

provide evidence of what particular key users are trying to select. 

Future key recognizers should leverage this information and try to 

predict the most probable targets (see [20, 26] for pointing 

prediction). This information could be used with language models 

to narrow the search space of word-corrections or provide 

character suggestions when users delete a letter. 

Touch models need to adapt to expertise. Leveraging movement 

data is particularly relevant on early stages of learning when users 

perform longer exploration paths. While expert users may land on 

the intended target most of the times, novice users still need to 

search for the intended key and wait for auditory feedback. 

Therefore, touch models need to be able to adapt to different 

typing behaviors (i.e. abilities) and learning rates. 

Limitations 

Our participants only included five novice blind users. Although 

this is a small number of participants they represent a crucial user 

group when the goal is to designing easy-to-use solutions and 

identify challenges with current virtual keyboards. Although 

typing performance and touch behaviors can be significantly 

different for expert users, the derived implications may still apply. 

For instance, using more efficient correction strategies or 

language-based solutions can further improve experts’ typing 

performance. Further research should replicate the analysis 

reported in the paper with more experienced blind typists in order 

to examine character-level errors and touch movement behaviors. 

Finally, in this user study participants were allowed to use their 

device in-the-wild. Although we were able to control for device 

usage in our analysis, our weekly laboratory assessments may 

have influenced learning results. Thus, it is likely that reported 

weekly performance may not represent a truly natural learning 

experience; however, it surely represents the challenges users face 

while learning to type on virtual keyboards.  

7. CONCLUSION AND FUTURE WORK 
We have investigated the unconstrained typing performance and 

touch exploration behaviors of 5 novice blind users over the 

course of an eight-week period. Results show that users improve 

both entry speed and accuracy, although at slow rate. 

Improvements are mostly due to a combination of factors, such as 

landing closer to intended keys, performing more efficient 



keyboard explorations, lower number of target re-entries, and 

lower movement times. By week eight, users land inside the 

intended key or adjacent keys 91% of the time. The most common 

error type is a substitution. Regarding correction strategies, users 

correct most of typing errors, which consumes on average 13% of 

input time. Overall, we provide a thorough examination on how 

blind users type using a virtual keyboard. Future work should 

apply the design implications that emerged from our results and 

develop new solutions to improve typing performance. 
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