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ABSTRACT 
Braille has paved its way into mobile touchscreen devices, 
providing faster text input for blind people. This advantage 
comes at the cost of accuracy, as chord typing over a flat 
surface has proven to be highly error prone. A misplaced 
finger on the screen translates into a different or 
unrecognized character. However, the chord itself gathers 
information that can be leveraged to improve input 
performance. We present B#, a novel correction system for 
multitouch Braille input that uses chords as the atomic unit 
of information rather than characters. Experimental results 
on data collected from 11 blind people revealed that B# is 
effective in correcting errors at character-level, thus 
providing opportunities for instant corrections of 
unrecognized chords; and at word-level, where it 
outperforms a popular spellchecker by providing correct 
suggestions for 72% of incorrect words (against 38%). We 
finish with implications for designing chord-based 
correction system and avenues for future work.   
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INTRODUCTION 
Since the advent of Apple’s iPhone and its built-in 
accessibility features, blind people have increased access to 
mainstream mobile applications. However, the flat surface 
poses challenges that are only partially solved. Particularly, 
typing is still slow compared to what sighted people 
experience [4]. To address this issue, multitouch Braille 
chording approaches have been presented and are very 
effective in improving input speed [1,6]; however, they are 
characterized by a decrease in typing accuracy [6].  

One common approach to improve typing accuracy is the 
usage of spellcheckers. Indeed, there have been efforts in 

developing spellcheckers for disabled people, taking into 
consideration common typing errors and keyboard layout 
[3]. Further, Sandnes and Wang [5] presented a texting 
alternative for desktop computers, which relied on chording 
with spatial mnemonics and automatic word correction.  
However, to our knowledge, there are no reports of 
correction approaches that leverage Braille chording 
information. As a result, when decoding multitouch actions 
to characters, useful knowledge about the users’ intent is 
lost. The sequence of chords provides more information 
about the desired word than do the characters, as each chord 
becomes the atomic unit of information. Distances are 
computed considering that a chord may be partially correct 
enriching the selection of the most probable suggestions.  

In this paper we present B#, a correction system for 
multitouch Braille input that resorts to the chord itself as the 
basis for similarity analysis between words. At character-
level, an unrecognized chord is used along with n-gram 
features to decide the closest character. At word-level, we 
extended the Damerau-Levenshtein distance to assess 
proximity between chords, and thus use this information to 
search for the most probable corrections. The contributions 
of this paper are: first, an analysis of chording errors on 
multitouch Braille input; second, a correction system that 
leverages chord-level information; and finally, an analysis 
on the effectiveness of character- and word-level correction.  

COLLECTING TYPING DATA 
We conducted a user study with 11 Braille-knowledgeable 
blind participants (light perception at most, ages between 
22-62, 3 females) aimed at understanding the most common 
errors in multitouch Braille input (Grade 1). None of the 
participants owned a touchscreen phone. The prototype 
draws inspiration from BrailleTouch’s [6] usage setup 
(Figure 1-a), combined with finger tracking techniques [1]. 

Procedure 
Participants were given warm-up trials (10 minutes) starting 
from writing individual characters, words, and finally 
sentences. They were then instructed to write a set of 22 
sentences (completion dependent of participant’s 
availability), whereas the first two were practice trials. 
Error correction (delete) was not available in order to 
capture errors and uninterrupted typing behaviours. An 
auditory signal was used to indicate that a letter had been 
entered. Participants were instructed to continue to the next 
character even if they recognized they had made an error. 
Each sentence comprised five words, with an average size 
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of 4.48 characters. These sentences were extracted from a 
Portuguese written language corpus, each one having a 
minimum correlation with language of 0.97. 

Major Results 
Participants wrote a total of 168 sentences and 5972 
characters. Data analysis revealed insights on the most 
prominent Braille touch typing behaviors, which were the 
basis for B#’s error correction algorithm principles.  

High error rate. Multitouch Braille typing solutions are 
known to be fast and error prone [6]. Similarly, in this 
study, participants obtained an average typing speed of 14 
words per minute and error rate of 17.7%, of which 72.4% 
was due to character substitutions errors. 

Single dot errors. Chord-level analysis revealed that 35.2% 
of substitutions were due to a single dot error within the 
braille cell. This difference occurred either due to a single 
omitted or extra dot. If we include a single adjacent finger 
transposition, this accounts for 42.5% of substitution errors.  

Unrecognized Characters. Participants entered a total of 
263 Braille chords that were not recognized as a valid letter 
(4.4% of all chords). In these cases, the characters are 
automatically classified as errors, and this information is 
usually discarded from traditional correction systems. 

B#: LEVERAGING CHORD INFORMATION 
B# deals with mistyped words that result from entering 
incorrect chords on a touchscreen device. In the remainder 
of this section, we propose: first, a distance function that 
enables us to compare Braille chords, and therefore predict 
misspells; second, a character-level disambiguation 
mechanism; and finally, a word-level correction algorithm 
that leverages chord information. 

Braille Distance 
Our approach to word correction is based on similarity 
between Braille chords. The proposed distance function 
aims to model users’ behaviours while chording on a 
touchscreen. The 3x2 Braille matrix is viewed as a vector of 
6 bits and thus, the difference between two vectors can be 
computed as a binary distance. Four types of chording 
errors can occur whilst chording: omissions (finger was not 
on the screen), insertions (additional finger on the screen), 
transpositions (finger was on an adjacent position), and 
substitutions (wrong finger on the screen). 

Our distance function draws inspiration from the Damerau-
Levenshtein distance with a slight variation. The distance 
between chords is the sum of the differences between 
hands; that is, the first and last three bits that correspond to 
each hand are treated independently. This approach 
prevents transposition errors from occurring between hands. 
Overall, omission, insertion, and transposition errors are 
considered as a one-bit error (distance of one), because 
these are the most common misspellings, and substitution 
errors (i.e. wrong fingers), are treated as a 2-bit error. 

Character-Level Correction 
Character-level correction is achieved by exploiting 
redundancy in the alphabet. The Braille cell allows the 
representation of 64 different patterns. However, standard 
text entry applications do not use its maximum capacity. If 
we only consider the letters of the English alphabet (26), 
and the blank space, then this yields 58% redundancy. In 
cases where the user enters an invalid chord, the closest 
valid character in terms of Braille distance can be selected 
(Figure 1-b). There are several situations where this 
approach retrieves more than one valid character, 
introducing ambiguities in the correction process. In these 
cases, we leverage basic linguistic features, such as letter 
and n-gram frequencies to select the most probable 
character. Our algorithm uses the maximum of previous 
available letters to disambiguate invalid chords. Although 
this approach may not deal with all spelling errors, we are 
interested in analyzing its effect as a stand-alone solution, 
as well as in combination with word-level correction. 

Word-Level Correction 
B# word-level correction algorithm uses a similar approach 
to traditional spellcheckers by matching the transcribed 
word against a wordlist. A key difference is that it operates 
at chord-level. This means that even partially correct or 
invalid chords can be used to retrieve better matches. Even 
non-alphabetic characters, which are usually ignored by 
traditional spellcheckers, can provide useful information. 

For each transcribed word, B# creates a list of likely 
suggestions and ranks them using a word distance score. If 
the word exists in the wordlist, then it is automatically the 
first suggestion. Our algorithm deals with three types of 
typing errors: insertions (unintentionally added chords), 
substitutions (incorrect chords), and omission (omitted 

Figure 1. B# is a novel correction system for multitouch Braille input. (a) The user types the letter 'f'. (b) Character-level 
correction; the closest characters in terms of Braille distance for 2 unidentified chords. (c) Word-level correction; top suggestions 

return by B# considering the letters that are at a Braille distance of one from the entered chord. 



chords). Transposition errors were not considered since 
Braille input is a sequential task with no overlap between 
chord entries. A minimum string distance (MSD) score is 
used to calculate the distance between users’ input and 
suggestion candidates. We systematically check chord 
permutations in the transcribed word against the wordlist. 

Since computing all permutations of chords is 
computationally inefficient, we reduce our search space by 
only checking against letters that are at a Braille distance of 
one from the transcribed chord. This distance accounts for 
1-bit errors, responsible for most character substitutions. A 
Trie tree structure is used for checking the existence of the 
word in the wordlist, while employing character insertion, 
omission, and substitution rules during the spelling 
correction stage. A blank space filter is used to separate two 
words that were transcribed without a space between them. 
Finally, a word frequency score is computed and subtracted 
from the MSD score.  

B# EVALUATION 
In order to evaluate B#, we ran the correction algorithms on 
the set of sentences previously collected. Analysis was 
performed using an Android Virtual Device (Galaxy 
Nexus). From the 751 words, we identified and tagged 364 
(48.5%) incorrect entries that could be corrected by B#. We 
applied Shapiro-Wilk normality tests to observed values in 
all dependent variables. Parametric tests were applied for 
normally-distributed variables and non-parametric tests 
otherwise. Greenhouse-Geisser’s sphericity corrections 
were applied whenever Mauchly’s test showed a significant 
effect. Bonferroni corrections were used for post-hoc tests. 

Character-Level Results 
Character-level correction was applied to unrecognized 
characters, i.e. inexistent chords in the native alphabet. To 
evaluate character correction, we compared B# 
disambiguation with the baseline substitution errors. 
Additionally, we included a version of B# without the 
linguistic features in order to assess its effect on correction 
accuracy. The letters’ relative frequencies, bigrams, and 
trigrams were extracted from a corpus with more than 11 
million letters and 2 million words.   

Chord and Linguistic features enable Disambiguation. We 
obtained an average of 12.8% (sd=8.6%) substitution errors. 
By only exploiting the redundancy of the Braille alphabet, 
substitution errors slightly decreased to 12.2% (sd=7.3%). 
On the other hand, B# character-level disambiguation 
successfully corrected 2.4% of substitution errors, reaching 
an average of 10.4% (sd=5.9%). A Friedman test revealed a 
significant effect on methods [χ2

(2)

Word-Level Results 

=18.474, p<.001]. 
Wilcoxon pairwise comparisons showed significant 
differences between B# disambiguation and both baseline 
[p<.005, r=.2] and redundancy-only [p<.01, r=.1] results. 
As 33.6% of substitution errors were due to unrecognized 
characters, it means that 18.8% of all chord ambiguity 
errors were automatically corrected combining redundancy 

and simple language features. Overall, B# disambiguation 
corrected 29 words (8% of all incorrect words). 

In order to evaluate B# word-level correction, we compare 
our solution with a popular spellchecker for mobile devices: 
Android (AOSP) spellchecker, which for brevity purposes 
will herein be referred to as AOSP. This solution makes no 
use of contextual information, similarly to B#. Additionally, 
to conduct a fair comparison between correction methods, 
we used the same wordlist (213,133 words) and word 
frequencies. All required words used in the data collection 
stage existed in the wordlist. To assess the effect of each 
correction component, the results presented here were 
obtained without character-level disambiguation. We also 
analyze a variant of B# that uses the Hamming distance 
(XOR between binary vectors) to compute similarity 
between chords enabling us to assess our effectiveness 
against a commonly used metric to compare vectors. 

Method Top 1 Top 2 Top 3 Top 4 Top 5 

AOSP 28 (12) 34 (12) 36 (13) 37 (13) 38 (13) 
Hamming 53 (19) 63 (19) 66 (21) 62 (22) 69 (22) 
B# 56 (17) 65 (18) 69 (20) 70 (21) 72 (20) 

Table 1. Mean percentage  (standard deviation) of correct 
words returned for the top n suggestions (1≤n≤5). 

B# is consistently more accurate. Table 1 shows the results 
for the top n suggestions (1≤n≤5), while Figure 2 illustrates 
the results. The percentage of accurate words returned by 
the AOSP spellchecker is rather small and never exceeds 
38%. On the other hand, chord-based solutions outperform 
the AOSP spellchecker, with mean accuracy rates between 
53% and 72%. Indeed, when analyzing the first suggestion, 
there is a significant effect [F(1.102,11.021)=19.279, p<.001, 
partial η2

B# is more accurate for the top three suggestions. While we 
agree that the most important result is to propose the correct 
word as the first suggestion, we also acknowledge that 
providing the highest possible fraction of accurate 
suggestions at the top of the list is critical, especially, when 
user intervention is needed. Therefore, although B# and 
Hamming variant methods are equally accurate for n=1 and 
n=2, B# significantly outperforms its counterpart for n=3 
[Z=-2.023, p<.05, r=0.08], n=4 [Z=-2.023, p<.05, r=0.11], 
and n=5 [t

=.66], with both B# [p<.005] and Hamming 
[p<.01] methods being more accurate than AOSP 
spellchecker. This result suggests that leveraging chord 
information plays a major effect on correction accuracy. No 
significant effect between B# and Hamming variant was 
found for the first suggestion. Overall, B# would be able to 
correct 204 of 364 incorrect words automatically, i.e. 
without user intervention. The Hamming variant and AOSP 
would correct 193 and 100 words, respectively. 

(10)

No gain beyond top five suggestions. We can observe in 
Figure 2 that the highest gain is achieved from n=1 to n=2 

=-2.25, p<.05, Cohen’s d=.17].  



with an increase of 6.6%, 9.5%, and 9.5% for AOSP 
spellchecker, Hamming variant, and B#, respectively. For 
n>2 improvements are smaller and then start to fade at n=5. 
B# and Hamming curves are very similar, which can be 
explained by the similar correction paradigm; however, 
Hamming is consistently outperformed by B#. This result 
suggests that indeed the proposed extension to the 
Damerau-Levenshtein distance is effective in dealing with 
Braille chording misspellings. B# continues to provide 
useful suggestions for n≤5, with significant differences for 
1≤n≤2 [Z=-2.803, p<.005, r= 0.26], and 2≤n≤3 [Z=-2.201, 
p<.05, r= 0.09], 4≤n≤5 [Z=-2.023, p<.05, r= 0.05]. 

B# provides a low number of incorrectly corrected words. 
All methods obtained low false positives (top suggestion 
incorrect): 1.4% (sd=1.9%), 1.7% (sd=2.2), and 1.7% 
(sd=2.2). In fact, a Friedman test revealed no significant 
effect on method [χ2

(2)

Chord information matters. In order to measure how 
important chord-level information is on providing accurate 
suggestions, the word frequency factor was removed from 
our spellchecker. This means that the scoring solely 
depended of Braille chord similarity. Results showed an 
accuracy rate of 44.8% (sd=15%) for the top suggestion, 
which is a significant decrease of accuracy (n=1) from the 
B# condition. This result shows that word frequency 
features are important to obtain the best possible 
suggestion. Despite the decrease in performance, this 
condition still outperforms AOSP’s spellchecker 
[t

=2, p=.368]. B# high accuracy 
comes at no cost regarding incorrectly corrected words. 

(10)

Combined character-word-level correction is ineffective. 
We also assess the effect of feeding disambiguation results 
into the word-level component. Overall, the combined 
solution presents a similar accuracy curve to word-level 
correction; however, it is outperformed for all 1≤n≤10. A 
paired t-test showed a significant effect for methods 
[t

=3.182, p<.01, Cohen’s d=1.3], suggesting that taking 
advantage of the chord similarity is crucial correct errors. 

(10)

IMPLICATIONS FOR DESIGN 

=3.080, p<.05] with the word-level correction 
outperforming the combined solution for n=1 (m=50.1%). 
This suggests that erroneous corrections at character-level 
affect word-level accuracy. The spelling component loses 
important chord information that would otherwise be used. 

Leverage input method information. Results showed that 
leveraging chord distances significantly improves word 
correction accuracy. Even simple distance functions allow 
improvement over traditional spellcheckers. As previously 
suggested [2], one should take advantage of common 
misspellings, tightly related to each method, and use that 
knowledge to improve spelling accuracy. 

Do not discard chord information. Data showed that 
combining character- and word-level is an ineffective 
solution, mostly because information is lost in the first 
correction stage. Therefore, if using character-level 

correction to provide instant feedback to users, allow the 
word-level component to receive the original chords. 

Focus on top 5 suggestions. Most spellcheckers provide a 
list of most probable suggestions enabling users to 
intervene when corrections are inaccurate. Results showed 
that B#’s top two suggestions yield most corrections; 
however, if possible, the top five should be considered.  

CONCLUSION AND FUTURE WORK 
We presented B#, a chord-based spellchecker for 
multitouch Braille input. Results show that B# is more 
effective than other spellcheckers by leveraging a distance 
of similarity between chords. These results should 
encourage researchers to develop more accurate correction 
algorithms tailored to novel text-input techniques. Future 
work will explore the design of non-visual interfaces to 
leverage chord-based suggestions. 
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