
B#: Chord-based Correction for Multitouch Braille Input
Hugo Nicolau1, Kyle Montague1, Tiago Guerreiro2, João Guerreiro2, Vicki L. Hanson3, 1

1University of Dundee, Dundee, Scotland
2University of Lisbon, Lisbon, Portugal

3

{hnicolau, kmontague}@dundee.ac.uk, tjvg@di.fc.ul.pt, joao.p.guerreiro@ist.utl.pt, vlh@rit.edu
Rochester Institute of Technology, NY, USA

ABSTRACT
Braille has paved its way into mobile touchscreen devices,
providing faster text input for blind people. This advantage
comes at the cost of accuracy, as chord typing over a flat
surface has proven to be highly error prone. A misplaced
finger on the screen translates into a different or
unrecognized character. However, the chord itself gathers
information that can be leveraged to improve input
performance. We present B#, a novel correction system for
multitouch Braille input that uses chords as the atomic unit
of information rather than characters. Experimental results
on data collected from 11 blind people revealed that B# is
effective in correcting errors at character-level, thus
providing opportunities for instant corrections of
unrecognized chords; and at word-level, where it
outperforms a popular spellchecker by providing correct
suggestions for 72% of incorrect words (against 38%). We
finish with implications for designing chord-based
correction system and avenues for future work.

Author Keywords
Chord; Braille; Error Correction; Touchscreen; Mobile

ACM Classification Keywords
H.5.2. Information interfaces and presentation

INTRODUCTION
Since the advent of Apple’s iPhone and its built-in
accessibility features, blind people have increased access to
mainstream mobile applications. However, the flat surface
poses challenges that are only partially solved. Particularly,
typing is still slow compared to what sighted people
experience [4]. To address this issue, multitouch Braille
chording approaches have been presented and are very
effective in improving input speed [1,6]; however, they are
characterized by a decrease in typing accuracy [6].

One common approach to improve typing accuracy is the
usage of spellcheckers. Indeed, there have been efforts in

developing spellcheckers for disabled people, taking into
consideration common typing errors and keyboard layout
[3]. Further, Sandnes and Wang [5] presented a texting
alternative for desktop computers, which relied on chording
with spatial mnemonics and automatic word correction.
However, to our knowledge, there are no reports of
correction approaches that leverage Braille chording
information. As a result, when decoding multitouch actions
to characters, useful knowledge about the users’ intent is
lost. The sequence of chords provides more information
about the desired word than do the characters, as each chord
becomes the atomic unit of information. Distances are
computed considering that a chord may be partially correct
enriching the selection of the most probable suggestions.

In this paper we present B#, a correction system for
multitouch Braille input that resorts to the chord itself as the
basis for similarity analysis between words. At character-
level, an unrecognized chord is used along with n-gram
features to decide the closest character. At word-level, we
extended the Damerau-Levenshtein distance to assess
proximity between chords, and thus use this information to
search for the most probable corrections. The contributions
of this paper are: first, an analysis of chording errors on
multitouch Braille input; second, a correction system that
leverages chord-level information; and finally, an analysis
on the effectiveness of character- and word-level correction.

COLLECTING TYPING DATA
We conducted a user study with 11 Braille-knowledgeable
blind participants (light perception at most, ages between
22-62, 3 females) aimed at understanding the most common
errors in multitouch Braille input (Grade 1). None of the
participants owned a touchscreen phone. The prototype
draws inspiration from BrailleTouch’s [6] usage setup
(Figure 1-a), combined with finger tracking techniques [1].

Procedure
Participants were given warm-up trials (10 minutes) starting
from writing individual characters, words, and finally
sentences. They were then instructed to write a set of 22
sentences (completion dependent of participant’s
availability), whereas the first two were practice trials.
Error correction (delete) was not available in order to
capture errors and uninterrupted typing behaviours. An
auditory signal was used to indicate that a letter had been
entered. Participants were instructed to continue to the next
character even if they recognized they had made an error.
Each sentence comprised five words, with an average size

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CHI 2014, April 26–May 1, 2014, Toronto, Ontario, Canada.
Copyright ©ACM 978-1-4503-2473-1/14/04...$15.00.
http://dx.doi.org/10.1145/2556288.2557269

of 4.48 characters. These sentences were extracted from a
Portuguese written language corpus, each one having a
minimum correlation with language of 0.97.

Major Results
Participants wrote a total of 168 sentences and 5972
characters. Data analysis revealed insights on the most
prominent Braille touch typing behaviors, which were the
basis for B#’s error correction algorithm principles.

High error rate. Multitouch Braille typing solutions are
known to be fast and error prone [6]. Similarly, in this
study, participants obtained an average typing speed of 14
words per minute and error rate of 17.7%, of which 72.4%
was due to character substitutions errors.

Single dot errors. Chord-level analysis revealed that 35.2%
of substitutions were due to a single dot error within the
braille cell. This difference occurred either due to a single
omitted or extra dot. If we include a single adjacent finger
transposition, this accounts for 42.5% of substitution errors.

Unrecognized Characters. Participants entered a total of
263 Braille chords that were not recognized as a valid letter
(4.4% of all chords). In these cases, the characters are
automatically classified as errors, and this information is
usually discarded from traditional correction systems.

B#: LEVERAGING CHORD INFORMATION
B# deals with mistyped words that result from entering
incorrect chords on a touchscreen device. In the remainder
of this section, we propose: first, a distance function that
enables us to compare Braille chords, and therefore predict
misspells; second, a character-level disambiguation
mechanism; and finally, a word-level correction algorithm
that leverages chord information.

Braille Distance
Our approach to word correction is based on similarity
between Braille chords. The proposed distance function
aims to model users’ behaviours while chording on a
touchscreen. The 3x2 Braille matrix is viewed as a vector of
6 bits and thus, the difference between two vectors can be
computed as a binary distance. Four types of chording
errors can occur whilst chording: omissions (finger was not
on the screen), insertions (additional finger on the screen),
transpositions (finger was on an adjacent position), and
substitutions (wrong finger on the screen).

Our distance function draws inspiration from the Damerau-
Levenshtein distance with a slight variation. The distance
between chords is the sum of the differences between
hands; that is, the first and last three bits that correspond to
each hand are treated independently. This approach
prevents transposition errors from occurring between hands.
Overall, omission, insertion, and transposition errors are
considered as a one-bit error (distance of one), because
these are the most common misspellings, and substitution
errors (i.e. wrong fingers), are treated as a 2-bit error.

Character-Level Correction
Character-level correction is achieved by exploiting
redundancy in the alphabet. The Braille cell allows the
representation of 64 different patterns. However, standard
text entry applications do not use its maximum capacity. If
we only consider the letters of the English alphabet (26),
and the blank space, then this yields 58% redundancy. In
cases where the user enters an invalid chord, the closest
valid character in terms of Braille distance can be selected
(Figure 1-b). There are several situations where this
approach retrieves more than one valid character,
introducing ambiguities in the correction process. In these
cases, we leverage basic linguistic features, such as letter
and n-gram frequencies to select the most probable
character. Our algorithm uses the maximum of previous
available letters to disambiguate invalid chords. Although
this approach may not deal with all spelling errors, we are
interested in analyzing its effect as a stand-alone solution,
as well as in combination with word-level correction.

Word-Level Correction
B# word-level correction algorithm uses a similar approach
to traditional spellcheckers by matching the transcribed
word against a wordlist. A key difference is that it operates
at chord-level. This means that even partially correct or
invalid chords can be used to retrieve better matches. Even
non-alphabetic characters, which are usually ignored by
traditional spellcheckers, can provide useful information.

For each transcribed word, B# creates a list of likely
suggestions and ranks them using a word distance score. If
the word exists in the wordlist, then it is automatically the
first suggestion. Our algorithm deals with three types of
typing errors: insertions (unintentionally added chords),
substitutions (incorrect chords), and omission (omitted

Figure 1. B# is a novel correction system for multitouch Braille input. (a) The user types the letter 'f'. (b) Character-level
correction; the closest characters in terms of Braille distance for 2 unidentified chords. (c) Word-level correction; top suggestions

return by B# considering the letters that are at a Braille distance of one from the entered chord.

chords). Transposition errors were not considered since
Braille input is a sequential task with no overlap between
chord entries. A minimum string distance (MSD) score is
used to calculate the distance between users’ input and
suggestion candidates. We systematically check chord
permutations in the transcribed word against the wordlist.

Since computing all permutations of chords is
computationally inefficient, we reduce our search space by
only checking against letters that are at a Braille distance of
one from the transcribed chord. This distance accounts for
1-bit errors, responsible for most character substitutions. A
Trie tree structure is used for checking the existence of the
word in the wordlist, while employing character insertion,
omission, and substitution rules during the spelling
correction stage. A blank space filter is used to separate two
words that were transcribed without a space between them.
Finally, a word frequency score is computed and subtracted
from the MSD score.

B# EVALUATION
In order to evaluate B#, we ran the correction algorithms on
the set of sentences previously collected. Analysis was
performed using an Android Virtual Device (Galaxy
Nexus). From the 751 words, we identified and tagged 364
(48.5%) incorrect entries that could be corrected by B#. We
applied Shapiro-Wilk normality tests to observed values in
all dependent variables. Parametric tests were applied for
normally-distributed variables and non-parametric tests
otherwise. Greenhouse-Geisser’s sphericity corrections
were applied whenever Mauchly’s test showed a significant
effect. Bonferroni corrections were used for post-hoc tests.

Character-Level Results
Character-level correction was applied to unrecognized
characters, i.e. inexistent chords in the native alphabet. To
evaluate character correction, we compared B#
disambiguation with the baseline substitution errors.
Additionally, we included a version of B# without the
linguistic features in order to assess its effect on correction
accuracy. The letters’ relative frequencies, bigrams, and
trigrams were extracted from a corpus with more than 11
million letters and 2 million words.

Chord and Linguistic features enable Disambiguation. We
obtained an average of 12.8% (sd=8.6%) substitution errors.
By only exploiting the redundancy of the Braille alphabet,
substitution errors slightly decreased to 12.2% (sd=7.3%).
On the other hand, B# character-level disambiguation
successfully corrected 2.4% of substitution errors, reaching
an average of 10.4% (sd=5.9%). A Friedman test revealed a
significant effect on methods [χ2

(2)

Word-Level Results

=18.474, p<.001].
Wilcoxon pairwise comparisons showed significant
differences between B# disambiguation and both baseline
[p<.005, r=.2] and redundancy-only [p<.01, r=.1] results.
As 33.6% of substitution errors were due to unrecognized
characters, it means that 18.8% of all chord ambiguity
errors were automatically corrected combining redundancy

and simple language features. Overall, B# disambiguation
corrected 29 words (8% of all incorrect words).

In order to evaluate B# word-level correction, we compare
our solution with a popular spellchecker for mobile devices:
Android (AOSP) spellchecker, which for brevity purposes
will herein be referred to as AOSP. This solution makes no
use of contextual information, similarly to B#. Additionally,
to conduct a fair comparison between correction methods,
we used the same wordlist (213,133 words) and word
frequencies. All required words used in the data collection
stage existed in the wordlist. To assess the effect of each
correction component, the results presented here were
obtained without character-level disambiguation. We also
analyze a variant of B# that uses the Hamming distance
(XOR between binary vectors) to compute similarity
between chords enabling us to assess our effectiveness
against a commonly used metric to compare vectors.

Method Top 1 Top 2 Top 3 Top 4 Top 5

AOSP 28 (12) 34 (12) 36 (13) 37 (13) 38 (13)
Hamming 53 (19) 63 (19) 66 (21) 62 (22) 69 (22)
B# 56 (17) 65 (18) 69 (20) 70 (21) 72 (20)

Table 1. Mean percentage (standard deviation) of correct
words returned for the top n suggestions (1≤n≤5).

B# is consistently more accurate. Table 1 shows the results
for the top n suggestions (1≤n≤5), while Figure 2 illustrates
the results. The percentage of accurate words returned by
the AOSP spellchecker is rather small and never exceeds
38%. On the other hand, chord-based solutions outperform
the AOSP spellchecker, with mean accuracy rates between
53% and 72%. Indeed, when analyzing the first suggestion,
there is a significant effect [F(1.102,11.021)=19.279, p<.001,
partial η2

B# is more accurate for the top three suggestions. While we
agree that the most important result is to propose the correct
word as the first suggestion, we also acknowledge that
providing the highest possible fraction of accurate
suggestions at the top of the list is critical, especially, when
user intervention is needed. Therefore, although B# and
Hamming variant methods are equally accurate for n=1 and
n=2, B# significantly outperforms its counterpart for n=3
[Z=-2.023, p<.05, r=0.08], n=4 [Z=-2.023, p<.05, r=0.11],
and n=5 [t

=.66], with both B# [p<.005] and Hamming
[p<.01] methods being more accurate than AOSP
spellchecker. This result suggests that leveraging chord
information plays a major effect on correction accuracy. No
significant effect between B# and Hamming variant was
found for the first suggestion. Overall, B# would be able to
correct 204 of 364 incorrect words automatically, i.e.
without user intervention. The Hamming variant and AOSP
would correct 193 and 100 words, respectively.

(10)

No gain beyond top five suggestions. We can observe in
Figure 2 that the highest gain is achieved from n=1 to n=2

=-2.25, p<.05, Cohen’s d=.17].

with an increase of 6.6%, 9.5%, and 9.5% for AOSP
spellchecker, Hamming variant, and B#, respectively. For
n>2 improvements are smaller and then start to fade at n=5.
B# and Hamming curves are very similar, which can be
explained by the similar correction paradigm; however,
Hamming is consistently outperformed by B#. This result
suggests that indeed the proposed extension to the
Damerau-Levenshtein distance is effective in dealing with
Braille chording misspellings. B# continues to provide
useful suggestions for n≤5, with significant differences for
1≤n≤2 [Z=-2.803, p<.005, r= 0.26], and 2≤n≤3 [Z=-2.201,
p<.05, r= 0.09], 4≤n≤5 [Z=-2.023, p<.05, r= 0.05].

B# provides a low number of incorrectly corrected words.
All methods obtained low false positives (top suggestion
incorrect): 1.4% (sd=1.9%), 1.7% (sd=2.2), and 1.7%
(sd=2.2). In fact, a Friedman test revealed no significant
effect on method [χ2

(2)

Chord information matters. In order to measure how
important chord-level information is on providing accurate
suggestions, the word frequency factor was removed from
our spellchecker. This means that the scoring solely
depended of Braille chord similarity. Results showed an
accuracy rate of 44.8% (sd=15%) for the top suggestion,
which is a significant decrease of accuracy (n=1) from the
B# condition. This result shows that word frequency
features are important to obtain the best possible
suggestion. Despite the decrease in performance, this
condition still outperforms AOSP’s spellchecker
[t

=2, p=.368]. B# high accuracy
comes at no cost regarding incorrectly corrected words.

(10)

Combined character-word-level correction is ineffective.
We also assess the effect of feeding disambiguation results
into the word-level component. Overall, the combined
solution presents a similar accuracy curve to word-level
correction; however, it is outperformed for all 1≤n≤10. A
paired t-test showed a significant effect for methods
[t

=3.182, p<.01, Cohen’s d=1.3], suggesting that taking
advantage of the chord similarity is crucial correct errors.

(10)

IMPLICATIONS FOR DESIGN

=3.080, p<.05] with the word-level correction
outperforming the combined solution for n=1 (m=50.1%).
This suggests that erroneous corrections at character-level
affect word-level accuracy. The spelling component loses
important chord information that would otherwise be used.

Leverage input method information. Results showed that
leveraging chord distances significantly improves word
correction accuracy. Even simple distance functions allow
improvement over traditional spellcheckers. As previously
suggested [2], one should take advantage of common
misspellings, tightly related to each method, and use that
knowledge to improve spelling accuracy.

Do not discard chord information. Data showed that
combining character- and word-level is an ineffective
solution, mostly because information is lost in the first
correction stage. Therefore, if using character-level

correction to provide instant feedback to users, allow the
word-level component to receive the original chords.

Focus on top 5 suggestions. Most spellcheckers provide a
list of most probable suggestions enabling users to
intervene when corrections are inaccurate. Results showed
that B#’s top two suggestions yield most corrections;
however, if possible, the top five should be considered.

CONCLUSION AND FUTURE WORK
We presented B#, a chord-based spellchecker for
multitouch Braille input. Results show that B# is more
effective than other spellcheckers by leveraging a distance
of similarity between chords. These results should
encourage researchers to develop more accurate correction
algorithms tailored to novel text-input techniques. Future
work will explore the design of non-visual interfaces to
leverage chord-based suggestions.

ACKNOWLEDGMENTS
This work was supported by RCUK Digital Economy
Programme grant EP/G066019/1 – SIDE; FCT Multiannual
Funding Programme, and grant SFRH/BD/66550/2009

REFERENCES
1. Azenkot, S., Wobbrock, J., Prasain, S., Ladner, R. Input

finger detection for nonvisual touch screen text entry in
Perkinput. In Proc. GI (2012).

2. Deorowicz, S., & Ciura, M. G. Correcting spelling
errors by modelling their causes. Int. journal of applied
mathematics and computer science (2005), 15(2), 275.

3. Kane, S., Wobbrock, J., Harniss, M., & Johnson, K.
TrueKeys: identifying and correcting typing errors for
people with motor impairments. In Proc IUI (2008).

4. Oliveira, J., Guerreiro, T., Nicolau, H., Jorge, J.,
Gonçalves, D. Blind people and mobile touch-based
text-entry: acknowledging the need for different flavors.
In Proc. ASSETS (2011).

5. Sandnes, F. E., Huang, Y. P. Chording with spatial
mnemonics: automatic error correction for eyes-free text
entry. In Journal of information science and
engineering, 22, 5 (2006).

6. Southern, C., Clawson, J., Frey, B., Abowd, G.,
Romero, M. An evaluation of BrailleTouch: mobile
touchscreen text entry for the visually impaired. In Proc.
Mobile HCI (2012).

Figure 2. Mean percentage of correct words returned for the
top n suggestions (1≤n≤10)

	B#: Chord-based Correction for Multitouch Braille Input
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	Collecting Typing Data
	Procedure
	Major Results

	B#: Leveraging Chord Information
	Braille Distance
	Character-Level Correction
	Word-Level Correction

	B# Evaluation
	Character-Level Results
	Word-Level Results

	Implications for Design
	Conclusion and Future Work
	Acknowledgments
	REFERENCES

