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ABSTRACT 

Touchscreen devices have become increasingly popular. Yet they 

lack of tactile feedback and motor stability, making it difficult 

effectively typing on virtual keyboards. This is even worse for 

elderly users and their declining motor abilities, particularly hand 

tremor. In this paper we examine text-entry performance and 

typing patterns of elderly users on touch-based devices. 

Moreover, we analyze users’ hand tremor profile and its 

relationship to typing behavior. Our main goal is to inform future 

designs of touchscreen keyboards for elderly people. To this end, 

we asked 15 users to enter text under two device conditions 

(mobile and tablet) and measured their performance, both speed- 

and accuracy-wise. Additionally, we thoroughly analyze different 

types of errors (insertions, substitutions, and omissions) looking 

at touch input features and their main causes. Results show that 

omissions are the most common error type, mainly due to 

cognitive errors, followed by substitutions and insertions. While 

tablet devices can compensate for about 9% of typing errors, 

omissions are similar across conditions. Measured hand tremor 

largely correlates with text-entry errors, suggesting that it should 

be approached to improve input accuracy. Finally, we assess the 

effect of simple touch models and provide implications to design. 
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H.5.2 [Information Interfaces and Presentation]: User 
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1. INTRODUCTION 
There was a time where touchscreen technology was affordable to 

a few. Nowadays, this technology is widely spread among 

different devices, applications and environments, such as ATM 

machines, information kiosks, ticket machines, health control 

devices, etc. Most of us use touchscreens on a daily basis due to 

its enormous success in mobile devices. Indeed, these are 

increasingly replacing keypad-based applications. 

The ability to directly touch and manipulate data on the screen 

without intermediate devices has a strong appeal, since it provides 

for a more natural and engaging experience. Moreover, 

touchscreens offer high flexibility, making it possible to display 

different interfaces on the same surface or to adapt to the users’ 

needs and/or preferences [5]. For all their advantages, touch 

interfaces present similar challenges: they lack both the physical 

stability and tactile feedback ensured by keypads, making it harder 

for people to accurately select targets. This becomes especially 

pertinent to elderly people who suffer from increased hand tremor 

[16]. This effect becomes worse for interfaces that feature small 

targets and spacing [9], such as virtual keyboards. 

Indeed, mobile text-input is a major challenge for elderly users. 
Since text-entry is a task transversal to many applications, such as 

basic communications, managing contacts, editing documents, 

web browsing, etc., these users are excluded from the innumerous 

opportunities brought by touch devices to different domains: 

social, professional, leisure, entertainment, shopping, 

communication, or healthcare. Still, touch interfaces have the 

potential to reduce this “technology gap”, due to their high 

customizability, which makes them appropriate to custom-tailored 

or adaptive solutions that can fit the needs of  different users. This 

highlights the need to understand how elderly people input text on 

current touchscreen devices. Because there is little or no 

quantified knowledge on the problems that these users experience 

with standard virtual keyboards, it is difficult to improve them. 

Furthermore, since touch interfaces are highly customizable, 

empirical data can be used to automate and provide user-

dependent solutions. 

Our goal with this work was to provide the knowledge needed to 

design both effective and efficient text-entry solutions for elderly 

people. We performed evaluations with 15 users (Figure 1) and 

two touch-based devices (mobile and tablet), analyzing the effect 

of hand tremor on text-entry performance. Also, we thoroughly 

analyze the users’ typing behaviors and performance errors, as 

well as their comments. We were interested in answering 

questions such as: What will be the most common input errors 

and their causes? Will hand tremor be correlated with input 

performance? Will tablet devices compensate mobile difficulties? 

How can we enhance text-entry accuracy?  

Our main contribution is a thorough understanding of text-entry 

performance in touch-based devices by elderly users. We provide 

an empirical body of knowledge to leverage future development 

 

Figure 1. Participant typing on a touchscreen device. 
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of virtual keyboards and a better understanding on how text-input 

performance correlates to hand tremor. We also demonstrate the 

potential and virtues of simple touch models and provide design 

implications that should motivate researchers to develop more 

effective solutions. 

2. RELATED WORK 
We discuss related work in two areas: first, we look into previous 

research that attempts to better understand tremor and how it 

affects elderly users. Second, we discuss HCI research aimed at 

creating new touch-based solutions for older adults. 

2.1 Elderly and Tremor 
Generally, tremor is defined as any involuntary, approximately 

rhythmic, and roughly sinusoidal motion around a joint. Tremor is 

present in all individuals and is the most common form of 

movement disorder with an increased prevalence among elderly 

individuals [16]. There are two classification systems used in 

evaluating tremor: type of movement and cause. The first 

distinguishes whether tremor occurs at rest (resting tremor) or is 

caused by action. Tremors associated to movement (action) 

include postural tremor, which occurs with maintained posture; 

kinetic or intention tremor, which occurs with movement from 

point to point; and task-specific tremor, occurring only when 

doing highly skilled activity. Postural tremor is usually detected 

by having a patient holding the arms stretched out in front, while 

kinetic or intention tremor can be tested by using the finger-to-

nose maneuver. The second tremor classification is by cause. 

Tremor can be due to a variety of conditions both physiologic and 

pathologic. Physiological tremor in healthy individuals is 

characterized as a low amplitude postural tremor with a modal 

frequency of 8–12 Hz [4] in the hands. Pathological tremor is the 

most extensive movement disorder and can be observed in several 

pathologies, such as: Essential Tremor, Parkinson’s disease, 

dystonic disorders, cerebellar disease or head trauma. Most of 

these pathologies are more prevalent among elderly individuals. 

Currently accepted standards for evaluating motor performance 

include subjective measures such as self-reporting and clinical 

rating scales. The Unified Parkinson’s Disease Rating Scale 

(UPDRS) rates motor manifestations from 0 to 4, where higher 

scores denote greater severity [7]. However, there are certain 

limitations in the utility of this rating instrument, because scores 

are subjective and imprecise.  On the other hand, objective motor 

assessment is an open challenge for movement disorder 

specialists. Handwriting and drawing samples have long been 

used to quantify tremor during movement due to their simplicity 

[1]; however, these tests are not suitable for measuring resting or 

postural tremor. Accelerometers are currently one of the most 

commonly used instrument in tremor studies, since they are 

capable of providing reliable and objective indices by measuring 

linear acceleration. Many tremor quantification algorithms use 

power spectral analysis in the frequency domain [14] and define 

tremor amplitude as the amplitude of a peak in the power 

spectrum between 3 and 7 Hz. Analyzing the peak amplitude in 

the 7-12 Hz spectrum may also prove worthwhile to measure 

physiological tremor. Overall, objective measures of tremor 

disorders motivated much research by clinicians in the last 

decades and it will be of significant relevance to the HCI 

community as well. With the global increase of the senior 

population, understanding, modeling and dealing with tremor will 

be a significant concern in designing future assistive technologies. 

2.2 Elderly, Touch, and Text-Entry 
There is a large body of work that tries to understand and 

maximize performance of users when interacting with touch 

interfaces. Past research has investigated optimal target size, 

spacing and position [9] to derive recommendations and general 

guidelines for older adults when these interfaces. Still, most 

approaches do not consider the particular challenges of text-entry: 

large number of targets, small key size and spacing. Solutions for 

able-bodied users have been proposed in order to deal with 

incorrect characters. Gunawardana et al. [8] presented a method to 

expand or contract key areas for each press using language 

models, while others have proposed using touch models to adapt 

to individual typing patterns [5] and improve overall input 

accuracy. While text-prediction features have also been explored, 

older adults usually dislike them [11]. Nonetheless, few 

researchers have explored the specific needs of elderly users in 

touch typing tasks.  

Chung et al. [3] showed that both younger and older users 

preferred a touchscreen keypad for numeric entry tasks, since it 

did not force them to divide their attention between the input 

device and screen content. Wobbrock et al. [18] proposed a 

stylus-based approach that uses edges and corners of a reduced 

touch screen to enable text-entry tasks, showing an increase of 

accuracy and motion stability for users with motor impairments. 

Similarly, Barrier Pointing [6] uses screen edges and corners to 

improve pointing accuracy. By stroking towards the screen 

barriers and allowing the stylus to press against them, users can 

select targets with greater physical stability. Wacharamanotham 

[17] takes a similar approach by proposing a technique that uses 

swipe gestures towards the screen edges in order to select targets. 

Although these works insightfully explore the device physical 

properties to aid people interacting with touchscreens, there is 

little empirical knowledge about elderly users performing text-

entry tasks with traditional virtual keyboards. Previous research 

does not take into consideration elder challenges (such as tremor) 

that might affect their use of virtual keyboards. The study reported 

in this paper bridges this gap by analyzing their performance 

when typing with touchscreen devices, enabling designers to take 

advantage of this knowledge to build future solutions. 

3. USER STUDY 
Touch screen devices are increasingly replacing their button-

based counterparts. The physical stability and haptic feedback 

once provided by buttons are being lost, which makes it harder to 

accurately select targets. This is especially relevant in text-entry 

tasks due to both small target size and spacing. In this user study 

we evaluate two different types of touch devices – mobile phone 

and tablet – and thoroughly analyze how elderly users enter text. 

3.1 Research Questions 
This user study aims to answer four main research questions: 

1. How do elderly users perform speed and accuracy wise in 

touch-based devices? 

2. What are the most common types of errors and causes? 

3. Do tablet devices compensate the difficulties of elderly users 

when using mobile phones? 

4. Does tremor affect text-entry performance? If yes, how does 

user performance correlate with hand tremor? 



3.2 Participants 
Fifteen participants, eleven females and four males, took part in 

our user study. Their age ranged from 67 to 89 with a mean of 79 

(sd=7.3) years old. All participants were right-handed. They were 

recruited from a local social institution and no pre-screening to 

recruit participants with or at risk of developing tremor disorders 

was performed. None of the participants had severe visual 

impairments and all were able to see screen content. Twelve of the 

participants owned a mobile phone, however they were only able 

to receive and make calls. Only one participant had used 

touchscreen technology before, but had never entered text. 

Regarding QWERTY familiarity, six participants had used this 

type of keyboard whether in typing machines (four participants) or 

personal computers (two participants). 

3.3 Procedure 
This user study had two main phases: familiarization and 

evaluation. At the beginning of the first phase, participants were 

told that the overall purpose of the study was to investigate how 

text-entry performance is affected by the type of device. 

Following this, participants filled in a pre-questionnaire about 

demographics and mobile phone usage. We then explained and 

exemplified to them how to use a virtual keyboard. Although most 

participants were reluctant to interact with the devices at the 

beginning, they seamlessly coped with the “touch-to-select” 

metaphor and easily understood how to write. Nevertheless, 

because most of them were not familiar with touch devices and 

QWERTY keyboards, we asked participants to perform two 

familiarization tasks using each device. The first consisted in 

entering single letters. They had to copy a letter, displayed at the 

top of the screen, to a text box. Participants performed this task 

for 10 minutes (to guarantee an equal amount of training across 

individuals). The second task consisted in copying sentences. 

Error correction (delete) was not available. The sentences had a 

maximum of five words, similar to those presented on the 

evaluation phase. Participants performed this task for 20 minutes.  

In the evaluation phase, we started by assessing the users 

capabilities regarding tremor (postural and action tremor) 

applying two different methods. We first asked participants to 

draw an Archimedes spiral with each hand without leaning hand 

or arm on table [1]; we then asked participants to hold the mobile 

device at the arm’s length for 30 seconds with each hand and 

remain still, while we captured data from the accelerometer sensor 

[15]. Subjects were then informed about the experiment and how 

to use our evaluation application. We evaluated the participants’ 

performance with two devices: mobile phone and tablet.  

Before each condition participants had a five minute practice trial 

to get used to the virtual keyboard. We did not force participants 

to interact with a specific finger, thus they were allowed to choose 

the most comfortable typing strategy, as long as it was consistent 

during that condition. For the mobile phone condition, 

participants had to hold it in their hand, since it is a handheld 

device (Figure 1); for the tablet device condition, it was placed on 

the table in front of them. For each evaluation condition, 

participants copied five different sentences (first sentence was a 

practice trial), displayed one at a time, at the top of the screen 

(Figure 2). Copy typing was used to reduce the opportunity for 

spelling and language errors, and to make error identification 

easier. Participants were instructed to type phrases as quickly and 

accurately as possible. Both required and transcribed sentences 

were always visible. Error correction (delete key) was not 

available, since we wanted to capture typing performance 

regardless of correction strategies. Participants were told that they 

could not correct errors and were instructed to continue typing if 

an error occurred. Once participants had finished entering each 

sentence, they pressed the ‘next’ button. After the five sentences 

were entered, we asked them to perform the same tasks with a 

different device. The order of conditions was counter balanced to 

avoid bias associated with experience. The evaluation procedure 

took approximately 40 minutes per participant. Each subject 

entered a total of 10 different sentences. These sentences were 

extracted from a written language corpus, and each one had five 

words with an average size of 4.48 characters and a minimum 

correlation with the language of 0.97. Sentences were chosen 

randomly such that no sentence was written twice per participant. 

3.4 Apparatus 
An HTC Desire and ASUS Transformer TF101 Tablet were used 

during the user study. A QWERTY virtual keyboard, similar to 

android’s SDK keyboard, was used in both devices (Figure 2); for 

the HTC Desire each key was 10x10mm on landscape mode, 

while for the ASUS tablet each key was 20x10mm. Letters were 

entered when the user lift his finger from keys. Neither word 

prediction nor correction was used. All participants’ actions were 

logged through our evaluation application and the user study was 

filmed to observe the participants’ behaviors. 

3.5 Dependent Measures 
The performance during the text-entry task was measured using 

different quantitative variables [12]: words per minute (WPM), 

minimum string distance (MSD) error rate, and character-level 

errors (substitutions – incorrect characters, insertions – added 

characters, and omissions – omitted characters). Qualitative 

measures were also gathered at the end of the experiment by 

debriefing each participant. We also gathered tremor-related 

measures of each participant before text-entry tasks in order to 

characterize their level of impairment. 

3.6 Design and Analysis 
We used a within subjects design where each participant tested all 

conditions. For each device condition each participant entered 5 

sentences (1 practice + 4 test), resulting in a total of 20 sentences 

per participant. In summary the study design was: 15 participants 

x 5 sentences x 2 devices. We performed Shapiro-Wilkinson tests 

of the observed values for WPM, KSPC, MSD error rate, types of 

errors and tremor measures. If dependent variables were normally 

distributed we applied parametric statistical tests, such as repeated 

measures ANOVA, t-test, and Pearson correlations. On the other 

hand, if measures were not normally distributed, we used non-

parametric tests: Friedman, Wilcoxon, and Spearman correlations. 

Bonferroni corrections were used for post-hoc tests. 

Figure 2. Screen shot of evaluation application. 

Participants were not able to correct errors. The button 

‘Avançar’ allowed them to continue to the next 

sentence. 
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4. RESULTS 
Our goal was to understand how elderly people input text with 

traditional touchscreen devices. We describe and characterize 

each user‘s tremor profile and relate it with text-entry 

performance. Moreover, we analyze input speed and accuracy for 

both device conditions, focusing on type of errors. 

4.1 Tremor Profile 
Task-specific tremor, which is a type of action tremor, was 

measured in both hands, using the Archimedes spiral test. The 

drawings were classified by a clinical professional as Absent, 

Slight, Moderate, Severe or Marked. For the dominant-hand 

drawings, 7 participants (46.7%) showed no tremor, 4 (26.7%) 

showed slight tremor, 1 participants (6.7%) demonstrated 

moderate tremor, 2 (13.3%) showed severe tremor, and 1 

participant (6.7%) demonstrated marked tremor. Regarding the 

non-dominant hand drawings, 5 participants (33.3%) showed 

absence of tremor, 6 participants (40%) showed slight tremor, 1 

participant (6.7%) demonstrated moderate tremor, 1 (6.7%) 

showed severe tremor, and 2 participants (13.3%) demonstrated 

marked tremor. Figure 3 illustrates some examples of drawings. 

Table 1. Postural hand oscillation for all axes (m/s2). 

mean (sd)  X Y Z XYZ 

Dominant 0.19 (.07) 0.15 (.06) 0.3 (0.13) 0.14 (.04) 

Non-Dominant 0.17 (.07) 0.12 (.02) 0.3 (.15) 0.1 (.03) 

 

In addition to subjective measures, we also measured tremor 

through the device’s accelerometer. Particularly, we measured the 

postural – a type of action – tremor. From the captured data we 

analyzed three main values: acceleration standard deviations, 

which correspond to hand oscillations [2]; the peak amplitude in 

the power spectrum of 3 to 7 Hz, and 7 to 12 Hz. We report the 

peak amplitude in different frequency ranges since physiological 

and pathologic tremors are usually distinguishable and may affect 

users’ performance differently. Results for hand oscillation (Table 

1) showed a mean magnitude of 0.186 m/s2 (sd=.074), 0.15 m/s2 

(sd=.06), 0.3 m/s2 (sd=.13), and 0.137 m/s2 (sd=.044) for X, Y, Z, 

and XYZ axis, respectively. Regarding the non-dominant hand, 

due to a logging issue we were only able to record 9 of the 15 

participants’ accelerometer data. Mean oscillation was 0.174 m/s2 

(sd=.07), 0.115 m/s2 (sd=.024), 0.3 m/s2 (sd=.149), and 0.101 

m/s2 (sd=.03), for X, Y, Z, XYZ axis, respectively. Regarding the 

frequency analysis, results showed a mean peak magnitude of 

0.362 m/s2 (sd=0.429), and 0.17 m/s2 (sd=0.17), for the 3 to 7 Hz, 

and 7 to 12 Hz, respectively. Concerning the non-dominant hand, 

results showed a mean peak magnitude of 0.17 m/s2 (sd=0.162), 

and 0.105 m/s2 (sd=0.175) for the 3 to 7 Hz, and 7 to 12 Hz, 

respectively. It is worth noticing that the results for each of the 

frequency ranges show high standard deviation, suggesting that 

tremor severity varies widely among participants. 

4.2 Text-Entry Performance 
In this section we thoroughly analyze input performance regarding 

speed and accuracy for both device conditions. During text-entry 

tasks, all participants consistently used their non-dominant hand 

to hold the mobile device and dominant index finger to select 

intended keys. However, one of the participants was unable to use 

the mobile device, due to visual impairments. Although text font 

was large (Figure 2), participant #9 was not able to read keyboard 

characters, and therefore did not complete the Mobile condition. 

4.2.1 Input Speed 
To assess speed, we used the words per minute (WPM) text input 

measure calculated as (transcribed text – 1) * (60 seconds / time 

in seconds) / (5 characters per word). 

Tablets allow higher input rates. Participants typed an average of 

4.73 WPM (sd=3.06) in Mobile and 5.07 WPM (sd=2.93) in Tablet 

conditions. A paired-samples t-test was conducted to evaluate the 

effect of device on text-entry speed. A statistically significant 

increase in WPM [t(13) = -2.752, p<.05] was found, suggesting 

that participants can achieve higher input rates with tablet devices. 

Experience makes the difference. Overall, input rate was strongly 

correlated with QWERTY keyboard experience, which explains 

46% [Spearman rho=.648, n=14, p<.05] and 29% [Spearman 

rho=.534, n=15, p<.05] of shared variance for Mobile and Tablet 

conditions, respectively; that is, participants that used a (non 

touch-based) QWERTY keyboard in the past inputted text faster. 

4.2.2 Input Accuracy 
We measured the quality of the transcribed sentences using the 

Minimum String Distance (MSD) Error Rate, calculated as 

MSD(required sentence, transcribed sentence) / mean size of 

alignments x 100. Figure 4 illustrates participants’ MSD Error 

Rate for both Mobile and Tablet conditions. 

Experience is not enough. As opposed to the results obtained in 

input speed, there was a weak correlation between quality of 

transcribed sentences and QWERTY experience for Mobile 

[Pearson r=.145, n=14, p=.621] and Tablet [Pearson r=.155, 

n=15, p=.58] conditions. This result suggests that previous 

experience is not enough to compensate for typing errors. 

Tablets compensate difficulties. Participants achieved an average 

MSD error rate of 25.97% (sd=19.72%) and 16.55% (sd=11.9%) 

in Mobile and Tablet conditions, respectively. Results show a 

statistically significant decrease of 9.42%, which suggests that 

elderly users indeed benefit from tablet devices, either due to key 

size or its static position (on the table). 

Hand tremor explains (mobile) error rates. In Mobile condition, 

Hand Oscillation of the non-dominant hand in the Y [Pearson 

Figure 3. Archimedes spiral drawings. From left to 

right: absent, slight, severe, marked. 
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Figure 4. Overall MSD, Insertion, Substitution, and 

Omission error rate for each device condition. Error 

bars denote 95% confidence intervals 
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r=.751, n=9, p<.05] and Z [Pearson r=.613, n=9, p=.079] axis 

were strongly correlated with MSD error rate. Since the mobile 

device was held in the non-dominant hand during text-entry tasks, 

these results suggest that hand oscillations can explain as far as 

56.4% of shared variance. As for Tablet condition, we found no 

strong correlations between tremor measures and MSD error rate. 

4.2.3 Typing Errors 
This section presents a fine grained analysis by categorizing types 

of input errors: insertions, substitutions, and omissions [12]. 

Figure 4 shows the type of errors in Mobile and Tablet conditions. 

Omissions are the most common error type. Results show that, 

on average, omission errors are the most common type in both 

Mobile (m=12.65%, sd=16%) and Tablet (m=9%, sd=10%) 

conditions. Omissions are often described as cognitive errors, 

since they do not depend on motor abilities [10]. Instead, users 

usually forget to type the intended characters or misunderstand the 

required sentence. Since we did not account for cognitive 

differences, we cannot confirm this hypothesis. Nevertheless, it 

would be expected that cognitive errors across device conditions 

remained unchanged. In fact, no statistical significant differences 

on omission error rate were found between Mobile and Tablet 

conditions [Z=-.722, p>.4], suggesting that cognitive demand is 

constant and may be playing an important role. Further discussion 

on this topic is available in Section 4.2.6. 

Hand tremor can be used to reduce substitutions. Substitutions 

were the second most common error type. Participants obtained a 

mean 7.8% (sd=7%) error rate in Mobile and 3.75% (sd=3.61%) 

in Tablet condition. For both conditions, we found large positive 

correlations between substitution error rate and task-specific 

tremor; that is, participants with higher hand tremor had higher 

substitution error rates. In Mobile both dominant [Spearman 

rho=.624, n=15, p<.05] and non-dominant hand [Spearman 

rho=.541, n=9, p<.05] task-specific tremor accounted for 39% 

and 29% of shared variance, respectively. In Tablet condition, 

dominant hand task-specific tremor [Spearman rho=.539, n=15, 

p=.038] explained 29% of shared variance. 

Insertions are not predicted by tremor. Overall, Insertions were 

the least common error type (although no significant differences 

were found) in both conditions. Moreover, we did not find strong 

correlations with tremor measures, suggesting that there is a weak 

relationship between insertion error rate and hand tremor.  

Overall, magnitude of errors is lower in Tablet condition, with 

one exception. We found significant differences between device 

conditions for insertion [Z=-2.103, p<0.05] and substitution [Z=-

2.731, p<.01] error rates. On the other hand, no significant 

differences were found for omission errors, suggesting that these 

errors do not depend on participants’ physical abilities. 

4.2.4 Insertion Errors 
Insertion errors had two main causes: 1) accidental touches, for 

instance when users were scanning the keyboard for the intended 

key and accidental touched other key; and 2) bounce errors, which 

occurred when a key was unintentionally pressed more than once, 

producing unwanted characters. In this section we analyze in 

detail these two types of errors for both device conditions. 

Knowing how to identify these errors whilst users type can be of 

great value to prevent incorrect characters from being entered.  

Error classification was done through visual inspection of both 

transcribed sentences and video recordings in order to guarantee a 

high level of accuracy. Error rates were calculated as number of 

errors / number of keystrokes. 

Accidental touches are less common in Tablet condition. 

Overall, bouncing errors and accidental touches account for the 

majority of insertion errors. Concerning bounce error rate, 

participants obtained a mean of 1.55% (sd=1.7%) in Mobile and 

2.25% (sd=3.5%) in Tablet condition. Regarding accidental 

touches, participants achieved error rates of 3.28% (sd=3.9%) and 

1.05% (sd=1.22%), respectively, in Mobile and Tablet conditions. 

We found a significant decrease of accidental touches in the 

Tablet condition [Z=-2.292, p<0.05]. Conversely, bouncing errors 

were not statistically different between device conditions [Z=-

.314, p=0.754], although there was an increase of bounce errors 

with the tablet device. 

Mobile bounces and accidental touches are related with hand 

tremor. We found strong positive correlations between mobile 

bounce error rate and tremor measures: dominant hand 

Oscillation on the X axis [Spearman rho=.596, n=14, p=.025] and 

non-dominant hand peak magnitude acceleration between 7 and 

12 Hz [Spearman rho=.532, n=9, p=.14]. Regarding accidental 

touches, large correlations were also found, particularly with non-

dominant hand tremor: Oscillation Y axis [Spearman rho=.762, 

n=9, p=.017], Oscillation Z axis [Spearman rho=.536, n=9, 

p=.162], and peak magnitude acceleration between 3 and 7 Hz 

[Spearman rho=.508, n=9, p=.162]. 

Classifying insertions through key press duration and inter-key 

interval. From illustrations in Figure 5, both bouncing errors and 

accidental touches are easily identified due to reduced press 

duration and inter-key interval. We believe that a significant 

percentage of these errors can be automatically classified and 

filtered by analyzing these typing features. Hand tremor features 

should also be used to improve filtering solutions. Our data show 

that individuals are consistent in their input behaviors; however, 

typing patterns may be both user- and device-dependent. 

4.2.5 Substitution Errors 
In this section we will analyze common substitution patterns and 

keyboard layouts that emerged from participants’ key presses.  

Similar difficulties across all keys. In general, participants had 

similar difficulties across all keys. No row, column or side 

patterns emerge from the data for both device conditions. 

Right-bottom substitution pattern. To analyze the most common 

substitutions, we created confusion matrices. Some of the most 

frequent errors in Mobile condition were: CSPACE (6.83%), 

CV (3.17%), OP (4%), TY (3.96%), SZ (4.34%). As we 

can see there is a clear predominance of right and bottom key 

substitutions in the data, which suggests that participants found it 

easier to hit keys in the right-bottom (southeast) direction. These 

findings may be related to hand dominance, but further 

investigation is needed to confirm this hypothesis. Additionally, 

errors are at a distance of one key. Indeed, this pattern can be seen 

in Figure 6, which illustrates all lift points of Mobile condition. 

The pattern remains unaltered in the Tablet condition, with 

Figure 5. Accidental touch (left) and bouncing errors 

(right). Time in seconds is represented in x-axis. 
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common substitutions being: CSPACE (6.8%), RT (4.2%), 

SZ (4.3%), SD (3%), UJ (1.9%).  

Similar and symmetrical letters result in cognitive errors. A 

common error that cannot be explained by previous substitution 

pattern is PQ. We believe this to be a cognitive error, instead of 

motor error, since it commonly occurred in both conditions. 

Participants had an improper model of the letter and have 

confused it with a very similar one (symmetrical: pq). Indeed, 

similar problems occurred with the letter ‘i’, which was frequently 

replaced by the letter ‘l’ (3.1%). Participant #11 consistently 

confused symmetrical letters: mw (66.7%), nu (52.85%). 

These results suggest that some substitutions are not due to motor 

errors alone; cognitive errors play an important role in text input 

for elderly users. 

Most errors are due to poor aiming. In this user study, we were 

also interested in finding why substitution error occurred; was it 

due to poor aiming or finger slips? We classified a finger slip as a 

correct land-on (i.e. land on the correct key) and incorrect lift (i.e. 

lift on nearby key – substitution). Poor aiming errors consist in 

landing on and lifting of an incorrect key. Most substitution errors 

were due to incorrect land-on (i.e. poor aiming), with an average 

of 6.71% in Mobile and 3.5% in Tablet condition.  On the other 

hand, slips accounted for an average of 1.1% and 0.24% of typing 

errors in Mobile and Tablet conditions, respectively. In fact, slip 

errors were significantly lower than poor aiming errors in both 

device conditions: Mobile [Z=-3.107, p<.01], Tablet [Z=-2.944, 

p<.01]. Similar results have been reported in [13] for situationally 

impaired users. 

Slip errors are related with hand oscillation, while poor aiming 

errors are related with task-specific tremor. Different features of 

hand tremor correlated with poor aiming and slip errors. While 

poor aiming was strongly correlated with task-specific tremor in 

both device conditions: Mobile - [Spearman rho=.541, n=14, 

p=.046], and Tablet - [Spearman rho=.563, n=14, p=.029]; slip 

errors were strongly correlated with non-dominant hand 

oscillation on XYZ axis only in Mobile condition [Spearman 

rho=.714, n=9, p=.031]. 

Novel layouts should give more emphasis to key width. Last, we 

were interested in the overall virtual keyboard layout that would 

emerge from elderly users touch points. For this analysis, we 

calculated key centroids for each key across all participants. We 

removed outlying points that were more than one key distance 

away from the center of each key in either x or y direction, to 

account for transposition or cognitive errors. Additionally, we 

calculated the standard deviation of finger-lift points for each key 

in x and y directions. We then grouped the 26 keys by row and 

side. Right keyboard side contained the keys P, O, I, U, Y, L, K, 

J, H, M, N, B, and the left side contained the remaining letters. 

The keyboards that emerged from this analysis were shifted to the 

bottom-right in comparison to the traditional QWERTY keyboard, 

which was expected from previous findings. Also, we found no 

significant effect of row on deviations for both x- and y-directions 

in either Mobile or Tablet conditions; that is precision is equal 

across all rows. However, we found a significant decrease of x-

direction deviations from left to right side of Mobile keyboard 

[t(13)=-3.043, p<.01]. This result suggests that keys on the left 

side of the Mobile keyboards should be slightly wider, when 

possible. In the Tablet condition, we also found a statistically 

significant increase of x-axis dispersion relatively to y-direction 

[t(14)=4.039, p<.001]. Again, these findings may be related with 

hand dominance and demonstrate that elderly users are more 

susceptible to x-direction deviations from their touch centroids. 

4.2.6 Omission Errors 
Omissions were the most common error type in this user study 

and are usually associated to cognitive errors. Understanding 

omission errors is particularly difficult since it is hard to 

understand the reason why participants failed to enter the intended 

character/word. Was it because of they forgot it or because the 

device was unable to recognize the users’ touch? In order to 

answer these questions we resorted to video recordings. 

Blank space was the most problematic key. During our user 

study with elderly participants, we found that forgetting to enter a 

blank space between words was a common issue. Although 

participants were instructed before the evaluation session, the 

concept of a blank character was sometimes difficult to 

understand. In fact, this key achieved the highest error rate across 

all keys (25-30%) and omissions were the main cause. 

Forgetfulness and coordination are real issues. Some 

participants forgot to transcribe some letters or words during text-

entry tasks. For instance, participant #13 usually forgot to 

transcribe words at the middle and end of sentences. Still, her 

performance was consistent across device conditions, which 

suggest that this was a cognitive error. For participant #8, the 

copy task seemed to be overwhelming as she could not manage 

and coordinate what she has transcribed and what was yet to be 

transcribed. She frequently asked things like: “where was I?”, 

“have a written this?”, thus resulting in omitted letters and words. 

These results illustrate some of the challenges in evaluating text-

entry performance with elderly people. 

Unintentional touches prevented key presses. While omission 

errors may be related with cognitive errors, there were also some 

issues (although less severe) regarding touch interaction. 

Particularly, unintentional touches occurred when participants 

were holding or resting their non-dominant hand on the device. 

These behaviors resulted in unrecognized key presses since the 

keyboard only handled a single input point. 

4.3 Participants’ Comments and Preference 
At the end of the user study participants were debriefed and asked 

about their preferred device. Additionally, we also gathered 

general comments about their input performance. 

When asked about each device ease of use (using a 5-point Likert 

scale), the median [IQR (Interquartile Range)] attributed by 

participants was 4.5 [1.75] and 5 [0.5] for Mobile and Tablet 

devices, respectively, showing a preference for the tablet device. 

Participants’ classifications were generally high, which may be 

misleading when considering their difficulties. Still, when directly 

asked about their preferred device results are clear: thirteen 

(86.7%) participants chose the Tablet: with a 95% adjusted-Wald 

binomial confidence interval ranging from 60.9% to 97.5%, a 

Figure 6. Touch (lift) points for all participants in 

Mobile condition. 
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lower limited well above the two-choice change expectation of 

50%. The main reasons for their choice were the larger key size 

and spacing. Moreover, some participants also stated that letters 

(i.e. visual feedback) were easier to see. When asked about their 

main difficulties, participants referred diverse issues about: 1) key 

acquisition, particularly in the Mobile condition (“I am always 

hitting neighbor keys”; “The hardest thing is trying not to 

tremble while texting”), and 2) keyboard layout, mainly for those 

with no QWERTY experience (“The main difficult for me is in 

knowing where the letters are. I am not used to it”). 

5. TOWARDS INCLUSIVE KEYBOARDS 
The analysis presented above provide insight about elderly users’ 

typing patterns and how keyboard features may be improved to 

better support text input on touch-based devices. In this section, 

we access the reliability of simple touch models and perform a 

user-dependent and user-independent analysis. The goal is to 

demonstrate the potential of such solutions, acknowledging that 

more efficient models can be found resorting to more 

sophisticated measures (e.g. tremor features) and algorithms.  

5.1 Deal with Insertions 
To deal with insertion errors, we calculated the optimal inter-key 

threshold; that is, the value that allowed reducing insertions 

without negatively affecting MSD error rate. In this analysis we 

used 40 values: the number of 25ms intervals from 0ms to 

1000ms. Key presses that had an inter-key interval lower than the 

threshold being tested were considered insertions and were 

therefore discarded. We then computed MSD error rate from all 

resulting sentences and compared it against the baseline 

condition. 

For the user-dependent analysis, we calculated the optimal inter-

key threshold for each participant, based on their typing behavior. 

Results show that MSD error rate dropped, on average, 6.8% in 

Mobile, and 1.8% in the Tablet condition. Optimal threshold 

values varied from 25ms to 1000ms in the Mobile condition and 

from 50ms to 675ms in the Tablet condition. For the user-

independent analysis, we calculated the mean insertion and MSD 

error rate of all participants and choose the inter-key threshold 

that would allow a higher performance gain (on average). In the 

Mobile condition the threshold was 100 ms and resulted in a 

reduction of 0.8% of MSD error rate. In the Tablet condition, the 

threshold was slight higher, 150ms and resulted in a decrease of 

1.1% of MSD error rate. It is noteworthy the decrease in 

performance of the user-independent classifier, especially in the 

Mobile condition. This result suggests that filtering solutions 

should take into account each user typing behaviors. Moreover, 

this simple approach removed nearly 30% and 50% of insertion 

errors in the Mobile and Tablet conditions, respectively. 

5.2 Deal with Substitutions 
To deal with substitution errors, we performed a simple key 

classification based on the Euclidean distance between two points. 

Key centroids were calculated for each key and all key presses 

were re-classified according to the closest centroid. Regarding the 

user-dependent classification, we used a 10-fold cross-validation 

to calculate the mean centroid of each key for each training subset 

of data, and classified the remaining key presses. MSD error rate 

dropped, on average, 11.5%, and 1.2% in the Mobile and Tablet 

conditions, respectively. Overall, participants were consistent 

within themselves, repeatedly hitting the same places for the same 

keys. For the user-independent classification, we calculated the 

average of all key centroids for all participants and classified each 

participant’s key presses based on the closest centroid. This 

approach also reduced MSD error rates, on average, by 9.8% for 

the Mobile condition, and 0.6% for the Tablet condition. Results 

show that the Mobile gain is higher in both classification 

approaches. However, the user-independent classification 

performed worst, suggesting that personalization should be taken 

into account when designing touch-based solutions for the elderly.  

6. DISCUSSION 
After analyzing all data, we are now able to answer the research 

questions proposed at the beginning of this user study. 

1. How do elderly users perform speed and accuracy wise in 

touch-based devices? Elderly users achieved a maximum of 11.5 

WPM using the tablet device (mean of 4.7 and 5 WPM for Mobile 

and Tablet conditions, respectively). Also, input speed was not 

correlated with tremor, instead it was strongly correlated with 

previous QWERTY experience. On the other hand, accuracy was 

mainly explained by task-specific tremor and hand oscillation, 

especially in Mobile conditions. Users obtained a minimum MSD 

error rate of 2.5% (mean of 26% and 17% for Mobile and Tablet 

conditions, respectively). Curiously, Error Rate was not 

correlated with previous QWERTY experience, suggesting that 

having some practice with keyboards is not sufficient to 

compensate the challenges that are imposed by touch interfaces. 

2. What are the most common types of errors and causes? The 

most common error type among elderly people was omission 

errors (9-12.6%). This pattern occurred across device conditions, 

suggesting that it was due to cognitive errors. Nonetheless, the 

novelty of the task can also be playing an important role, thus it 

would be interesting to observe users’ performance on a 

longitudinal study. Following omission errors were substitution 

(3.75-7.8%) and insertion (3.8-5.5%) errors. Insertions were 

mainly due to bounces and accidental touches; while substitutions 

were mostly due to poor aiming. 

3. Do tablet devices compensate the difficulties of elderly users 

when using mobile phones? Overall, we found a decrease of 9% 

in MSD error rate from Mobile to Tablet devices. This finding 

suggests that tablet devices compensate some of the challenges 

imposed by mobile devices, either due to larger key sizes and/or 

static positioning. Indeed, users’ comments and preference 

reinforced this result. Regarding types of error, there was a 

significant decrease of both insertions (1.7%) and substitutions 

(4%). No significant differences were found on omission errors, 

suggesting that they are device-independent. 

4. Does tremor affect text-entry performance? If yes, how does 

user performance correlate with hand tremor? Although input 

speed was mainly related with QWERTY experience, errors were 

strongly correlated with participants’ tremor profile. However, 

each error type was correlated with different measures of tremor. 

Substitutions were largely explained by a subjective measure - 

task-specific tremor, while insertion errors, particularly bounces 

and accidental touches were strongly correlated with Oscillation 

in the X axis (dominant hand). The non-dominant hand also 

played an important role in Mobile errors: Hand Oscillation was 

strongly correlated with overall MSD error rate, accidental 

touches, and slips. These findings suggest that future mobile 

interfaces should take into account users’ tremor profile in order 

to provide more suitable text-entry designs. Still, designers should 

consider different features of tremor. 



7. IMPLICATIONS FOR DESIGN 
We derive the following implications from our results: 

Shift keyboard layout. Elderly participants theoretically benefit 

from a layout shift in the bottom-right direction as most 

substitution errors occur in this direction. This finding may be 

related to hand dominance, thus further research should explore 

this hypothesis. Future work should also explore whether this 

change should be visible to the user, similarly to [5]. 

Width rather than height. Whenever possible keys should be 

wider instead of taller. For both devices we found higher x-axis 

touch dispersion, suggesting that users are more favorable to 

wider keys. In fact, even though most 12-key physical keyboards 

respect this layout, it was lost in touch interfaces. 

Narrower spacebar. Results of touch deviations suggest that 

spacebar should be narrower. Reducing its size has the potential 

to diminish substitution errors. We recommend a spacebar 

extending from middle of C to middle of B for both devices. 

Avoid errors by understanding typing behaviors. Future designs 

should focus on model users typing patterns by analyzing touch 

features (e.g. x and y touch position, distance traveled during 

touch, key press duration, between keys duration etc.) and 

therefore increase typing accuracy. 

Allow personalization. We observed several individual 

differences regarding typing behaviors, particularly hit point 

locations, and inter-key interval. Future research should tackle 

these issues by providing user-dependent solutions. 

Deal with poor aiming rather than finger slips. Keyboard 

designers should deal with poor aiming errors. Although finger 

slips may occur they only account for a minority of substitution 

errors, particularly when typing on tablet devices. 

Use language-based correctors. Cognitive errors were quite 

common among elderly users. Simple language-based solutions 

can provide a suitable answer to these types of errors. For 

example, to deal with blank space omissions or substitution of 

similar letters (e.g. pq, mw). 

Compensate hand tremor. Future keyboards should adapt to 

users’ hand tremor characteristics. Results showed large 

correlations between tremor measures and input accuracy, namely 

when considering substitution errors. Taking advantage of current 

mobile sensing capabilities, future solutions should trace users’ 

tremor profile to compensate typing errors. 

8. CONCLUSION 
We have investigated text-entry performance of 15 elderly users 

on touch-based devices. Results showed that error rates are still 

relatively high compared to younger users’ performance [13]. 

Hand tremor was strongly correlated with input errors, indicating 

that this information can be used to enhance text-entry accuracy. 

Most common types of error were omissions (10.8%), followed by 

substitutions (5.8%), and insertions (4.6%). From results emerged 

error patterns and design implications that should improve typing 

accuracy and persuade researchers to create more effective 

solutions for the elderly.  Future work should improve proposed 

solutions and focus in coping with each user’s abilities, enabling 

them to effectively input text on touchscreen devices. 
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