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Epidemic spreading and cooperation dynamics on homogeneous small-world networks
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We introduce a class of small-world networks—homogeneous small-worlds—which, in contrast with the
well-known Watts-Strogatz small-worlds, exhibit a homogeneous connectivity distribution, in the sense that all
nodes have the same number of connections. This feature allows the investigation of pure small-world effects,
detached from any associated heterogeneity. Furthermore, we use at profit the remarkable similarity between
the properties of homogeneous small worlds and the heterogeneous small-worlds of Watts-Strogatz to assess
the separate roles of heterogeneity and small-world effects. We investigate the dependence on these two
mechanisms of the threshold for epidemic outbreaks and also of the coevolution of cooperators and defectors
under natural selection. With respect to the well-studied regular homogeneous limits, we find a subtle interplay
between these mechanisms. While they both contribute to reduce the threshold for an epidemic outburst, they
exhibit opposite behavior in the evolution of cooperation, such that the overall results mask the true nature of

their individual contribution to this process.
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I. INTRODUCTION

The study of networks pervades all of science, and the
recent and spectacular developments in computers and com-
munication networks made it easier to understand that the
world in which we live and which we create and shape is in
fact a huge web of networks of different kinds, some of
which were recently found to obey scaling laws. In fact, only
very recently [1,2] such features have been recognized as
playing a ubiquitous role on many processes taking place in
different types of communities. These can be typically
mapped onto networks, in which community members oc-
cupy the nodes and their interactions are represented by the
links between nodes. Moreover, networks often portray the
coexistence of local connections (spatial structure) with non-
local connections (or shortcuts). The celebrated Watts-
Strogatz [3] small-world (SW) networks proved instrumental
to understand and characterize such network features. As a
result, many studies originating from diverse areas of science
have been carried out to investigate the impact of SW effects
on the static and dynamic properties of phenomena taking
place on networks. As a rule, such impact of SW effects has
been sought by comparing the behavior of the system with
that known from analytical studies typically carried out at a
mean-field level, or in spatially homogeneous layouts. How-
ever, in contrast with spatial configurations and mean-field
models, in which the homogeneity of node connectivity
translates into a degree distribution characterized by a well-
defined, single peak, most SW networks studied so far are
inherently heterogeneous (for an exception, cf. Ref. [4]),
with associated multipeaked degree distributions [for a net-
work with N nodes, the degree distribution is defined as
d(k)=N,/N, where N, gives the number of nodes with k
links]. In other words, the systematic study of the role of
“pure” SW effects devoid of any associated heterogeneity
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has not been carried out, precluding a clear understanding of
the role of such SW effects. For instance, it has been recently
shown [5] how computer networks exhibiting the ubiquitous
scale-free degree distributions d(k)~k™3 are extremely frag-
ile to epidemic outbreaks, such that in the limit of infinite
size, these networks show no threshold for such outbreaks.
This result, extended to other epidemiological contexts in
Ref. [6], was shown to result from the divergence of the
second moment of the degree distribution in the limit of
infinite size, a typical heterogeneity effect. As such, the spe-
cific contribution of SW effects to the characterization of
epidemic thresholds remains unclear.

On the following, we start by defining a class of SW
networks—homogeneous SW (HoSW)—which exhibit SW
features without giving up the homogeneity of the associated
degree distribution. These networks will prove very useful in
our subsequent investigations of the contributions of SW ef-
fects and of network heterogeneity to phenomena taking
place on networks.

Inspired by the algorithm developed in Ref. [3]. to gener-
ate Watts-Strogatz heterogeneous SW (HeSW), we generate
HoSW starting from a (undirected) regular graph with aver-
age connectivity z and size N, which fixes the number of
edges E=Nz/2. We introduce a dimensionless parameter f
which gives the fraction of edges to be randomly rewired: for
f=0 we have a regular graph, whereas for f=1 all edges are
randomly rewired. We adopt, however, a rewiring mecha-
nism which does not change the degree distribution [7]. The
algorithm resumes to repeat the following two-step circular
procedure until fE edges are successfully rewired: (i)
choose—randomly and independently—two (different) edges
which have not been used yet in step (ii) and (ii) swap the
ends of the two edges if no duplicate connections arise.

The procedure of edge-swapping, as is well-known [7],
does not change the overall degree distribution. On the other
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FIG. 1. (Color online) HoSW versus HeSW. The cluster coeffi-
cient C and average path length L, divided by their values for regu-
lar networks (Cyy and Ly, respectively), are shown as a function of f
for the HOSW proposed in this work, and of the SW rewiring prob-
ability p for HeSW. We divided the domains of f and p in two
subregions, which were found to be associated with different re-
gimes for the processes studied here. On the left panel (in a log
scale) we detail the behavior for the region in which L changes
significantly while C remains nearly constant. The remaining do-
main, shown in the right panel, is dominated by changes in C while
changes in L are very small.

hand, since the edges are randomly chosen, by swapping the
ends of each pair of edges one is actually introducing short-
cuts in the original regular graph, in this way strongly affect-
ing the properties of the associated network. Indeed, and
similarly to the HeSW rewiring probability p, the parameter
f has a strong nonlinear impact on both local and global
properties of the resulting network. In Fig. 1 a comparison is
shown between key features of HoSW and HeSW as func-
tions of f and p, respectively. Specifically, we plot the aver-
age path length L and cluster coefficient C [1], for both
HoSW and HeSW, divided by the corresponding values at
f=p=0. The networks are characterized by N=10* and z
=8 (although the qualitative behavior shown in both panels
of Fig. 1 does not depend on the precise value of z), and Fig.
1 shows that, in spite of the fact that for HoOSW the degree
distribution is independent of f, the behavior of L and C for
both types of networks is remarkably similar. In other words,
heterogeneity constitutes the main distinctive feature of
HeSW when compared to HoSW. What is the contribution of
each of these mechanisms to a given dynamical process tak-
ing place on networks? The answer will depend on the pro-
cess under study. Here we select two examples of complex
phenomena in which the individual contributions of each
mechanism turn out to be of different magnitude and sign:
The threshold for epidemic outbreaks, within the simple
susceptible-infected-susceptible (SIS) model [5] and the evo-
lution of cooperation, for which we adopt the single-round
Prisoner’s dilemma (PD), a model which has been recently
studied in different types of networks [8—15].

A. Threshold for epidemic outbreaks

Following Ref. [5], we adopt the susceptible-infected-
susceptible (SIS) model to describe epidemic spreading in a
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FIG. 2. (Color online) Different contributions to the threshold of
epidemic outbreaks. The threshold for the occurrence of an epi-
demic outbreak A, has been computed on HoSW and HeSW of size
N=10* and z=4. The dependence in terms of f for HOSW and p for
HeSW is plotted with solid squares and solid circles, respectively (a
logarithmic scale is used for f and p). For f=p=1, where all edges
have been randomized, the reduction in the threshold for epidemic
out-breaks is =36% in homogeneous networks with respect to regu-
lar networks. On the other hand, heterogeneity adds to the previous
effects, further reducing by =10% the value of \, at p=1.
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(computer) network, in which computers occupy the nodes
and their connections are represented by the links between
nodes. The status of each node evolves in time according to
the following update rules [5]: An infected node at time r
recovers and becomes susceptible at time 7+ 1. A susceptible
node at time # may become infected with probability \ if it is
linked to at least one infected node. We carry out extensive
computer simulations and compute the critical value M\,
above which infected nodes persist in the stationary regime.
Initially, an equal percentage of infected and susceptible is
randomly distributed among the nodes of the network. After
a transient time, a stationary state is reached, in which we
compute the prevalence of infected individuals. For given
values of f and p, and for N=10* and z=4, we determined
the critical value \.. We have checked that the results shown
here remain valid for N>1000, the differences between
HoSW and HeSW becoming smaller with increasing z. We
carried out 100 runs for each value of f, p, and \. The results
are shown in Fig. 2. For small values of f=p=<0.01 (left
panel of Fig. 1), for which small-world effects occur (asso-
ciated with the coexistence of large values of C with small
values of L) the behavior of both curves is very similar. This
is so in spite of the fact that in this interval range L has
dropped by over one order of magnitude from its value at
f=p=0, indicating an insensitivity of A\, with respect to L.
This is also the region in which the dependence of L is more
dissimilar between the two models. For larger values of f and
p, the two curves increasingly deviate from each other up to
f=p=1. This is the region in which C undergoes its major
changes, indicating that the threshold for epidemic outbreaks
is more sensitive to C than to L. We obtain a sizable reduc-
tion of the critical value, up to a total of =36% in the ho-
mogeneous random limit (f=1), when compared to the ho-
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TABLE 1. Finite-size effects in uncorrelated networks. The
value for the epidemic threshold A, is tabulated for different net-
work sizes, for HoSW with f=1 and HeSW with p=1. The analyti-
cal value corresponding to the mean-field approximation is given
[17] by A\,=1/z=0.25 (z=4). The results tabulated show the inter-
ference between heterogeneity and finite-size effects, such that for
N=10* the mean-field result is accidentally reached, in spite of the
fact that, as expected, the limit of A, in HeSW whenever N — is
lower than the mean-field limit, which corresponds to the limit ob-
tainable in HoSW.

N N (HoSW) A (HeSW)
10° 0.290 0.265
10* 0.279 0.250
10° 0.276 0.245

mogeneous regular network. On the other hand, hetero-
geneity adds to the previous effects, further reducing the
value of A, by =10% (p=1). Clearly, the major contribution
to such a reduction arises exclusively from the increasing
randomization of the edges (taking place with increasing f)
heterogeneity providing a minor contribution. For f=p=1,
the value of C is very small, comparable to the values typical
for random scale-free networks [1]. Therefore, as heteroge-
neity continues to increase, we expect it to become the domi-
nant mechanism, such that on extreme heterogeneous net-
works the effects on \. associated with the introduction of
shortcuts will be washed out by heterogeneity effects. This is
exactly what comes out of the results of Refs. [5,6].

On the other hand, the results shown in Fig. 2 illustrate
how finite-size effects should not be overlooked whenever
the limiting behavior of processes taking place in networks is
at stake. As is well-known [16], the mean-field approxima-
tion assumes that networks are of infinite size, the pattern of
connectivity is uncorrelated, and all nodes share the same
number of connections [17] (homogeneous ansatz). In other
words, in order to compare simulation results with the (ana-
lytical) mean-field results of Ref. [17] one should adopt
HoSW with f=1 and N—-<e. Indeed, simulations on such
networks for f=1 deviate from the mean-field approximation
only to the extent that they must be carried out in finite-sized
networks. HeSW, on the other hand, deviate more from the
mean-field approximation, since heterogeneity translates into
different nodes exhibiting a different number of connections.
The results shown in Fig. 2 (and, for that sake, the results in
Ref. [17]) seem to indicate, however, that HeSW lead to an
excellent agreement when compared to the analytical value
N.=1/z, actually better than those associated with HoSW, a
feature which seems paradoxical in view of the present dis-
cussion. This is clearly a finite-size effect, as tabulated in
Table I, which shows how A. changes as we change the size
of the network. Clearly, while for N~ 10* both values over-
estimate the mean-field limit, A, already underestimates the
mean-field limit for N~ 10° in HeSW, whereas \. continues
the slow, monotonic convergence toward the mean-field limit
in HoSW.

B. Evolution of cooperation

The ongoing challenge [18] of understanding the emer-
gence of cooperation in the context of Darwinian evolution is
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traditionally addressed in the framework of evolutionary
game theory [19], combined with games such as the PD,
used as metaphors of cooperation between unrelated indi-
viduals [19]. In the simple, single-round PD, individuals are
either cooperators or defectors, acting accordingly whenever
two of them interact. They both receive R upon mutual co-
operation and P upon mutual defection. A defector exploiting
a cooperator gets an amount 7" and the exploited cooperator
receives S, such that 7>R>P>S. On the foregoing, we
shall follow common practice [8-15] and adopt the simplest
parametrization for the PD, making 2>T=b>R=1>P=S
=0, where b represents the temptation to defect. In infinite,
well-mixed populations, evolution under replicator dynamics
favors defectors over cooperators. However, whenever coop-
erators and defectors are spatially arranged on a regular, ho-
mogeneous network for which z<<N [13] cooperators are
now able to dominate defectors for small values of the temp-
tation to defect b. This dominance is significantly enhanced
[13] whenever the populations are mapped onto HeSW, be-
ing maximal for p=1 (for fixed z), although the origin of this
enhancement remains to be clarified (see below).

The sensitivity of cooperation to the underlying popula-
tion structure has prompted a series of work on the subject.
Both the simple PD game considered here [8—15] as well as
the more complex repeated PD game [21,22] have been stud-
ied in networks which resemble those used in this work.
Indeed, Watts-Strogatz small-world ring networks have been
investigated in Ref. [10] under deterministic imitation dy-
namics, in two-dimensional lattices in [20-22] or in random
homogeneous and heterogeneous networks in [9,14,21,22].
Moreover, disorder in the environment has been mimicked
by introducing site-diluted graphs in Ref. [11].

Here we simulate evolution in HoSW and HeSW by
implementing the finite population analog of replicator dy-
namics [13,19], which converges to replicator dynamics in
the limit of infinite, well-mixed populations: In each genera-
tion, all pairs of individuals x and y, directly connected, en-
gage in a single round of the PD, their accumulated payoffs
being stored as P, and P,, respectively. Whenever a site x is
updated, a neighbor y is drawn at random among all k,
neighbors; whenever P,> P, the chosen neighbor takes over
site x with probability given by (P,—P,)/(Dk-.), where k- is
the largest between k, and k, and D=T-S, ensuring the
proper normalization of the probability. Such a stochastic
update rule is different from the deterministic rule used in
other studies of the PD [8-12,14] and, as shown recently, the
specific update rules used [23] lead to different evolutionary
dynamics both for finite as well as for infinite populations.
The framework adopted here corresponds to the so-called
synchronous updating. We have checked that no qualitative
changes of the results are obtained if asynchronous updating
is used instead. Initially, an equal percentage of strategies
(cooperators or defectors) is randomly distributed among the
elements of the population. Evolution undergoes a transient
period before a stationary regime is reached, in which we
compute the equilibrium frequencies of cooperators and de-
fectors. As a result, we determine the dependence of the
equilibrium frequency of cooperators on the temptation to
defect b.

In Fig. 3 we show the results of extensive computer simu-
lations carried out both for HoSW (upper panel) and for
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FIG. 3. (Color online) Evolution of cooperation in HoSW (upper
panel) and HeSW (lower panel). We computed the fraction of co-
operators who survive evolution, as a function of the PD parameter
b, for selected values of the SW parameters f and p. All networks
have size N=10* and z=4. Comparison between the two panels
shows that while the range of b values for which cooperators resist
invasion by defectors results from SW effects associated with the
increase of shortcuts, the overall fraction of cooperators that sur-
vives evolution is sizably enhanced via heterogeneity effects, which
completely mask the hindrance of cooperation induced by the pre-
vious effects for small values of b.

HeSW (lower panel). In all cases, we make z=4 and N
=10% although the results we obtain here are robust both for
larger populations as well as for smaller communities and
other values of z. Each data point in Fig. 3 results from an
average over 100 simulations, resulting from 10 different
realizations of each type of network, and 10 runs for each
network realization.

The solution corresponding to the evolution of coopera-
tion on homogeneous regular graphs (f=p=0) is shown with
a solid line in both panels. The behavior of cooperation re-
mains unchanged with respect to the regular limit up to f
=p=0.005, at which point we have, on average, 0.5% of the
edges randomly rewired, and L has decreased typically one
order of magnitude from its value for f=p=0, indicating that
the overall incidence of cooperators is again insensitive to L.
For f=p=0.01, one obtains small changes as a function of b.
Comparison between the results for HoOSW and HeSW show
no qualitative difference, however, which means that the ef-
fects responsible for this change do not rely on heterogeneity
effects (cf. Fig. 1). f=p=0.01 marks the onset of a more
rapid change of C, whereas most of the variation in L has
already taken place, which indicates that cooperation may be
more sensitive to changes in C. This is indeed what happens,
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as shown in Fig. 3. For f=p=0.1, a sizable change of behav-
ior is obtained, being also markedly different for both types
of networks. Indeed, cooperators are now able to resist inva-
sion by defectors up to values of b= 1.35 in both networks.
The fact that the onset of survival for cooperators is essen-
tially identical in both types of networks indicates that the
increasing randomization of the edges is responsible for this
enhancement of the survivability of cooperators, indepen-
dently of any heterogeneity effects. These effects alone,
however, lead to a sizable reduction of the fraction of coop-
erators for small b. Larger values of f<0.5 lead to an am-
plification of both behaviors, whereas for f>0.5 no further
qualitative changes take place. It is noteworthy that C still
changes significantly as f varies from f=0.5 to f=1, suggest-
ing that above a certain value, C plays no additional role.

Comparison between the two panels in Fig. 3 for p=f
=0.1 also shows the effect of “adding” heterogeneity: Over-
all, the fraction of cooperators who survive evolution in
HeSW is considerably enhanced. Moreover, both curves in
Fig. 3 show how heterogeneity counterbalances those effects
associated with the occurrence of shortcuts such that, for
small b, the levels of cooperation now overshoot those ob-
tained on regular networks. For larger values of b, coopera-
tion is also sizably enhanced. These nontrivial effects dem-
onstrate the detailed interplay between these mechanisms
taking place in the evolutionary dynamics of cooperation. In
HeSW individuals do not interact the same number of times
per generation. As such, cooperators have a better chance of
increasing their relative fitness by “placing themselves” on
the nodes with larger connectivity. Indeed, heterogeneity in-
creasingly assumes a dominant role such that, on scale-free
networks, cooperation may become the dominating trait for
all values of b, a result which extends to other symmetric
two-person games [15].

To summarize, the present results show that “conven-
tional” SW effects result from the concurrent contributions
of heterogeneity and “pure” SW effects, associated with the
substitution of regular links by shortcuts. These two mecha-
nisms, depending of the process being studied, may exhibit
constructive or destructive interference. In what concerns the
spread of viruses taking place on networks, for small values
of the heterogeneity, the increasing randomness associated
with large f values in HoOSW provides the dominant contri-
bution to the sizable reduction of the threshold for epidemic
outbursts obtained. However, as heterogeneity grows, it be-
comes the dominating effect [5,17]. In what concerns the
evolution of cooperation, SW effects play a more subtle role.
On one hand, SW effects (and for large f, the increasing
randomness of the network) increase the survivability of co-
operators up to larger values of the temptation to defect b.
On the other hand, the overall incidence of cooperators de-
creases whenever the temptation to defect is small. Hetero-
geneous effects, in turn, lead to an overall enhancement of
cooperation for all values of b which, even for the moderate
heterogeneity considered here, completely mask the modifi-
cations induced by SW effects, notably the reduction of the
incidence of cooperators for small values of b.
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The possibility to separate heterogeneity and “pure” SW
effects may provide further insights into the detailed dynam-
ics of complex phenomena taking place on networks. Work
along these lines is in progress.
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