
IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, <MONTH> <YEAR> 1

Specifying Dynamic Adaptations for
Embedded Applications Using a DSL

André C. Santos, João M. P. Cardoso, Pedro C. Diniz, Diogo R. Ferreira, Zlatko Petrov

Abstract—Embedded systems are severely resource constrained
and thus can benefit from adaptations to enhance their func-
tionality in highly dynamic operating conditions. Adaptations,
however, often require additional programming effort or complex
architectural solutions, resulting in long design cycles, trouble-
some maintenance, and impractical use for legacy applications.
In this paper, we introduce an adaptation logic for the dynamic
reconfiguration of embedded applications and its implementation
via a domain-specific language. We illustrate the approach in a
real-world case study of a navigation application for avionics.

Index Terms—Embedded systems, software adaptation, appli-
cation reconfiguration, domain-specific language, avionics.

I. INTRODUCTION

THE reliance on mobile embedded systems demands these
devices to be increasingly powerful while meeting strin-

gent energy and performance requirements. As a result, their
software components must be adaptable to a wide range of
very dynamic (run-time) scenarios in order to continue to
fulfill their set of requirements, e.g., continuously delivering
acceptable service levels [1]. While in some cases their run-
time adaptation can consist of simple algorithmic parameter
tuning, in more sophisticated scenarios, adaptations can re-
quire a substantial transformation of the underlying code struc-
ture. As a result, adaptations inevitably grow in complexity and
thus in terms of implementation and development cost.

In this work, we introduce an approach for dynamic recon-
figuration of embedded applications, through an external, high-
level and platform-neutral, domain-specific language (DSL).
The DSL separates the adaptation logic from the core ap-
plication logic by enabling the specification of adaptation
policies that produce the necessary adaptability at run-time.
The adaptation logic specified in the DSL is then incorporated
into the application through code generation and weaving.

To illustrate the proposed approach, we describe and discuss
its use in a case study involving an industry-developed stereo
navigation application – StereoNav (described in detail in [2]).
In essence, the application takes two images as input and
extracts special features that are used for pose estimation, thus
enabling both avionics localization and navigation.

The remainder of this paper is organized as follows. Sec-
tion II and III present the adaptation logic and DSL implemen-
tation. Section IV describes the application of our approach to

André C. Santos and Diogo R. Ferreira are with the Department of
Computer Science and Engineering, IST – Technical University of Lisbon,
Portugal, e-mail: acoelhosantos@tecnico.ulisboa.pt. João M. P. Cardoso is
with the Department of Informatics Engineering at FEUP – University of
Porto, Portugal. Pedro C. Diniz is with INESC–ID, Portugal. Zlatko Petrov
is with Honeywell International s.r.o., Czech Republic.

Manuscript received MONTH DAY, YEAR; revised MONTH DAY, YEAR.

the case study. Section V presents related work, and Section VI
summarizes and concludes the paper.

II. ENABLING APPLICATION ADAPTABILITY

In order to model and implement run-time adaptability,
the application logic and the adaptation logic are defined
separately and later combined for execution. This separation
of concerns is essential, as the application logic focuses on
the core functionality, while the adaptation logic adds a layer
of application configurability. Furthermore, such separation
is essential for behavior understanding, rapid prototyping,
flexible maintenance and conceptual independence.

Regarding the core application logic, each application is
developed with its own goals and implementation details.
However, all share common characteristics such as a sequence
of computational steps, a set of algorithms, input parameters,
and output values. Some of these characteristics allow adap-
tations to reconfigure the application behavior by changing
parameters, activating or deactivating components, inserting
new control logic, etc. Having these application characteristics
clearly identified and exposed is essential for the purpose of
implementing the adaptation logic.

The adaptation logic is represented as a policy that defines
strategies that target adaptation goals through a set of adap-
tation rules. Each rule is triggered when specific conditions
occur and as a consequence applies the appropriate actions.
Since the adaptation policy is external to the application, it
can be applicable to multiple applications, thus promoting
reusability in the specification of adaptable behavior. On the
other hand, each application may have multiple adaptation
strategies for different concerns.

To specify an independent logic for adaptation, an approach
that operates at a different level of abstraction than the applica-
tion logic is necessary. For this purpose, we introduce a novel
DSL with platform-independent and high-level abstractions
tailored to the specification of adaptable behavior for embed-
ded systems, namely: (i) activate/deactivate specific sections
of application code to enable/disable certain computational
steps; (ii) change function parameters in order to configure
the behavior of certain algorithms within the application code;
(iii) establish the frequency of function execution and thus
speed up or speed down recurrent computations defined in the
application code. With specific constructs, the proposed DSL
can thus be more succinct and intuitive than writing adaptation
code in a general-purpose programming language, such as C.

Figure 1 illustrates the flow and relations between the
aforementioned entities, depicting the application logic as

IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, <MONTH> <YEAR> 2

S1 S2 S3 S4

Rule
r1

Rule
r2

P1 P2

A
pp

lic
at

io
n

la
ye

r
A

da
pt

at
io

n
la

ye
r

Sensor

Rule trigger
location:

"location_2"

Rule trigger
location:

"location_1"

adapts adapts

triggered attriggered at

Fig. 1. Specifying adaptation behavior considering two separate logic layers
and depicting adaptation rules and their triggering locations. Computing stages
are designated as S, and their input parameters as P.

a process, and highlighting a segment that is reconfigured
through an adaptation policy composed of two adaptation rules
that modify the input parameters for the S3 computing stage,
before execution due to sensor data (r1), and after execution
due to information from the execution time (r2).

With respect to the implementation, the fact that the DSL
is independent of the application code allows for adaptations
to be coupled with the application through several possi-
ble compile- or run-time mechanisms, such as: (i) inject-
ing adaptation code in the application at a bytecode level;
(ii) weaving adaptation code directly into the application
code; (iii) executing the application in a controlled virtual
execution environment. In the present approach, we apply
a joint-compilation process, where initially the DSL code
is translated into the target GPL of the application using a
custom compiler; secondly, the translated adaptation code is
weaved statically into the application source code; thirdly, the
combined adaptation and application code is compiled using
a standard compiler, generating the adaptive application.

III. SPECIFYING ADAPTABILITY USING A DSL

In the DSL, an adaptation policy is specified by strategy
entities, composed of declarations, operations, and rules. Dec-
larations are reserved for static information (e.g., variables,
default values, function imports). Operations specify the evalu-
ation/action points where the adaptation rules will be evaluated
and the actions triggered in the application code (e.g., before
or after a code function, or at a specific annotated code
point). The rules section specifies the activating conditions
and the adaptation actions that reconfigure the application.
Additionally, for extensibility, a supplementary code section
may be used for platform-specific code.

An example of an adaptation policy specified with the DSL
is shown in Figure 2. This is a strategy for the StereoNav
application where an image resolution input parameter is
adjusted according to the state of a vehicle speed variable.
Lines 2–4 refer to declarations, specifying an array of image
resolutions to be used (line 2), and two imported functions
representing an iteration of the StereoNav algorithm (line 3)
and the retrieval of the vehicle speed (line 4). Lines 5–7 define
the location e1 for rule execution (line 6), which points to a
location in the application code. In lines 8–19, the rule r3

1 strategy stereoNavImgResAdapt1{
2 i n t [] [] imgRes = {{320, 240} , {640 , 480}};

3 import function stereoNav (i n t ransac I t e r a t i o n s =5000,
i n t imgWidthRes =640 , i n t imgHeightRes =480) ;

4 import function [i n t vehicleSpeed] getVehicleSpeed () ;

5 operations{
6 r3 evaluation point ” e1 ” ;
7 }

8 rules{
9 r3 : every (stereoNav) :

10 r e t r i e v e getVehicleSpeed () . vehicleSpeed as speed{
11 i f (speed > 50){
12 stereoNav . imgWidthRes = imgRes [0] [0] ;
13 stereoNav . imgHeightRes = imgRes [0] [1] ;
14 }e lse{
15 stereoNav . imgWidthRes = imgRes [1] [0] ;
16 stereoNav . imgHeightRes = imgRes [1] [1] ;
17 }
18 }
19 }
20 }

Fig. 2. DSL specification code for adapting image resolution according to
the vehicle’s current speed in the StereoNav application.

specifies a periodic adjustment of image resolution parameter
depending on the vehicle speed.

In order to detect possible rule conflicts, we use a ver-
ification process based on automata theory. This approach
allows the modeling of the rules by translating them into au-
tomata and then, through automata operations, characteristics
of the adaptations can be determined, namely: (i) the cartesian
product obtains the combination of all possible adaptation
states and transitions; (ii) minimization identifies and removes
useless or unreachable states; and (iii) intersection detects
common states. Modeling and translating the concepts of an
adaptation rule to an automaton is performed through an
algorithm, which analyzes the code control flow of the rule and
extracts possible adaptation states and the transitions between
them. Using the automata model, it is also possible to simulate
the adaptation behaviors admissible with the defined rule set.

IV. CASE STUDY: STEREO NAVIGATION APPLICATION

The StereoNav application comprises a sequence of algo-
rithmic operations: debayering, rectification, feature extrac-
tion, feature matching, 3D reprojection, pose estimation, and
refinement. Throughout these operations, StereoNav requires
correct and timely navigation information to maintain an
acceptable level of quality-of-service (QoS), and to do so
it must adapt to changes in vehicle speed, limited time for
computation, and availability of computational resources. Our
run-time adaptation approach is a useful instrument not only
to prevent QoS degradation but also to improve QoS and
thus the navigation itself. Moreover, the approach allows the
adaptations to be untangled from the core application logic.

A. Experimental Setup and Methodology

In this case study, the most computationally demanding
operations are the most relevant to target, as their reconfig-
uration will have a greater impact in the overall behavior of
the application. Feature extraction and pose estimation are

IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, <MONTH> <YEAR> 3

1 r4 : every (stereoNav) :
2 r e t r i e v e getVehicleSpeed () . vehicleSpeed as speed{
3 i f (speed < 25){
4 stereoNav . ransac I t e r a t i on s = 5800;
5 }else i f (speed >= 25 && speed < 50){
6 stereoNav . ransac I t e r a t i on s = 5500;
7 }else i f (speed >= 50 && speed < 75){
8 stereoNav . ransac I t e r a t i on s = 4800;
9 }else i f (speed >= 75 && speed < 100){

10 stereoNav . ransac I t e r a t i on s = 4300;
11 }else i f (speed >= 100){
12 stereoNav . ransac I t e r a t i on s = 3900;
13 }
14 }

Fig. 3. Rule specification code for adapting the number of RANSAC iterations
according to the vehicle’s speed.

the most demanding operations (89.3% and 5.6% of total
execution time, respectively), and they expose two possible
parameters for adaptation that yield a significant computational
impact: (i) the resolution of the processed images in the feature
extraction operation, and (ii) the number of iterations of the
RANdom SAmple Consensus (RANSAC) estimation algorithm
in the pose estimation operation. Herein, we are interested
in defining adaptations, specifying them with the DSL, and
evaluating the benefits of our approach.

For these experiments, we used a C implementation of the
StereoNav algorithm and two testing setups: a PC environ-
ment (setup 1); and an FPGA board environment (setup 2).
For the feature extraction operation, we considered two image
resolutions of 640× 480 (high resolution) and 320× 240 (low
resolution). Regarding the number of RANSAC iterations for
the pose estimation operation, we introduced configurations
guaranteeing 90%, 92%, 94%, 96%, and 97% probability of
correctness, corresponding to 3900, 4300, 4800, 5500, and
5800 iterations, respectively. The execution time is on average
3× to 4× greater for the higher resolution, and roughly
increases linearly with the number of iterations.

B. Strategy: Adapting to the Vehicle Speed
Decreasing the image resolution as the vehicle speed in-

creases allows continuous navigation information since, the
faster the vehicle moves, the faster the application needs to
determine its position. The DSL specification for this strategy
was presented earlier in Section I and specified in Figure 2.

In addition, as the speed of the vehicle increases, the number
of RANSAC iterations must be reduced in order to decrease
the computational strain and thus the execution time. The DSL
specification strategy for this adaptation is much similar to
the earlier specification in Figure 2, with the exception of the
rules section, which now targets other adjustments. Figure 3
depicts the new rule r4 evaluated at the beginning of every
stereoNav execution, retrieving the vehicle speed through
the imported function and, depending on its value, setting
the number of iterations for the RANSAC algorithm. In this
example, the speed thresholds are merely illustrative as they
may change with the characteristics of the vehicle.

C. Strategy: Adapting to a Time Constraint
Considering a requirement for the algorithm to complete

its execution within a required time frame, the adaptation of

1 r5 : every (stereoNav) :
2 r e t r i e v e getT imeConst ra in t () . t ime as timeCons{
3 i f (timeCons >= stereoNav . elapsed t ime){
4 stereoNav . imgWidthRes = imgRes [0] [0] ;
5 stereoNav . imgHeightRes = imgRes [0] [1] ;
6 }e lse{
7 stereoNav . imgWidthRes = imgRes [1] [0] ;
8 stereoNav . imgHeightRes = imgRes [1] [1] ;
9 }

10 }

Fig. 4. Rule specification code for adapting image resolution according to
a time constraint for the computation time.

image resolution can be implemented in the following way:
if the time constraint is violated, then the image resolution
is decreased; if the time constraint is satisfied, then the
image resolution can be increased. Such strategy is similar
to the specification in Figure 2, however the vehicle speed
function is replaced by a function that informs on the time
constraint (getTimeConstraint) and a new rule is added,
based on the elapsed time of the last stereoNav execution,
which can be obtained via an elapsed_time macro (code
for this macro is added when weaving). The rule retrieves the
time constraint, and if the constraint is greater than or equal
to the execution time of the previous StereoNav step, then the
StereoNav algorithm uses the high image resolution, otherwise
it switches to the low resolution (see Figure 4).

A second adaptation for time frame compliance consists in
selecting the number of iterations for the RANSAC algorithm
according to the time available for the pose estimation opera-
tion, which is possible to do with prior knowledge about the
average execution time of that operation. Given an available
execution time, it is possible to select the highest number of
RANSAC iterations that perform within the time constraint.
The implementation of this strategy is presented in Figure 5,
where two functions are imported (lines 2–3) to provide the
control variables needed to choose the appropriate number
of iterations (total available time and the time already spent
up to the pose estimation operation). Lines 5–20 set the
appropriate number of iterations according to the available
time for the pose estimation operation. Some lines are omitted
for simplicity as they are equal to the specification in Figure 2.

D. Discussion

The practical experience presented here reveals that the
DSL allows for the easy decoupling between application and
adaptation-related code, as well as maintenance and modifi-
cation over time. Each adaptation was specified separately to
show the impact of different requirements, which need changes
mostly within rules to include addition decision criteria. All
strategies allow to keep the navigation accurate even in the
presence of problematic situations.

As the DSL adaptation code is compiled and weaved
within the application source code, having the adaptations
directly implemented into the application code would require a
substantial coding effort by the addition of functions, variables,
threading, etc. Due to the interplay with the main application
logic, such programming effort would involve much more than
just coding the adaptation code. More specifically, the coding

IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, <MONTH> <YEAR> 4

1 / / (. . .)
2 import function [double tPrev] getTimeSpent () ;
3 import function [double t T o t a l] getT imeConst ra in t () ;
4 / / (. . .)
5 rules{
6 r6 : every (stereoNav) :
7 r e t r i e v e (getT imeConst ra in t () . t T o t a l − getTimeSpent () .

tPrev) as t A v a i l a b l e{
8 i f (t A v a i l a b l e > 0.08){
9 stereoNav . ransac I t e ra t i o n s = 5800;

10 }else i f (t A v a i l a b l e > 0.075){
11 stereoNav . ransac I t e ra t i o n s = 5500;
12 }else i f (t A v a i l a b l e > 0.06){
13 stereoNav . ransac I t e ra t i o n s = 4800;
14 }else i f (t A v a i l a b l e > 0.05){
15 stereoNav . ransac I t e ra t i o n s = 4300;
16 }e lse{
17 stereoNav . ransac I t e ra t i o n s = 3900;
18 }
19 }
20 }

Fig. 5. DSL specification code for adapting the number of RANSAC iterations
according to a time constraint for the overall computation time.

effort measures to the addition of 586 lines of code, 372
statements, and 0.6% additional branches, which is 3× more
code than the equivalent DSL code, with a higher word-per-
line ratio and thus higher textual density.

The experiment reported here therefore suggests that the
manipulation of strategies using the DSL is thus less complex
and translates into easier readability and maintenance than the
direct modification of the original application code. Conse-
quently, adding adaptive behavior through the DSL requires
less code additions, modifications and removals, as changes
are confined to fewer locations.

V. RELATED WORK

Embedded systems are gaining momentum due to active
research in topics such as context-aware and ubiquitous com-
puting (e.g., [3], [4]). In these types of systems, run-time
adaptations are required to achieve performance goals under
changing operating conditions. These adaptations are typically
accomplished through the use of conditional expressions, pa-
rameterization, and/or exceptions [1]. However, implementing
adaptations in such a way is error-prone and introduces an
undesired degree of complexity by intertwining adaptation and
application code, which scales poorly and renders software
evolution and maintenance hard. More sophisticated solutions,
namely through architectural approaches and programming
language extensions, have been proposed to mitigate these
problems and better support adaptations.

Architectural-based models offer dynamic adaptations but
are not widely adopted (e.g., [1], [5]), possibly due to the
limited scope of the supported adaptations, or due to the lack
of adaptation facilities in practice [6]. Also, these approaches
require applications to be developed according to certain
component-based structures, which complicate introducing
adaptations into already existing applications.

Programming-based solutions offer adaptations focused usu-
ally on extensions to host languages. Context-oriented pro-
gramming has been typically implemented as an add-on to
several languages (e.g., [7]) to modify the behavior of an
application by associating code definitions with context-related
layers that are activated or deactivated according to the current

context. However, adaptations depend on context states alone,
and the end result is similar to embedding conditional state-
ments in the application code. Aspect-oriented programming
fosters a separation of concerns by encapsulating crosscutting
concerns (e.g., [8]). The run-time adaptations addressed in this
work could be regarded as being one of such concerns, and
possibly they could be woven statically or dynamically into the
application. However, in our approach we can take advantage
of constructs that are tailored specifically for adaptation, and
at a design level that is above the application code.

As DSLs are tailored to specific domains, they are able to
offer substantial support for adaptation expressiveness and ease
of use, and thus have been also applied to particular adaptation
and control specifications for software systems (e.g., [7], [9]).

VI. CONCLUSION

In this article we proposed an approach for run-time adapt-
ability in embedded applications, which usually operate under
constrained conditions. Our approach is implemented through
a DSL whose purpose is to specify the adaptable behavior at
a higher-level of abstraction. In this approach, adaptations are
decoupled from the main application logic, allowing for better
software design, prototyping and maintenance. For validation,
we presented a case study that highlights the advantages of
adaptations in embedded applications, as well as the benefits
of using the DSL-based approach to define them.

ACKNOWLEDGMENT

This work was partially supported by Fundação
para a Ciência e a Tecnologia (FCT) under grant
SFRH/BD/47409/2008.

REFERENCES

[1] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and E. Gjorven,
“Using Architecture Models for Runtime Adaptability,” IEEE Software,
vol. 23, no. 2, pp. 62–70, 2006.

[2] REFLECT Consortium, “Rendering FPGAs to Multi-Core Embedded
Computing (REFLECT) – Technical Report about Application Require-
ments for Reconfigurability and Hardware Templates,” Deliverable D1.5
– FP7 THEME ICT-2009-4, Tech. Rep., 2009.

[3] T. van Kasteren, A. Noulas, G. Englebienne, and B. Kröse, “Accurate
Activity Recognition in a Home Setting,” in Proceedings of the 10th In-
ternational Conference on Ubiquitous Computing (UbiComp’08). ACM,
2008, pp. 1–9.

[4] M. Baldauf, S. Dustdar, and F. Rosenberg, “A Survey on Context-Aware
Systems,” International Journal of Ad Hoc and Ubiquitous Computing,
vol. 2, no. 4, pp. 263–277, 2007.

[5] IBM, “An Architectural Blueprint for Autonomic Computing,” IBM,
Tech. Rep., 2003.

[6] P. Oreizy, N. Medvidovic, and R. N. Taylor, “Runtime Software Adap-
tation: Framework, Approaches, and Styles,” in Proceedings of the 30th
International Conference on Software Engineering (ICSE’08). ACM,
2008, pp. 899–910.

[7] T. Kamina, T. Aotani, and H. Masuhara, “EventCJ: A Context-Oriented
Programming Language with Declarative Event-based Context Transi-
tion,” in Proceedings of the 10th International Conference on Aspect-
Oriented Software Development (AOSD’11). ACM, 2011, pp. 253–264.

[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
wold, “An Overview of AspectJ,” in Proceedings of the 15th European
Conference on Object-Oriented Programming (ECOOP’01), ser. LNCS.
Springer, 2001, vol. 2072, pp. 327–354.

[9] S. Aboubekr, G. Delaval, and E. Rutten, “A Programming Language for
Adaptation Control: Case Study,” SIGBED Review, vol. 6, no. 3, pp.
11:1–11:5, 2009.

