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B. R. de ARAÚJO, University of Toronto
DANIEL S. LOPES, PAULINE JEPP, and JOAQUIM A. JORGE, INESC-ID Lisboa
BRIAN WYVILL, University of Victoria

Implicit surfaces (IS) are commonly used in image creation, modeling environments, modeling objects, and
scientific data visualization. In this article, we present a survey of different techniques for fast visualization of
IS. The main classes of visualization algorithms are identified along with the advantages of each in the context
of the different types of IS commonly used in computer graphics. We focus closely on polygonization methods,
as they are the most suited to fast visualization. Classification and comparison of existing approaches are
presented using criteria extracted from current research. This enables the identification of the best strategies
according to the number of specific requirements, such as speed, accuracy, quality, or stylization.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Implicit surface, shape modeling, polygonization, surface meshing,
surface rendering

ACM Reference Format:
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1. INTRODUCTION

Implicit surfaces are a popular 3D mathematical model used in computer graphics.
They are used to represent shapes in modeling, animation, scientific simulation, and
visualization [Gomes et al. 2009; Frey and George 2010]. Implicit representations can
be extremely compact, requiring only a few high-level primitives to describe complex
free-form volumes and surfaces [Velho et al. 2002]. They also present a solution of
choice for visualizing scientific and medical data. In particular, they are well suited
for representing data gathered from 3D scans (e.g., computed tomography (CT) and
magnetic resonance imaging (MRI)) and digitizing complex models.
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Precise visualization of implicit surfaces (IS) is a difficult and time-consuming pro-
cess. The most rigorous surface reproduction technique, ray tracing, is also the costliest.
Abstract, stylized methods are relatively fast but are used for specific purposes, such
as illustrative visualization. The most general and popular approach to represent IS is
by using a polygonal approximation. The study presented in this survey is primarily
concerned about presenting fast visualization methods. Therefore, although our main
focus lies on polygonization techniques, we briefly cover both stylized approaches and
ray tracing.

As is common in computer graphics, rendering IS entails a trade-off between accu-
racy and speed. The traditional speed versus accuracy conflict is compounded in IS
polygonization approaches by the desirability of obtaining a high-quality mesh. Such
a mesh may be required for reuse in other applications, such as 3D printing and man-
ufacturing. Therefore, besides delivering an accurate approximation to the surface, it
must also present a good share of well-shaped triangles. Thus, choosing an appropri-
ate polygonization strategy depends on a primary motivation, which can be speed of
interaction, fidelity, or mesh quality.

The literature is rife with approaches to IS polygonization. Although many methods
are generally developed with a primary goal in mind, they consider other factors. This
survey aims to provide a comparison between different methods so that the interested
reader can choose the most relevant approach to polygonizing an IS (see Table I).
The algorithms are organized based on their primary motivation, which can either
be a fast representation of the surface or an accurate one. In addition, we identify
approaches that are also concerned with providing good quality meshes and faithful
representations of both the features and topology of the surface.

This article is organized as follows. We start by describing how IS are visualized,
discussing the main issues of existing techniques. We discuss how IS are represented,
which attributes can be extracted from each formulation, and how IS can be sampled
to be visualized. Based on the different sampling strategies, we describe the main basic
polygonization approaches in Section 3. Section 4 focuses on polygonization techniques
motivated by speed issues. Section 5 delves into quality-oriented methods. In Section 6,
we discuss different approaches with respect to relevant discretization features, rang-
ing from topological correctness, to faithful representation of both sharp and smooth
features, to quality of the polygonal approximation. We conclude the article in Section 7.

2. VISUALIZING IMPLICIT SURFACES

Visualizing IS involves sampling the space to identify locations on the surface inde-
pendently of their geometric nature and how they are defined. These samples can be
used in two ways: (1) to directly generate a pictorial representation of the surface using
direct rendering techniques or (2) to generate a discrete (mesh) representation through
a polygonization process. This mesh can be used as an alternative to the IS representa-
tion, as it is still best fitted to be displayed on current graphics hardware. This section
starts by contextualizing polygonization, presenting its advantages as compared to
other IS visualization techniques. We follow through with a definition of IS and discuss
their mathematical properties that need to be understood to sample the surface both
accurately and efficiently.

2.1. Visualization Methods

Broadly, there are two major visualization categories that render geometric loci, which
depend on the dimensionality of the object to be rendered. Direct methods allow sur-
faces to be rendered directly from their representations. These include ray tracing,
particle-based methods, non-photorealistic rendering (NPR) techniques, and volume
rendering. Indirect methods rely on polygonization to create a discrete polygonal
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representation that can then be used for rendering or visualizing the surface for other
purposes, such as simulation or modeling applications.

Ray tracing IS is by far the most accurate approach to visualization. This technique
samples an IS directly by identifying the intersection point along a viewing ray. Ray–
surface intersections are calculated using root finding methods. Spatial data structures,
such as octrees, are used for acceleration. This is the most computationally intensive
visualization method, and typically it takes the longest time to produce high-quality
results [Bloomenthal and Bajaj 1997]. A comprehensive survey of ray tracing for IS is
beyond the scope of this article. We refer interested readers to the Ph.D. dissertation
of Knoll [2009].

Since the bottleneck in displaying IS (using any approach) is the number of implicit
function evaluations used by the sampling process, partial methods such as particle-
based or NPR techniques have been used to shorten rendering time. In principle,
particle-based approaches query the defining function less often than either ray tracing
or polygonization methods. Most particle systems applied to IS rendering [Rösch et al.
1997; Desbrun et al. 1995; Levet et al. 2005] rely on the model proposed by Witkin and
Heckbert [1994], which combines attraction and repulsion forces to sample, visualize,
and deform an implicit model. Particles can be placed either randomly, uniformly, or
through a voxel-based spatial decomposition to capture specific features as proposed
by Jepp et al. [2008]. These particles are then updated, attracted to the surface, and
repelled from one another until they achieve equilibrium to cover the entire object.
In addition, these methods [Witkin and Heckbert 1994; de Figueiredo et al. 1992;
Desbrun et al. 1995] are well suited to adaptive sampling and can take into account
the smoothness of the surface and adjust to sharp features. They are also very similar to
both polygonal vertex relaxation and Laplacian smoothing techniques used to improve
the quality of meshes obtained by repolygonization approaches presented in Section 5.1.
For a summary of particle-based visualization approaches for IS, please see the Ph.D.
dissertation of Jepp [2007].

NPR methods have also been used to visualize IS. These aim to present an accurate
yet stylized view of a model or to focus on specific features of a surface. Equally, they
can be used to simulate illustration styles or media, such as depiction techniques com-
mon in medical and scientific illustration. Although their purpose is not to create a
high-fidelity visualization, NPR techniques are particularly suitable to accurately rep-
resenting feature outlines such as silhouettes and discontinuities [Bremer and Hughes
1998; Belyaev and Anoshkina 2005], ridges and ravines [Belyaev et al. 1998; Ohtake
et al. 2005], or singularities [Su and Hart 2005; Rösch et al. 1997], as the field function is
sampled directly. Some of these techniques use particle systems as presented by Foster
et al. [2005], mimicking pen-and-ink style illustrations to convey shape and form.

Volume rendering methods can be used to directly visualize IS. Nevertheless, these
approaches usually depict volumetric data rather than a single surface. These data
are often obtained from scans such as CT and MRI sets. The volume is rendered using
a transfer function to convolve samples. This is computationally intensive due to the
large number of samples, so efficient methods often use parallel graphics processing
units (GPUs) [Silva et al. 2005]. For a description and survey on volume rendering with
regard to IS, see the Ph.D. dissertation of Sigg [2006] and the survey on octree volume
rendering methods by Knoll et al. [2006].

Finally, the most viable real-time visualization method (using commodity hardware)
of nonstylized IS uses polygon meshes. As compared to the other techniques, these
meshes are both fast and easy to render. Polygonization of IS requires converting from
a continuous mathematical description to a discrete linear piecewise approximation.
This is a lossy process, as accuracy depends on the sampling frequency, such as the size
of triangles. In addition, this process needs to be adjusted to faithfully approximate
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surface features and requires updating whenever the IS changes. Nevertheless, polyg-
onal approximations enable us to explore trade-offs between fidelity of representation
and interactive performance and are well adapted to commodity graphics hardware.
Meshes also can readily be used in many other domains of computer graphics.

2.2. Defining Implicit Surfaces

There is a seemingly infinite number of implicit models tailored to different application
domains: 3D modeling, 3D reconstruction, animation, scientific simulation, and visu-
alization, as presented in Gomes et al. [2009]. These models share common properties.
This section revisits some of the IS representations, seminal to computer graphics,
that demonstrate these common characteristics, which are exploited by polygonization
methods. Independently of their origin, whether based on discrete data or a mathemat-
ical model, IS are defined by a level-set function F(X) : R3 → R such that the surface is
represented by the set of points {X ∈ R3 : F(X) = cst}. Depending on the mathematical
model, cst represents the isovalue of the surface.

The implicit function classifies points in space in relation to the surface such that
{X ∈ R3 : F(X) < cst} and {X ∈ R3 : F(X) > cst} represent points located inside or
outside the object, respectively, and {X ∈ R3 : F(X) = cst} the set of points lying on the
surface.

Implicit models can be generated in a number of ways: created from scan data repre-
senting either a 3D volume (e.g., MRI and CT sets) or a 2D surface (e.g., 3D laser scans),
converted from polygon meshes or point clouds, or mathematically defined from well-
defined functions (e.g., constructed from primitives). Whereas surfaces data obtained
from 3D scans can be used to visualize an object, piecewise functions can capture the
local shape of the surface and are blended to create the larger model. If the discrete
sample points are dense enough, then unconnected (nonpolygonal) geometry can be
used to approximate the surface. This method also benefits greatly from GPU process-
ing for fast visualization. A survey of point-based rendering techniques including IS
appears in the Ph.D. dissertation of Reuter [2003] and in Kobbelt and Botsch [2004].

Implicit models can also be built from mathematical definitions using compositions
of functions [Bloomenthal and Bajaj 1997]. Since Blinn introduced the blobby molecule
[Blinn 1982] using a weighted sum of density functions, several radial basis formula-
tions have been proposed, such as soft objects [Wyvill et al. 1986], metaballs [Nishimura
et al. 1985], the blobby model [Muraki 1991], and generalized distance functions. These
representations have been particularly explored in computer graphics for interactive
modeling and animation tools and are still one of the most common applications of IS.
The following expressions present the mathematical formulation of some of these basis
functions:

ImplicitFunction : F(X) =
∑

i

wi fi(X)

BlobbyMolecule : f (X) = exp(−ar),

where r = distance(X, Xi) and Xi is the location of an atom.

Metaballs : f (X) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
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BlobbyModel : f (X) =
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By controlling the blending of these radial basis functions, complex objects can be
created by incremental modeling such as BlobTrees [Wyvill et al. 1998; Allègre et al.
2006] or using a reconstruction process such as variational implicit surfaces (VIS)
[Turk and O’Brien 1999], FastRBF [Carr et al. 2001], compactly supported radial basis
functions [Morse et al. 2001; Ohtake et al. 2005; Tobor et al. 2006], and multilevel
partition of unity [Ohtake et al. 2003]. For further reconstruction methods based on
implicit fields and their comparison, we refer the interested reader to the recent survey
presented by Berger et al. [2014].

An implicit model worth mentioning is the R-function [Rvachev 1963], which has the
notable feature of associating the sign of the function to a logical property—that is,
negative and positive values can be considered to correspond to logical false and logical
true, respectively. This Boolean switching capability is possible since the R-function,
by definition, consists of a real-valued function whose sign is completely determined by
the signs of its arguments. Such function type have been extensively used in computer
graphics and geometric modeling in the context of IS representation [Pasko et al. 1995;
Shapiro 2007].

IS are not restricted to model rigid, inflexible geometries. Osher and Sethian [1988]
devised the level set method, which relies on the IS representation to model dynamic
interfaces and shapes, even if the shapes change topology over time. This method
consists of a numerical technique that solves a partial differential equation describing
how a surface varies over time (i.e., the level set equation), and whose solutions is the
geometric loci of an IS for a given time instant. High-order finite difference schemes are
generally applied to solve such evolution equations. Since this method is able to model
time-varying objects, it become popular in computational fluid dynamics, combustion,
soap bubble dynamics, and among many other disciplines, such as image processing,
computer graphics, and computational geometry [Osher and Fedkiw 2003].

Another surface model of interest is the distance-based IS. This model has proven to
be useful in reconstructing surface geometry from a set of oriented points [Taubin 2012].
Recently, Calakli and Taubin [2011] revealed that by forcing the implicit function to be
a smooth approximation of the signed distance function to the surface, a significantly
simpler and easier-to-implement algorithm is conceivable to reconstruct the geometry,
topology, and color map of a 3D scene from a finite set of colored-oriented points.

2.3. Mathematical Properties

Using the preceding definition, we can extract interesting features to gather properties
from the surface that are described next when cst = 0 but can be generalized for any
cst ∈ R. The gradient vector �G and the normal unit vector �N are defined at point X
using the first-order partial derivative of F:

�G = �F =
[

∂F
∂x

∂F
∂y

∂F
∂z

]T

and �N =
�G

‖ �G‖
In practice, when performing a spatial decomposition with a method such as march-

ing cubes (MC) [Lorensen and Cline 1987], it is often simpler to find a numerical
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approximation via sample points around X as in

∇F =
[

F(X + εx) − F(X)
εx

F(X + εy) − F(X)
εy

F(X + εz) − F(X)
εz

]T

,1 (1)

which is the forward difference expression. Although it permits fast calculations of
gradient vector estimates, other finite difference schemes exist, such as central and
higher-order differences. These methods require additional function evaluations to pro-
vide a better vector gradient approximation. Additionally, more sophisticated gradient
vector formulas such as Sobel and Scharr masks, which are very popular in image
processing and volume graphics as edge detection functions [Hadwiger et al. 2006],
provide high-quality numerical differentiations due to their ability to maintain a good
approximation of the gradients’ rotation-invariance property.

By relying on the Householder transformation, tangent vectors can also be defined
at a surface point given the first-order partial derivative of F [Lopes et al. 2013]. The
resulting analytical expressions for tangent �T and binormal �Bvectors are, respectively,

�T =
[

−2
μ∂F

∂y

h2 1 − 2
∂F
∂y

2

h2 −2
∂F
∂y

∂F
∂z

h2

]T

�B =
[

−2
μ∂F

∂z

h2 −2
∂F
∂y

∂F
∂z

h2 1 − 2
∂F
∂z

2

h2

]T

with μ = max( ∂F
∂x − ‖∇F‖, ∂F

∂x + ‖∇F‖) and h =
√

μ2 + ∂F
∂y

2 + ∂F
∂z

2
.

The curvature information of the function F in R3 at point X is described by the
Hessian matrix H, which contains the second-order partial derivatives of F:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂2 F
∂x2

∂2 F
∂xy

∂2 F
∂xz

∂2 F
∂yx

∂2 F
∂y2

∂2 F
∂yz

∂2 F
∂zx

∂2 F
∂zy

∂2 F
∂z2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The Hessian matrix H represents the curvature evolution of the scalar field F, which
supports the implicit function, rather than the surface defined by F = 0. Indeed, we
need to examine curvature values and directions on the plane tangent to F = 0 at X.
To compute these, we need to use the matrix C defined by the partial derivatives of the
normal �N instead of the Hessian:

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂Nx

∂x
∂Nx

∂y
∂Nx

∂z
∂Ny

∂y
∂Ny

∂y
∂Ny

∂z
∂Nz

∂x
∂Nz

∂y
∂Nz

∂z

⎤
⎥⎥⎥⎥⎥⎥⎦

.

1A reasonable value for ε has been found empirically [Bloomenthal and Bajaj 1997] to be 0.01 ∗ side, where
side is the length of a cube used for the spatial decomposition.
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Alternatively, the matrix C can be computed from the Hessian matrix H and the
gradient vector �G, as we can see from the following equation:

Cij =
Hij ∗ ‖ �G‖ − Gi∗dotj

‖ �G‖
‖ �G‖2

,

where dotj = �G.[Hj0 Hj1 Hj2]T . Since C is defined in terms of the normalized gradient,
one of its eigenvalues has zero value and the corresponding eigenvector is normal to
the surface (and thus collinear to �G). The other two eigenvalues k1 and k2 are called
the principal curvatures and their respective eigenvectors are the principal directions
defined to lie in the plane tangent to the surface at X. According to Gray [1996] and
Koenderink [1990], additional curvature measures can be computed from k1 and k2
beyond maximum and minimum curvature: mean curvature = k1+k2

2 , Gaussian curva-

ture = k1∗k2, deviation from flatness =
√

k2
1 + k2

2 , and shape index = − 2
π

arctan kmax+kmin
kmax−kmin

.
Further closed curvature formulas for implicit curves and surfaces can be found in
Goldman [2005]. Note that (and as reported by Lopes et al. [2013]) the set of nonlinear
differential operators derived from the Householder transformation for calculating the
tangent and binormal vector fields can be applied to calculate IS curvatures, namely,
principal curvature directions.

2.4. Sampling

Sampling an IS is extremely important for visualization, simulation, and manufac-
turing of implicit 3D models. Since the surface is defined by {X ∈ R3 : F(X) = cst},
common root finding methods such as bisection, secant, false position, or Newton-
Raphson [Press et al. 1986] can be used to sample and identify points of the surface
depending on its continuity. Most existing IS visualization algorithms rely on either
a Newton-Raphson method or interval analysis. Nevertheless, finding and accurately
depicting surface features critically depends on sampling resolution. Certain surface
details can only be revealed when samples are spaced closely enough. Thus, guaranteed
feature identification requires additional information about the surface being rendered,
as discussed in Kalra and Barr [1989]. Indeed, to properly discretize a signal, Nyquist’s
theorem states that its maximum frequency must be known to define a sampling rate
that is greater than or equal to twice this value [Bloomenthal and Bajaj 1997]. Lips-
chitz constants also require advance information about the maximum rates of change
of a function [Bloomenthal and Bajaj 1997]. Therefore, to guarantee that all details are
identified, the distance between samples should be related to the size of the smallest
surface feature. Still, small discretization steps generate too many samples that entail
a considerable time overhead [van Overveld and Wyvill 2004]. Thus, a balance between
speed and accuracy is important when rendering intricate, detailed surfaces. To this
end, Morse theory [Hart 1997] has been used for critical point analysis, allowing extrac-
tion of detailed topological information of a surface from its implicit definition. Still,
there is no general method to guarantee sampling rates that work appropriately for
any surfaces. Indeed, geometrical and topological information about a surface is nec-
essary to define an adequate sampling rate. Discretizing a surface and visualization
can both be carried out in a single step by using ray tracing or particle-based methods.
Still, polygonization via surface tracking uses a single step, whereas methods based
on spatial decomposition generally perform sampling and rendering separately, as we
will discuss in the following section.
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3. BASIC POLYGONIZATION APPROACHES

This section describes the fundamental polygonization approaches used for sampling
and analyzing the model space for IS. We present the three different sampling strate-
gies used by polygonization methods that can be followed converting from a continuous
mathematical description to a discrete linear piecewise approximation. These strate-
gies are differentiated by how they sample the surface or how they guarantee to catch
all of the geometric properties of the IS. The first approach—spatial decomposition—
regroups all of the polygonization methods sampling the surface by defining a strategy
to subdivide the space both in and around the surface. The second encompasses all sur-
face tracking techniques starting from a reduce set of surface samples and sampling
the surface based on the analysis of neighborhood of these samples close to the surface.
Finally, we describe all of the methods relying on an inflation or a shrinking iterative
process that will inflate a polygonal representation from topological singularities or
subdivide it to fit closely the surface.

3.1. Spatial Decomposition

To perform a polygonization, the space containing the IS should be organized in a
coherent manner. The space is divided into semidisjoint cells such as cubes (voxels:
volume elements) or tetrahedra that will enclose the entire object. In general, only the
isosurface is of interest, so only cells containing parts of the surface are stored. Stored
cells are used for creating a polygonization. Polygon vertices are calculated from surface
intersection points along edges of spatial cells using root finding and convergence (see
Section 2.4).

There are three main methods of spatial decomposition: subdivision, continuation,
and enumeration [Bloomenthal and Bajaj 1997]. We will give a short description of each
of these methods in this section. These methods are still used as the foundations for
many modern polygonization algorithms. Indeed, advances in polygonization have been
focused on improving decomposition speed or using differently shaped decomposition
cells.

Subdivision of object space is a recursive process that identifies cells containing
the surface [Bloomenthal and Bajaj 1997]. First, a cell containing the entire object
is identified. This cell can have a regularly shaped, convex hull or bounding box of
the object. This cell is subdivided into equal parts, and any of these cells that are
identified to contain part of the surface are then recursively subdivided to an agreed
level—in this example, four times. The result is a collection of cells that contain surface
intersections. Thus, IS can be approximated by computing cell–surface intersections
to yield a triangular mesh. The higher the number of subdivisions, the greater the
level of detail. Just as in the bidimensional case, where octrees are used for spatial
subdivision of an implicit curve into a set of 2D lines, for 3D objects, octrees are also
used to subdivide space—in this case, a cell into 3D polygons. Continuation methods
use a predecomposed spatial organization and identify a single seed cell that contains
part of the surface [Bloomenthal and Bajaj 1997]. From this seed cell, the surface
is tracked through adjoining cells using shared edges with surface intersections. To
improve efficiency by avoiding redundant recalculations, the edge surface intersection
data or cell data are stored in memory. Stacks, queues, and hash tables are data
structures that are commonly used for this purpose. Once edge intersection points
have been found, a table is used to polygonize cells. Cell vertices are identified as
being “hot” if they are inside the surface and “cold” when outside. A table contains
the configurations for polygons based on cell polarity patterns. Wyvill et al. [1986]
were the first to publish this method and used several performance improvements,
including the hash function to only store cells containing parts of the surface, and
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Fig. 1. MC lookup table. The 256 different configurations of vertex cell polarity are generalized by 15 cases
due to existing rotations and symmetries [Lorensen and Cline 1987].

Fig. 2. Surface Tracking iterations on an algebraic IS: initial seed point projection (a), six triangles generated
(b), intermediate mesh (c), and final mesh (d).

a smaller lookup table with repetitions and ambiguities removed. The combinations
of creating polygons depends on vertices being either inside or outside the surface.
When diagonal corners are identified as being inside the surface, there is no clear
identification of the behavior of the surface in that cell. One of the simplest ways to
gain more information is to sample the field function in the center of the face [Wyvill
et al. 1986].

Exhaustive enumeration methods process volume scan data, such as CTs and MRI
[Bloomenthal and Bajaj 1997]. Each and every cell is examined in turn to determine
the surface intersection points. The MC algorithm [Lorensen and Cline 1987] is the
most famous such method. It examines planar slices in turn until the whole volume
has been processed. MC uses the same idea of a lookup table (Figure 1) for polygons
according to cell vertex polarity, although the table does not have the same ambiguity
reductions as the method by Wyvill et al. [1986]. The term marching cubes has become
synonymous with the continuation method. Cell partitioning or spatial decomposition
techniques are popular methods for rendering IS because they are very fast. A reliable
implementation of the MC algorithm can be found in the VTK library [VTK 2014].

3.2. Surface Tracking

Alternatively, surface tracking methods do not subdivide the space to create polygons
but query the surface directly. Surface tracking designates a family of techniques
that generate polygonal approximations by starting from a point lying on the surface
and generating triangles by following the surface, as depicted in Figure 2. Marching
Triangles was one of the first of such approaches, and many advances are made from
this basic technique.
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Fig. 3. Border edge expansion by the Marching Triangles applying the 3D surface Delaunay constraint
resulting in a new vertex and its triangle [Hilton and Illingworth 1997].

Proposed by Hilton et al. [1996, 1997], Marching Triangles generate a 3D triangu-
lation that verifies the Delaunay constraint—in other words, for each triangle of the
mesh, the circumscribed sphere passing through each vertex does not contain other
vertices. Applying this constraint generates a mesh with a uniform but not regular
vertex distribution over the surface. Marching Triangles can be applied starting from
either a seed point (or triangle) or from an incomplete mesh (with holes) to be refined.
The algorithm generates new vertices by expanding each triangle edge of the mesh
generation boundary as depicted in Figure 3, where the edge i j is expanded to create
the vertex new. This vertex is placed such as the new triangle verified the Delaunay
constraint. The process is repeated, resulting in the creation of a mesh that covers all
of the surface.

3.3. Inflation and Shrinkwrap

The shrinkwrap algorithm [van Overveld and Wyvill 2004] is analogous to the process
of using a plastic mouldable film that is shrunk (using heat) to tightly cover an object.
In other words, the film is the plastic wrap that is shrunk into shape. The shrinkwrap
algorithm starts with an isosurface that is homeomorphic to a sphere, which is cal-
culated by adding a large offset value to the isosurface value. Each iteration of the
algorithm reduces the offset value and then corrects vertices so that they lie on the new
isosurface, more closely approximating the desired surface at each step. This process
is continued until the offset is reduced to zero. During each iteration, new vertices are
created to accommodate the surface details. Edges are subdivided and the midpoint
is corrected along the direction of the gradient to lie on the surface. Ultimately, the
shrinkwrap method converges to the surface as the resolution increases.

Inflation is the opposite approach, in which polygonal components (second image
of Figure 4) are created inside the implicit volume and inflated until they create a
shape that closely approximates the surface [Stander and Hart 1995], as shown in
Figure 4. Components are created, adapted, and joined in relation to critical points:
maximum, minimum, and saddle points visible in the left-most image of Figure 4.
One of the benefits of the inflation algorithm over the shrinkwrap approach is that
internal pockets are identified, although generally these regions are only visible when
trimming, clipping, or transparent polygons are used.

As mentioned previously, the three fundamental approaches presented in this section
diverge on the way in which they sample the space or the surface to generate a polygonal
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Fig. 4. Polygonization by inflation of the Blobby Cube: successive steps from the critical points analysis on
the left to the final mesh on the right [Stander and Hart 1995].

approximation of the IS. Still, the fidelity of polygonal approximations depends on a
number of factors: it is a balance of speed, accuracy, and quality. Some polygonization
algorithms are primarily motivated by the fastest method of visualization, and others
by the fidelity of the representation with respect to features. Other algorithms aim at
creating a high-quality mesh that can easily be used or reused in other applications. As
current graphics hardware is designed for optimal handling and processing of triangles,
real-time visualization is possible for complex models with billions of triangles. Since
optimal triangle handling techniques are currently available, more focus of attention
can be placed on research topics related to the quality improvement of the mesh and
the accuracy of the approximation. The issues of polygonization methods are discussed
in the next two sections of this survey, where the methods are classified according to
their motivations: to either quickly find the surface and its features (Section 4) or to
create a better mesh based on surface properties—that is, motivated by the quality of
triangles as a representation of the surface (Section 5).

4. FAST METHODS

As mentioned in Section 3.1, cell partitioning and spatial decomposition techniques
are the most popular methods for rendering IS in particular continuation methods
exemplified by two papers from the 1980s. The first polygonizer, presented by Wyvill
et al. [1986], was based on a uniform voxel grid, used a hash table to avoid storing all
of the voxels, a second grid of voxels to restrict the search space, and approximation
techniques such as linear interpolation to determine voxel edge intersections, as well
as allowing a pure voxel approximation of the surface. In 1987, MC [Lorensen and
Cline 1987] was published and became the most popular technique.

MC was oriented toward volume data visualization rather than IS modeling and
thus enjoyed an instant success in that community. Unlike the Wyvill paper, MC did
not identify the ambiguous cases and stored every cube. Thus, with limited memory
machines in the 1980s, this algorithm was comparatively slow. Although the main
motivation is speed, the polygonization must also be a close approximation to the
surface, and, therefore it must also consider topology and feature sensitivity. Thus,
it was important to avoid the ambiguous cases found when replacing cubic voxels by
triangles.

A solution to the ambiguity problem was offered by Nielson and Hamann [1991] by
decomposing each cube (cell) into six (or, with a different decomposition, five) tetrahe-
dra. This enables a simpler connectivity table because the possible permutations are
based on four vertices of the tetrahedra rather than eight for a cube.

To prevent redundant calculations, Bloomenthal [1988] used a technique presented
in Wyvill et al. [1986] to support three hash tables, one each for cube centers (to pre-
vent cycling during cell propagation), corners (to prevent recomputing the implicit
function value), and edges (to facilitate connectivity). A revised article and accompany-
ing implementation of the Wyvill algorithm, including the avoidance of the redundant
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calculations, was published in Graphics Gems [Bloomenthal 1994] (see also Bloomen-
thal and Bajaj [1997]), with the option of subdividing the cubes into tetrahedra. This
became a very popular algorithm to convert IS into polygonal meshes. ImplicitMesher is
an optimized version of this implementation, written in C++ and specifically developed
for real-time IS polygonization [ImplicitMesher 2014].

Ning and Bloomenthal [1993] discuss cell decomposition algorithms and conclude
that tetrahedral decomposition produces a consistent topology. However, it uses twice
the number of triangles than a single-entry cubical lookup table and thus has the
potential to be comparatively slower.

Avoiding the redundant calculations was rediscovered by Triquet et al. [2001, 2003],
and by the early 2000s, with larger memory and faster processors, the algorithm could
run at near interactive rates of polygonization.

Triquet introduced a new pattern table with six new patterns compared to the orig-
inal Marching Tetrahedra table with 20. This reduced the polygonization time by a
factor of six, measured against MC, but not against the Wyvill-Bloomenthal method
that already contained many of these optimizations. This work used compactly defined
basis functions similar to metaballs and soft objects. Therefore, most of the speedup
was achieved by taking advantage of the field function structure and could not be
applied to all implicit representations.

A similar approach taken by Cuno et al. [2004] used a hierarchical variant of March-
ing Tetrahedra to polygonize VIS. The method aimed at minimizing the number of
implicit evaluations and quickly pruned the space. This is achieved by simplifying
VIS [Turk and O’Brien 1999] models. The pseudo-Euclidean distance computation was
changed to be based on the location of the normal and boundary constraints of the VIS
model.

Zhang et al. [2006] rediscovered a simple speedup technique that cuts half the mesh-
ing time of MC, although it already was reported in Bloomenthal’s Ph.D. dissertation
[Bloomenthal 1995]. The algorithm rejects empty cells by sampling at the center and
comparing the nearest distance to the surface with the length of half the voxel diag-
onal. This algorithm presents simple and effective speedups with the cost of several
assumptions that do not guarantee that the resulting mesh correctly approximates the
surface. The algorithm is only targeted at IS that estimate a distance field and in the
original paper only compared against unoptimized MC. This method is more suited to
achieving a fast coarse representation of IS.

Finally, regarding speed, with the increase in theability of GPUs IS can be repre-
sented using graphical shader capabilities. In the method presented by Kipfer and
Westermann [2005], performance gain is achieved using two approaches. The first
avoids redundant computations of edge surface intersections. The second uses features
of the GPU to reformulate the isosurface identification and reduces numerical com-
putations and memory access operations. A span space data structure is also used to
avoid processing non–surface-intersecting elements. Kanai et al. [2006] present a fast
method to directly render sparse low-degree IS. The approach is based on ray casting
with ray intersections and blending operations performed in the fragment program on
a GPU. The Accelerated MC method presented by Johansson and Carr [2006a] uses
graphics hardware to achieve improvements of as much as 1,300%. The method pre-
computes the topology for each cell and stores it in a span space structure to avoid
redundant CPU computations at runtime. It also improves isosurface acceleration by
caching the topology on the GPU.

4.1. Topological Guarantees

There are three sources of topological error when trying to produce an accurate iso-
surface from scanned data. The first is sampling resolution (see Section 2.4). The
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Fig. 5. Polygonization mesh result using MC and Marching Tetrahedra for the Happy Buddha model: MC
with 9320 triangles (a), MC with 40740 (b), MT with 28164 (c), MT with 122516 (d), and MT with 508668 (e).

Fig. 6. Polygonization of nonmanifold IS: Bloomenthal and Ferguson [1995] (a) and Yamazaki et al.
[2002] (b).

second comes from using a cubical cell classification and its corresponding triangu-
lation (Figure 5). The third originates from using interpolated values (of the scalar
data at cubical vertices) rather than actual field values. Although trilinear interpola-
tion is the least expensive to compute, and even though better approximations exist,
such as triquadratic [Barthe et al. 2002], accurate topological reconstruction cannot be
guaranteed by interpolation alone.

To improve the topological correctness of the polygonal approximation produced by
the MC algorithm, several approaches present alternative lookup tables for cubical cell
classification [Montani et al. 1994b, 1994a; Chernyaev 1995; Hege et al. 1997; Lopes
and Brodlie 2003], as well as for tetrahedral subdivision [Bloomenthal 1994]. Other
solutions have proposed additional corrective steps to solve topological ambiguities,
which may arise between adjacent cells [Matveyev 1994] or the existence of internal
saddle points inside cells [Natarajan 1994]. Nielson [2003] proposes an alternative
method that guarantees the topological correctness of isosurfaces at the cost of a more
complex lookup mechanism. This mechanism is based on a three-level classification:
edges, faces, and cell interiors. More recently, a method based on isosurface critical
point analysis was proposed by Renbo et al. [2005]. Triangles for each cell are created
by classification of the nature of critical points rather than using lookup tables.

Nonmanifold surfaces create problems for polygonization strategies. Such surfaces
arise by combining mixed-dimensional geometric primitives, such as when building
an object during constructive solid modeling with volumes and surfaces. Bloomenthal
and Ferguson [1995] proposed a strategy for polygonizing nonmanifold IS that used
a new tetrahedron classification, as shown in Figure 6. Yamazaki et al. [2002] also
proposed an approach for nonmanifold IS by extending the MC algorithm to correctly
handle discontinuousfields. Features such as holes, boundaries, and intersections are
dealt with by enhancing the distance field, using bounding volumes to simplify the
calculation between points. Although features are correctly approximated, the mesh
quality depends on a user-defined subdivision level. If the cell size is small enough,
then the triangulation is good and identifies sharp features. Otherwise, the mesh is
of poor quality. To overcome limitations of most algorithms found in the literature
and built-in commercial software packages, Gomes et al. [2010] proposed a general
algorithm to polygonize nonhomogeneous and self-intersecting IS that preserve local

ACM Computing Surveys, Vol. 47, No. 4, Article 60, Publication date: May 2015.



60:14 B. R. de Araújo et al.

and global topological shape. By introducing a new uniform space space partitioning–
based algorithm, their algorithm is capable of rendering surfaces with self-intersections
and isolated 0 and 1D singularities. In addition, their algorithm can correctly render
isolated points, self-intersections, cut points, and isolated and dangling 1D surface
patches.

Plantinga and Vegter [2004] present an extension to MC using an octree-based space
partitioning. Triangle sizes are adapted to the topology of the surface. Global proper-
ties of the implicit function are determined from interval arithmetic and are used as
criteria for octree subdivision. Plantinga and Vegter [2007] also present an isotopy for
octree-based meshing and extend their approach to apply tetrahedra to MC cells. The
results, however, are limited to simple algebraic functions or metaballs. The output
mesh does not present a smooth transition of triangle sizes and reveals jagged triangle
edges from adaptive subdivision. The method for creating tetrahedra reduces this prob-
lem but does not completely solve it. A similar approach was followed by Alberti et al.
[2005] to triangulate implicit algebraic surfaces. Instead of using MC, they proposed a
subdivision algorithm using a method similar to interval analysis. The method isolates
singularities and guarantees the topology in smooth areas. The algorithm results in a
topological approximation that produces similar meshes to MC. The topology is guar-
anteed up to a given threshold due to the spatial partition being defined to identify
singularities.

Inflation methods, as presented in Section 3.3, guarantee topological correctness
of the polygonal approximation thanks to critical point analysis [Stander and Hart
1997]. The topology is guaranteed by tracking the critical points of any C2 continuous
IS. These points are found using interval analysis, starting from an initial bounding box
that is subdivided as an octree data structure using a zero Newton-based search. They
can be classified according to the eigenvalues of the Hessian matrix, which is extracted
from the implicit function. This classification allows identification of the type of the
critical point (i.e., maximum, minimum, or saddle point) and also the sign of the change.
The same extension was done regarding shrinkwrap algorithms as demonstrated by
the Bottino et al. [1996] extension to support IS with arbitrary topological genus. This
is done by adjusting the topological structure of the mesh with critical points.

4.2. Feature-Sensitive Techniques

One of the main concerns regarding MC-style algorithms is their poor ability to cor-
rectly approximate sharp features and other discontinuities, including holes. Most of
the artifacts are related to the discrete sampling approach followed by the cubical cell
subdivision of the space. The problem typically arises in CSG operations, where the
intersection of surfaces occurs within a voxel. Wyvill and van Overveld [1996] intro-
duced a numerical technique that converges on the exact point of intersection and then
subdivides triangles of an initial mesh accordingly.

Several approaches try to overcome this limitation by improving approximations to
the implicit function value. Both extended MC [Kobbelt et al. 2001] and dual contour-
ing [Ju et al. 2002] use spatial partitioning to get a better estimation of the field value,
as well as refine cell pattern classifications according to the detection of sharp features.
This approach was improved by Azernikov and Fischer [2005], who proposed an adap-
tive meshing of IS by combining an anisotropic grid for sampling sharp features with
dual contouring.

The main problems of the previous works are twofold: they are only able to approxi-
mate at most one sharp feature per cell, and thin sharp features are discarded if they
are located over an edge cell with no sign change. Varadhan et al. [2003] present an
alternative extended dual contouring algorithm that mixes both approaches to gen-
erate an accurate polygonization from volumetric data. This new algorithm presents
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Fig. 7. Dual MC [Schaefer and Warren 2004] result for sharp features approximation spatial subdivision
(a) versus Varadhan [Varadhan et al. 2006] visibility maps for an MPU model (b).

a more robust intersection test and applies adaptive subdivision techniques to get a
better approximation of sharp features. The authors also used additional criteria for
the adaptive octree-based sampling to guarantee one intersection per cell edge and
identify any thin features [Varadhan et al. 2004].

Schaefer and Warren [2004] proposed an alternative solution by introducing the
dual MC algorithm (Figure 7(b)), which uses dual grids. Compared to dual contour-
ing and extended MC, this approach requires a sparse underlying octree to produce
an equivalent contour. The dual grid also provides a better approximation of sharp
features when they are not axis aligned. Varadhan et al. [2006] proposed a different
solution (Figure 7(b)) for an accurate topological and geometrical polygonal approxima-
tion using visibility mapping. The algorithm is based on a spatial subdivision method
presented previously by the authors [Varadhan et al. 2004]. The algorithm catches all
topological features by subdividing the surface into cells that are star-shaped patches.
For each star-shaped patch of the spatial surface decomposition, a visibility mapping
is created and triangulated. The simple triangulation of the patch domain over the
boundary of the cell is computed and then projected to generate the correct polygonal
approximation. This method allows the polygonization of topologically complex sur-
faces and is applicable to complex implicit models, such as multilevel partition of unity
[Ohtake et al. 2003] or CSG-based implicit models. Schaefer and Warren also revisited
the dual contouring algorithm in Schaefer et al. [2007]. This extension preserves sharp
features and guarantees construction of a manifold while preserving the genus of the
original surface. In addition, based on Nielson’s ideas [Nielson 2004], Schaefer and
Warren extend the original dual contouring to support more than one sharp feature
per cell. An adaptive version is also presented using a clustering method that gener-
ates a vertex tree between the different levels of a hierarchical subdivision. Note that
although these algorithms are feature sensitive, dual contouring and dual MC rely on a
previously given adaptive data structure to generate polygons, whereas extended dual
contouring builds an adaptive volumetric grid from scratch.

Ho et al. [2005] propose a different solution called cubical marching squares to solve
together sharp features, topological inconsistency, and intercell dependency when us-
ing traditional MC. They analyze each cell by unfolding it as six marching squares.
Then they look for ambiguous scenarios on each edge of each square. If an edge ambi-
guity is detected or it contains a complicated surface (heuristically defined analyzing
sample normals), the cell needs to be subdivided such as an octree structure. The pro-
cess is recursively repeated until no ambiguities are detected or a maximal level of
subdivision is achieved. After the subdivision step, resulting cell faces are processed
generating line segments based on a lookup table for marching squares. With the help
of sample normals, ambiguous scenarios are solved by checking sharp features. Finally,
the surface is extracted and the final mesh is generated by connecting the segments of
each face per cell. The achieved results show an adaptively refined mesh and present
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Fig. 8. Polygonization meshes produced by surface tracking approaches. (a) Marching triangle implemen-
tation showing the need of overlap testing [Akkouche and Galin 2001]. (b) Hartman algebraic surface
[Hartmann 1998]. (c) Edge spinning result [Cermák and Skala 2002].

less average geometric error comparing the mesh to the input data than both extended
MC and dual contouring.

Kazhdan et al. [2007] propose an algorithm for generating an adaptive watertight
level set from an arbitrary octree by introducing a set of binary edge trees derived
from the octree’s topology. The edge trees are used to consistently define the positions
of isovalue crossings, even when a single edge has multiple isovalue crossings. This
allows the extraction of a watertight mesh without the necessity of refining nodes,
constraining the topology of the octree or modifying node values.

5. QUALITY-ORIENTED METHODS

The algorithms described in Section 4 are motivated by quickly finding the surface and
its features. In this section, we discuss the approaches primarily motivated by creating
better polygon meshes.

Piecewise representations, such as MC-style algorithms, create undesired patterns of
triangles that are related to the spatial subdivision. Triangles are created within voxel
boundaries, so these patterns are evident in the final mesh. Creating meshes without
these artifacts requires techniques that focus on mesh quality and regularization.
Quality is of particular concern when the mesh is to be used for other applications,
such as simulation, modeling, and deformation [Persson 2005; Frey and George 2010].

Mesh quality can be viewed in two ways: either creating regular or adaptive meshes.
Regular meshes should have triangles of similar sizes, and vertices should have have
similar valences. Adaptive meshes use triangles that can be adapted in size and density
to reflect properties of the surface (i.e., small triangles in areas of high curvature and
larger triangles in more flat regions).

5.1. Regular Meshing

Regular meshes aim to create a set of evenly sized polygons where vertices have equal
valence. Regularization aims to remove the unwanted artifacts associated with spatial
subdivision techniques. Regular meshes are also very easy to use in other applications,
such as subdivision and texture mapping.

Surface tracking approaches, as depicted in Figure 8, can achieve good results by
generating meshes of evenly sized and quasiequilateral triangles. Hartmann [1998]
proposes a similar surface tracking algorithm to marching triangles [Hilton et al. 1996;
Hilton and Illingworth 1997] (Section 3.2), where points located at mesh boundaries
are organized into fronts that are expanded to cover the surface. Starting from a seed
point, the first expansion creates a new front formed by boundary vertices. Triangles
are created and appended relative to topological characteristics. Fronts need to be split
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Fig. 9. (a) Regularized marching tetrahedra Treece et al. [1999]. (b) Particle-based optimization proposed
by Liu et al. [2005].

or merged with others to avoid overlap. This requires collision tests, which can be costly.
More than one triangle can, however, be generated by each point expansion compared
to the single edge expansion used by marching triangles.

Cermák and Skala [2002] propose another variant of marching triangles called edge
spinning. Expansion is applied using an oriented rotation around one of the edge
extremities. Each new triangle is tested against existing active edges to avoid mesh
overlap. Existing points are reused to create a new triangle after finding the closest
point lying in an active edge (boundary). Isosceles triangles are created using a constant
radius for edge expansion. The projection of the new edge extremity on the surface is
done by binary subdivision. The convergence is slower for binary search, even though
it does not require gradient computation, as with a Newton step. The edge spinning
algorithm presents more almost-equilateral triangles than marching triangles. The
expansion usually creates only one new triangle, although some scenarios can create
two using adjacent points or three using the nearest colliding and adjacent points.

The meshes produced by marching tetrahedra (Section 4, [Bloomenthal 1988]) ap-
proaches were of poor quality. Chan and Purisima [1998] proposed a simpler subdivi-
sion for the tetrahedra to produce more regular triangles. The ratio of longer to shorter
edges was reduced, and a smaller number of resulting triangles was observed. There
is a marked improvement in the quality of the mesh, as the triangulation is smoother
and without a subdivision pattern. The method may not be compatible with scan data,
as it requires a sampling inside the voxel, which is not available.

The requirement for an internal voxel sample was partially eliminated by Treece
et al. [1999] (Figure 9). A method is presented for regularized marching tetrahedra
applied to volume data extraction. This approach combines marching tetrahedra for
isosurface extraction and vertex clustering to produce the regularized triangle set.
Furthermore, by applying this additional step, the final triangle size of the mesh is
reduced by 26% to 30%. Liu et al. [2005] also presents a regular meshing method
for algebraic- and skeleton-based IS designedto handle dynamic implicit descriptions
(see Figure 9). They use a particle system similar to Witkin and Heckbert [1994] with
repulsion and fission (i.e., killing particles) mechanisms to produce a uniform sampling
of the surface. Then a ball-pivoting algorithm is used that starts from a triangle created
using three initial points, then travels along the surface by pivoting from sample to
sample. This process creates new triangles and finishes when all samples are visited,
producing a regular mesh.

Recent reviews of traditional MC have produced more regular meshes and avoid
small and degenerate triangles. Dietrich et al. [2009b] proposes MC using the edge
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transformations (Macet) algorithm by introducing a new stage between the detection
of active edges and the intersection calculation. This stage transforms the end points
(cell extremities) of the active edge, combining a gradient and a tangential transforma-
tion. The algorithm chooses the best of the two transformations by using an iterative
process. Finally, a different intersection method is proposed based on bisection, since
the assumption of alignment of the edges with the grid is no longer valid. This al-
gorithm has been extended with the notion of edge groups in Dietrich et al. [2009a]
producing less skinny triangles than the original Macet algorithm. This is done using a
probabilistic analysis that identifies MC configurations that generate skinny triangles.
In such scenarios, an extra vertex is added to the cell for triangle generation.

A different approach is used by Moore and Warren [1995] that presents a modified
implementation of MC using a mesh displacement with boundary classification. Grid
points of the cubic mesh generated by MC are displaced so that vertices lie on or near
the appropriate zero set over a cubic grid. Compared to MC, this mesh displacement
technique improves the mesh quality by eliminating badly shaped triangles (e.g., small
and narrow triangles) produced by MC and reduces the number of triangles by 40%
to 50% without significant loss of accuracy. A related approach is used by Raman and
Wenger [2008] called SnapMC. The scalar field value of intersection points close to grid
corners are changed to snap these points onto the grid vertex. Then the traditional MC
approach is applied on the new scalar grid using an extended lookup table. Finally,
the snapped vertices are moved back to one of the original isosurface intersections.
Although this algorithm is two times slower than the original MC, it successfully
reduces the number of triangles by 20% to 40%. The method is faster and more robust
than the DelIso [Dey and Levine 2007] and Afront [Schreiner and Scheidegger 2006]
algorithms, which are presented in Section 5.2.2. However, it does not generate an
adaptive mesh.

Besides MC and marching triangles approaches, several IS meshing algorithms are
based on constrained Delaunay triangulation. Chew [1993] presents a technique to
create high-quality triangular meshes for curved surfaces by generalizing Delaunay
triangulation. A high-quality mesh refers to triangles that have angles between 30
and 120 degrees and for which the triangle density can be controlled according to the
curvature of the surface. Starting from a crude triangulation, the Delaunay property
is checked for all triangles. The mesh is updated by subdivision steps or edge flipping
until the desired quality is reached. Rineau and Yvinec [2007] have implemented
generic software for meshing algorithms based on the notion of constrained Delaunay
triangulation and the Delaunay refinement paradigm, which are available in the CGAL
library [CGAL 2014].

One feature that is common to all of the regular approaches mentioned is that
they are not adapted to local surface properties. Large numbers of small triangles are
required to approximate surfaces with large variations in curvature.

5.2. Adaptive Meshing

Meshes are described as adaptive when triangles are created relative to characteristics
of the surface. Size and density of polygons are related to surface properties such as
curvature or features. In adaptive polygonization methods, there is a larger number of
triangles in regions of high curvature or in the presence of sharp features. Conversely,
in more flat regions, triangles are larger and there are fewer of them.

This section describes several algorithms that produce adaptive meshes. First we
describe approaches that are based on adapting existing meshes, then we discuss
approaches that are designed to create new adaptive polygonizations directly from the
surface.
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5.2.1. Remeshing. Remeshing approaches create new triangles from a previously de-
fined mesh. This is generally motivated by either speed considerations or availability
of data (e.g., medical scans).

There are two main types of remeshing algorithms: those that do not make further
calls to a defining function, which are designed to be faster and can be used where no
further information is available (e.g., scan data), and those that must make additional
evaluations (e.g., with defining functions).

Without further calls to the implicit function. Several methods perform global mod-
ification of an existing mesh. Feature-sensitive remeshing techniques [Vorsatz et al.
2001; Wood et al. 2002; Attene et al. 2003] can be applied to meshes generated using
MC-style approaches without using any further IS information.

Vorsatz et al. [2001] present several triangle operators that are applied to improve
the mesh. This approach was also used by Kobbelt and Botsch [2003] to generalize
sensitive remeshing techniques as a reverse engineering tool and complement previous
work (i.e., extended MC) [Kobbelt et al. 2001].

Remeshing can be restricted to specific areas, such as around sharp features. Attene
et al. [2003] present a remeshing method sensitive to sharp features based on a simple
filter called Edge-Sharpener. The filter starts by classifying mesh edges, vertices, and
triangles. Smooth areas are clustered to identify the triangles located near or at sharp
features. Triangles at sharp features are subdivided and their vertices are optimized
using a process similar to Ohtake and Belyaev’s normal error minimization [Ohtake
and Belyaev 2002]. (Ohtake’s method works correctly over regular or almost regular
meshes, so it cannot be used over adaptive triangulations. In addition, it depends on
the initial mesh sampling correctly identifying all sharp features).

Spatial decomposition techniques can also introduce nonexistent topological fea-
tures, such as unwanted handles, in the polygonal mesh. This problem can be solved
by using the technique from Wood et al. [2002] for remeshing. First, handles are found
using a Reeb graph representation. Then, the significance of handles is evaluated and
erroneous ones are identified and removed. Reducing and removing unnecessary topo-
logical features allows a better approximation for other mesh processing techniques,
particularly mesh compression algorithms.

Requiring further calls to implicit function. Another approach to generate adaptive
meshes of IS is to improve the polygonal approximation at the cost of additional field
evaluations. These methods use the result of an existing polygonization algorithm (most
of the time using marching tetrahedra). Several steps are performed on the mesh to
improve its quality, to be more sensitive to sharp features, and to become adaptive or
topologically correct.

Rösch et al. [1997] present a post-remeshing technique based on WH-style particle
[de Figueiredo et al. 1992; Witkin and Heckbert 1994] energy minimization, where
repulsion and attraction forces are applied to mesh vertices to optimize their placement
and therefore the quality of the mesh. Particles are modeled as a surface-constrained
mass-spring system. Surface constraints include curvature and singularities.

Another particle-based method was proposed by Persson [2005] to generate unstruc-
tured simplex meshes for implicitly defined surfaces. Prior to polygonization, a mesh
size function is computed to specify the desired size of the elements. This function
is adapted to the curvature and the feature size of the surface. The node locations
are calculated by solving a force equilibrium in a truss structure (using piecewise lin-
ear force-displacement relations), and the boundary nodes are projected using the IS
definition. The mesh topology is then determined by the Delaunay algorithm that tri-
angulates the optimal set of nodes. This algorithm typically produces meshes of very
high quality and is simpler than other meshing techniques found in the literature. Due
to its iterative nature, the algorithm is well suited for level set method applications in
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Fig. 10. Adaptive meshing using subdivision over MC triangles [Neugebauer and Klein 1997].

Fig. 11. Ohtake remeshing technique over MC: Ohtake et al. [2001] (a) and Ohtake and Belyaev [2002] (b).

fluid dynamics, shape optimization, and structural deformations. The software of this
approach is made publicly available in MATLAB/C++ code under the name of DistMesh
[Persson 2014].

Neugebauer and Klein [1997] combine a subdivision-based method with the discrete
MC from Montani et al. [1994a], which uses an MC alternative lookup table [Montani
et al. 1994b] generating less triangles and solving some ambiguous configurations. The
original coarse mesh was subdivided to produce an adaptive triangulation that better
approximates the IS. The coarse mesh is improved by shifting the vertices into the
center of gravity of surrounding polygons. Then, vertices located on a coplanar surface
or along almost collinear edges are removed. Finally, a fixed number of subdivision
iterations is applied to mesh triangles, as shown in Figure 10.

Ohtake et al. [2001] used a combination of techniques to produce good approximations
of sharp features (Figure 11). The optimization is made on mesh vertices combining
the use of three forces similar to a WH particle system. Two forces are used to optimize
vertices using the implicit function value and its gradient. A third is applied to improve
mesh regularity using a Laplacian smoothing operator. The resulting mesh better
approximates sharp features and is of higher quality regarding regularity at the cost
of several iterations of the local operator.

Ohtake et al. also proposed a different approach Ohtake and Belyaev [2002] based
on the dual primal mesh concept, which consists of two steps. The first creates the dual
mesh based on vertices created from triangle centroids that are projecting over the
surface. This is in contrast to directly using the vertices obtained by MC as was done
by the Neugebauer and Klein [1997] approach. Then, the second step optimizes the
modified mesh vertices by minimizing a quadratic energy function using a Garland-
Heckbert error metric [Heckbert and Garland 1999]. This step is a common mesh
decimation technique that can be applied to any polygonization result to generate an
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optimal triangulation better approximating curvature variations. During these two
steps, curvature-weighted vertex resampling (similar to the Laplacian smoothing) and
adaptive mesh subdivision procedures are performed, depending of the normal devi-
ation. Although this method produces good results, it requires a fine initial mesh to
retrieve all shape measures and results in many calls to the implicit function during
the post-remeshing process. A similar approach is followed by Peiró et al. [2007] that
also mixes Laplacian smoothing with local modifications such as side swapping. It also
includes an optimization step using a curvature estimation of the surface for triangle
side collapsing.

5.2.2. Meshing. Many adaptive techniques do not need an initial polygonal represen-
tation. They examine the definition of the surface directly to create the mesh. The
traditional approaches of spatial decomposition and surface tracking are both used to
create adaptive meshes. The algorithms, however, are adapted to have more consider-
ation of surface properties and create triangles accordingly.

Spatial decomposition. Velho et al. [1999] present a unified and general tessellation
algorithm for parametric and IS. It generates an adaptive mesh using controlled sub-
division. The algorithm starts by creating a simplified uniform spatial decomposition
creating a coarse triangulation. Afterward, a refinement step is performed, sampling
the edges and subdividing the triangulation to better approximate the shape.

Galin and Akkouche [2000] propose a method leading to an adaptive mesh for visu-
alization of skeletal-based IS for modeling operations. The algorithmstarts by creating
an octree using a subdivision criteria based on the Lipschitz condition [Kalra and Barr
1989]. The Lipschitz property allows culling of empty cells and identification of cells
that needed to be subdivided. Cell polygonization is performed using a lookup table
similar to marching tetrahedra [Bloomenthal 1994]. Adjustments are proposed to cor-
rectly deal with ambiguities and adaptive cell sizes. When ambiguities are detected,
cell subdivisions are required to avoid cracks on the final mesh.

Paiva et al. [2006] present an algorithm to generate an adaptive mesh that captures
the exact topology of the IS. The algorithm starts by building an octree using three
subdivision criteria based on the interval analysis of the implicit value and its gra-
dient. The first criterion discards empty cells using interval arithmetic. The second
uses the gradient value to identify topological features. Then, the third criterion esti-
mates the curvature from the interval analysis of the gradient. This method is similar
to the approach of Azernikov and Fischer [2005] (Section 4.2) that creates an octree.
The mesh is then generated using a version of dual MC [Schaefer and Warren 2004]
(Section 4.2), which uses a Lewiner et al. [2003] MC implementation. Finally, mesh
vertices are shifted by vertex relaxation using the tangent plane defined by the nor-
mal and the barycenter of neighboring points. This method presents adaptive meshes
with guaranteed topology or point to the user ambiguous parts, which can be solved
by further refinements. However, it only applies to algebraic surfaces with C2 conti-
nuity, as its subdivision criteria cannot handle implicit functions with a zero length
gradient.

Bouthors and Nesme [2007] present an adaptive meshing method for dynamic im-
plicit models also relying on dual representation. The first is a mechanical mesh, which
is a coarse mesh approximation generated by MC that is optimized using a particle
system. Optimization creates a regular sampling of the surface and better approxi-
mates sharp features using the method from Ohtake and Belyaev [2002]. Finally, the
visualization is offered through a second mesh, named the geometric mesh. This mesh
is obtained by applying successive subdivision steps on the mechanical mesh. The sub-
division criteria uses the normal vector and implicit gradient analysis. This approach
presents smooth and adaptive mesh results as depicted in Figure 12; however, only
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Fig. 12. Dual MC extension proposed by Paiva et al. [2006] (a) and adaptive mesh generated by Bouthors
and Nesme [2007] (b).

implicit models with few primitives (i.e., metaballs, convolution, skeleton-based mod-
els) can be supported. Major topological changes of the implicit function cannot be
approximated by this method (e.g., disjoint elements).

Gois et al. [2008] use a partition of unity implicits method to produce an IS rep-
resentation. This method produces an adaptive triangulation for complex topological
models and correctly identifies sharp features. The method couples the polygonization
process with the implicit representation thanks to an adaptive structure named JA

1
triangulation. The JA

1 triangulation allows the association of spatial decomposition
with an adaptive surface extraction algorithm. The algorithm starts by subdividing
the implicit function domain using the JA

1 triangulation. For each JA
1 block, a local

approximation is generated and a recursive subdivision of the domain is performed.
Sharp features are detected using the same classification as Kobbelt et al. [2001] and
approximated using a method similar to Ohtake’s MPU [Ohtake et al. 2003]. The tri-
angulation is obtained from the JA

1 definition, and a mesh enhancement is applied,
displacing vertices. This method generates an adaptive representation and correct
sharp feature approximation. The triangulation, however, is of poor quality when com-
pared to other similar spatial decomposition techniques due to the nature of the JA

1
triangulation.

Tetrahedral cell decomposition was used to achieve an adaptive mesh by Hall and
Warren [1990]. Algebraic IS are polygonized using a recursive tetrahedron-based adap-
tive spatial subdivision method. This approach was extended by Hui and Jiang [1999]
to present an adaptive marching tetrahedral algorithm for bounded implicit patches.
The patch is initially enclosed by a tetrahedron that is subdivided according to vertex
value classifications. Ambiguous tetrahedron/surface intersections are further subdi-
vided, which results in an adaptive polygonization. Crespin [2002] also proposes an
algorithm based on tetrahedra. This method has the limitation of generating a dy-
namic triangulation for VIS [Turk and O’Brien 1999] using incremental Delaunay
tetrahedralization. An extended bounding box is created using the constraint points of
the implicit model, which is subdivided into tetrahedra instead of cubical cells. A refine-
ment criterion based on the tetrahedron’s circumscribing sphere is used to subdivide
the tetrahedron, being triangulated in a method similar to Bloomenthal’s approach.

These methods are able to produce adaptive meshes thanks to nonuniform spatial
subdivision. The method presented by Paiva et al. [2006] is the only one that uses local
implicit characteristics such as curvature as criteria for the subdivision. This is also
partially true regarding the method used by Gois et al. [2008], as it generates its own
IS representation. The resulting mesh produces ill-shaped triangles due to the nature
of the JA

1 triangulation. The other methods try to identify the correct topology of the
surface by applying subdivision for a more robust surface/cell intersection classification.

Surface tracking. Surface tracking algorithms such as the marching triangles from
Hilton and Illingworth [1997] and Hartman’s [1998] approach present more controlled
and regular meshes than spatial decomposition methods. This is because the samples
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Fig. 13. Adaptive meshes using surface tracking. (a) Karkanis using geodesic-based curvature estimation
[Karkanis and Stewart 2001]. (b) Cermák adaptive edge spinning [Cermák and Skala 2004].

evaluate and follow the surface rather than examine the space surrounding the object.
Regularity reveals to be a problem when the edge step is not small enough to correctly
approximate a high-curvature surface area. On the other hand, it may produce too
many triangles on a low-curvature area. The following approaches extended surface
tracking methods to produce an adaptive mesh that better approximates the IS.

Akkouche and Galin [2001] present an extended version of Hilton and Illingworth
[1997] marching triangles. The algorithm produces an adaptive mesh and supports
local repolygonization when minor changes are applied to the implicit function. The
algorithm is divided into two phases. The first phase is the growing phase that adds val-
idated, nonintersecting triangles to the mesh when expanding an edge—for instance,
there is no triangle in the circumscribing sphere with the same orientation. Then,
the second phase closes all cracks that remain from the growing stage. The adaptive
mesh is achieved by constraining triangle edge lengths to local surface characteristics
using both a midpoint projection heuristic and Delaunay triangulation properties. The
drawback of this method is that it does not correctly approximate sharp features.

Karkanis and Stewart [2001] (Figure 13) present a similar method to Akkouche and
Galin. They use a local curvature measure to define the edge length of the expansion
rather than edge midpoint projection over the surface. The radius of curvature is the
local measure that is computed using the minimum geodesic lying in the normal plane.
The radius is computed using the angle between the surface normal and geodesic
normal. In contrast to Akkouche’s method, gap closing can create additional points to
produce a smoother edge length transition. It uses vertex relaxation, convex filling,
edge flip, and subdivision.

Even with the use of a more reliable curvature estimator, both Akkouche and
Karkanis’ methods presented earlier are not able to correctly support sharp features.
McCormick and Fisher [2002] present an improvement to marching triangles that
is more sensitive to sharp features, such as edges and corners. This is done by con-
straining the marching triangles approach with the detection of C1 discontinuities.
The detection of features creates a set of seed points for the algorithm to create correct
approximations using line fitting for edges.

De Araújo and Jorge [2005a] present a surface tracking algorithm to generate adap-
tive triangulation of smooth VIS. A front-based propagation approach is used, based on
Hartmann [1998], instead of marching triangles. In a single step, this algorithm gen-
erates a mesh adapted to the local curvature of the IS. Starting from a seed point, the
front propagation generates newpoints updating the border of the triangulation. New
points are created at a given distance from the front related with an heuristic based on
the curvature of the IS. The curvature is extracted from the Hessian matrix, which is
computed with the second-order partial derivative of the implicit function. Compared
to the Karkanis and Stewart [2001] curvature estimator using the minimum geodesic,
this solution provides a more reliable curvature estimator with less computational cost.
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On the other hand, the triangle density of the mesh can be controlled using the cur-
vature heuristic scalar; however, it does not correctly reproduce sharp features. This
is due to using a fixed step value to create the new points when the curvature cannot
be extracted. This method was adapted to support MPU and other algebraic implicit
models in de Araújo and Jorge [2005b]. Instead of relying on front propagation, this al-
gorithm is based on point expansion. By doing so, it avoids the cost of managing fronts
that can be merged or split, such as in Hartmann’s original algorithm. This approach
takes advantage of the MPU octree to propose a faster method of collision detection
during mesh generation.

Cermák and Skala [2004] also present an adaptive extension of the edge spinning
algorithm (Figure 13(b)). The logic of the algorithm remains the same as in the original
version. The radius, however, is used to place the new vertex when the edge spin
is variable. The radius is computed using a curvature estimation based on normal
vectors. A root-finding adjustment is performed to better approximate sharp features
computing the intersection of three planes: two from the existing tangent and the other
from the circle. The accurate location of the sharp point is made by binary subdivision.
As depicted in Figure 13, the resulting mesh has a better approximation of sharp
features than other surface tracking methods. The improvements also decrease the
number of triangles with a poor aspect ratio. But only few results are presented by the
authors, and the method’s reliability with more complex IS models is not illustrated.
This algorithm has been extended in Cermák and Skala [2007] to polygonize disjointed
IS. This is done by sampling the surface using a regular grid with a cell size proportional
to the smallest object.

Using the same sampling approach, Cheng et al. [2004] propose an adaptive method
relying on Delaunay triangulation to polygonize smooth and compact surfaces without
boundaries. First, they start by sampling the surface to define a set of seed points for
the algorithm. Points are added to the Delaunay triangulation by using a geometric
sampling. The quality of the triangulation is improved using the Chew [1993] approach
(Section 5.1). Finally, the adaptive mesh is obtained by smoothing the triangulation
according to a threshold. The threshold uses vertex dihedral angles to represent a local
estimation of the curvature.

Following the ideas of Cheng et al. [2004], Dey and Levine [2007] proposed an adap-
tive meshing method for isosurfaces. Starting from an initial 3D Delaunay triangula-
tion, they recover a “rough” version of the surface. Delaunay-based criteria are applied
at each vertex insertion, and poles estimate the scale of local features. A refinement
process is then performed over the mesh from the Delaunay triangulation. This method
does not require that Delaunay is applied at each insertion; only the previous mesh
and pole values are used to produce the final adaptive mesh.

Using the approach proposed by Chew [1993] (Section 5.1), Boissonnat and Oudot
[2005] proposed an adaptive meshing algorithm for sampled surfaces. It can be applied
to IS that are C2 continuous and for which gradients do not vanish. First, they search
for the set of points on the surface that have horizontal tangent planes—that is, the
critical points of the function with respect to the height function. These critical points
are identified using the generalized normal form modulo if the IS is polynomial or using
interval analysis if the function is not. Following a surface tracking approach, trian-
gles are added by finding a point with the smallest radius of curvature. At each step,
the Delaunay property is certified over the incremental mesh. This method presents
a topologically correct adaptive meshing; however, no global timing is presented in
the article—only comparative relationships with the Delaunay triangulation. The al-
gorithm does not correctly approximate sharp features.

A similar approach is presented by Schreiner and Scheidegger [2006] with their
Afront algorithm. First, they sample the surface according to the curvature using a
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guidance field function [Schreiner et al. 2006]. Then, these points are used as seeds
for a front propagation algorithm. The resulting mesh combines high-quality triangles,
adaptivity, and fidelity. Unfortunately, depending on the implicit definition, models
polygonized within seconds using MC require minutes using this approach. Following a
surface tracking approach as well, Xi and Duan [2008] produced a curvature-dependent
semiregular mesh approximating sharp features correctly while supporting disjoint
implicit components. Point seeds are created on all disconnected elements of the surface
by a regular grid sampling. Then, sharp features are detected, creating new point seeds.
These seed are prioritized depending of their curvature and are subsequently expanded,
generating the triangular mesh. For each new triangle, the Delaunay face property is
verified, forcing the property that the intersection of the local Delaunay sphere with
the isosurface is a topological disk. This is done by evaluating the normal variation
among several points inside the Delaunay sphere.

The algorithm of Meyer et al. [2007] generates an adaptive mesh with nearly regular
triangles mixing Delaunay criterion with a dynamic particle system. Starting from
an isosurface description, the medial axis of the surface is extracted using all grid
points. A sizing field is then created based on the maximum curvature extracted from
the Hessian matrix of an implicit function approximating the isosurface. The sizing
field is sampled, generating particles that are distributed with a density related to the
curvature of the surface and are projected on the surface using the iterative Newton-
Raphson gradient descent method. Finally, the distribution of particles is triangulated
using the Delaunay triangulation method. Several examples of biological datasets were
tested, producing high-quality adaptive meshes. The drawback consists of the method
being time consuming (complex models require several hours) and unsuited to repro-
ducing sharp features, as the sizing field is smoothed and the implicit representation
is continuous.

Gelas et al. [2009] introduced a two-stage adaptive mesh algorithm that minimizes
distance error while preserving topology and sharp features. The algorithm applies
a Delaunay triangulation to a random sampling of the surface. This is then refined
by minimizing the local geodesic distance using a quadric error metric and flipping
the edges that fail the Delaunay criterion. This algorithm only uses both implicit and
gradient values and estimates the geodesic by analyzing the normal of several sampled
vertices. The final result is an adaptive mesh with good triangle edge ratios and good
reproduction of sharp features.

6. DISCUSSION ON POLYGONIZATION

Table I presents a classification of existing polygonization approaches comparing pri-
mary motivations: speed, topology reproduction ability, quality of sharp feature approx-
imation, surface curvature approximation (smoothness), and the quality of the mesh.
We choose a qualitative classification focusing on each of these topics to compare the
different methods, as more objective metrics are hard to achieve. This is mainly due
to the lack of available implementation and different hardware configurations used to
assess the performance of each method. In addition, most of the existing approaches
are not demonstrated using a consistent IS dataset—that is, the complexity of the
surface is heterogeneous as well as its provenance (algebraic or volume data) and the
underlying IS representation. Based on the algorithmic sampling strategy, on the re-
sults presented in each paper and the data (IS) used to demonstrate the approach, we
devised a relative scale for each primary motivation and classify the examined meth-
ods whenever possible, providing an overview of the existing work on polygonization
presented in this survey. Each topic presented in this table is discussed separately in
the following sections, allowing us to recommend some methods based on these pri-
mary criteria. Finally, the discussion of these topics appears summarized in Table II,
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Table II. Exemplar Methods for Each Category

Topology Features

Stander and Hart [1997] Vorsatz et al. [2001]
Nielson [2003] Kobbelt and Botsch [2003]
Nielson [2004] Ohtake and Belyaev [2002]
Boissonnat and Oudot [2005] Attene et al. [2003]
Renbo et al. [2005] Varadhan et al. [2004]
Varadhan et al. [2006] Varadhan et al. [2006]

Kazhdan et al. [2007]
Gelas et al. [2009]

Smoothness Mesh Quality

Akkouche and Galin [2001] Karkanis and Stewart [2001]
Karkanis and Stewart [2001] de Araújo and Jorge [2005a]
de Araújo and Jorge [2005a] Cermák and Skala [2007]
Cermák and Skala [2007] Ohtake et al. [2001]
Vorsatz et al. [2001] Ohtake and Belyaev [2002]
Kobbelt and Botsch [2003] Peiró et al. [2007]
Ohtake and Belyaev [2002] Vorsatz et al. [2001]
Meyer et al. [2007] Kobbelt and Botsch [2003]
Xi and Duan [2008] Meyer et al. [2007]
Gelas et al. [2009] Gelas et al. [2009]

presenting recommended methods regarding each topic. We would like to stress that
this summary does not aim to limit or constrain choice to a particular approach. How-
ever, we seek to present exemplar methods addressing a given polygonization require-
ment according to the research described in this survey.

6.1. Speed Issues

If the primary motivation is for a fast polygonization, we can see that the fastest
algorithms belong to the spatial decomposition set of algorithms.

Surface tracking algorithm performance times highly depend on the surface being
polygonized. Timings are not consistent, and the algorithm ends when the complete
surface is covered by the mesh. Depending on the simplicity of the model, there are
numerous surface tracking algorithms that can be as fast as spatial decomposition
algorithms. Fewer IS evaluations are needed for simple surfaces, and a better triangle
distribution is produced. The main concern regarding surface tracking algorithms is to
guarantee that mesh overlap is avoided during expansion. This is achieved using fast
collision detection tests.

Algorithm speeds for remeshing approaches depend on the complexity of the mesh
and the area to be covered. The number of triangles, or vertices, and the quality of the
initial mesh are important. A full spatial decomposition does not always need to be per-
formed before applying remeshing techniques. Traditional spatial subdivision requires
a standard, surface-wide level of detail to identify small features of the surface. Some
remeshing approaches use a lower-resolution subdivision and target specific areas of
the surface. Therefore, some approaches may have comparable timing results to spatial
decomposition techniques [Neugebauer and Klein 1997; Ohtake and Belyaev 2002].

6.2. Topology Issues

Topology concerns are particularly important for isosurfaces extracted from scan data.
Polygonization algorithms cannot solely guarantee the isotopy between an IS and its
polygonal representation. The most successful spatial subdivision algorithms concern-
ing topology have been specifically designed with scan data in mind [Bloomenthal
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1994; Montani et al. 1994b; Chernyaev 1995; Hege et al. 1997; Lopes and Brodlie 2003;
Nielson 2003; Renbo et al. 2005]. Wood et al. [2002] present the best remeshing tech-
nique, although it does not provide any guarantees.

Topological guarantees are mostly offered by methods studying the critical points of
the IS [Stander and Hart 1997; Bottino et al. 1996]. Regarding mesh generation for
isosurfaces, this problem is overcome by using space decomposition improvements to
deal with the topological ambiguities [Lewiner et al. 2003; Nielson 2003, 2004; Renbo
et al. 2005; Raman and Wenger 2008; Dietrich et al. 2009b].

When considering topology, our analysis has also included the potential for algo-
rithms to identify nonconnected elements. Some spatial decomposition techniques
[Wyvill et al. 1986; Bloomenthal 1994; Lorensen and Cline 1987] depend on a seed
cell that intersects the surface to start the polygonization process. They cannot iden-
tify disconnected surfaces given volume data, but they can when searching from every
implicit field generator, such as when using implicit skeletons. For an in-depth discus-
sion on this point, please see Bajaj et al. [1999].

In addition, some surface tracking techniques use the same principle as far as identi-
fying a point on the surface to start the calculation, and also do not correctly identify all
topological concerns [Hilton et al. 1996; Cermák and Skala 2002; Akkouche and Galin
2001; Karkanis and Stewart 2001]. The topological basis used by the Delaunay-based
methods [Boissonnat and Oudot 2005; Cheng et al. 2004; Dey and Levine 2007] could
be used to overcome these issues.

6.3. Sharp Features

Implicit polygonization techniques often miss important qualities of the surface, par-
ticularly sharp features. Some methods from both spatial subdivision and adaptive
mesh approaches are designed specifically to identify and adapt the polygonization of
features. Spatial subdivision techniques were extended to specifically identify sharp
features, and some techniques have excellent results [Chernyaev 1995; Wyvill and van
Overveld 1996; Lewiner et al. 2003; Lopes and Brodlie 2003; Nielson 2003; Varadhan
et al. 2003, 2004, 2006; Kazhdan et al. 2007]. Remeshing techniques are often designed
specifically to improve sharp feature approximation [Vorsatz et al. 2001; Ohtake and
Belyaev 2002; Kobbelt and Botsch 2003; Attene et al. 2003]. From the surface tracking
approaches,only Cermák and Skala [2007] and Gelas et al. [2009] propose an adaption
to improve sharp features approximation.

6.4. Smoothness

Spatial decomposition techniques and regular meshing methods are rarely concerned
with the curvature of the surface and representing it by varying triangle sizes. Adaptive
meshing techniques are precisely motivated by capturing local shape characteristics.
Generation of polygons is guided by curvature estimation. Improved techniques are
designed with curvature as a motivation for polygonal construction [Akkouche and
Galin 2001; Karkanis and Stewart 2001; Vorsatz et al. 2001; Kobbelt and Botsch 2003;
McCormick and Fisher 2002; Ohtake and Belyaev 2002; de Araújo and Jorge 2005a;
Cermák and Skala 2007].

Most methods approximate curvature rather than calculate it from the Hessian ma-
trix of the implicit function. Although the Hessian matrix can produce robust curvature
values, the cost is differential geometry calculations, which are as expensive as an im-
plicit evaluation [de Araújo and Jorge 2005a]. Most correct topological approximation
of IS relies on critical point analysis [Stander and Hart 1997; van Overveld and Wyvill
2004; Boissonnat and Oudot 2005]. Several approaches have used Hessian-based cur-
vature analysis for other purposes, such as feature line extraction [Pasko et al. 1988;
Bogaevski et al. 2003; Ohtake et al. 2004].
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6.5. Mesh Quality

Referencing Tables I and II, we can highlight two classes of techniques that produce
the best polygonal approximations in term of mesh quality. These are surface tracking
algorithms [Karkanis and Stewart 2001; Akkouche and Galin 2001; McCormick and
Fisher 2002; de Araújo and Jorge 2005a; Cermák and Skala 2007; Xi and Duan 2008;
Gelas et al. 2009] and remeshing techniques over marching tetrahedra or MC trian-
gulations [Ohtake and Belyaev 2002; Vorsatz et al. 2001; Kobbelt and Botsch 2003;
Rösch et al. 1997; Neugebauer and Klein 1997; Ohtake et al. 2001; Peiró et al. 2007;
Attene et al. 2003]. These algorithms present better adaptive meshes and do not exhibit
the triangulation pattern created by cubical space decomposition. It also is possible to
produce such quality and reproduce sharp features correctly, as it is done by Gelas
et al. [2009]. Surface tracking techniques produce well-defined adaptive meshes and
are more suited to use local shape information such as curvature. On the other hand,
remeshing techniques are identified to be the most complete methods, allowing the
production of an adaptive mesh as well as improving the sharp feature approximation
[Vorsatz et al. 2001; Ohtake and Belyaev 2002; Kobbelt and Botsch 2003; Attene et
al. 2003]. Finally, particle-based methods combined with Delaunay have shown high-
quality meshes in Meyer et al. [2007]. However, this method is slow and does not handle
discontinuities correctly.

7. CONCLUSIONS

In this survey, we have discussed visualization methods for IS with a focus on fast
approaches. Although ray tracing is a high-fidelity and direct visualization technique
that produces the most faithful representations of IS, it is also the slowest and gener-
ally not appropriate for fast interactive visualization. Stylized representations using
NPR and particle systems are applicable in specific circumstances, such as illustrative
visualization, but are not widely used for general purposes.

The most common techniques for fast visualization are based on polygonization,
supported by current graphics hardware focusing on processing of triangles. Thus,
polygonization techniques strive to maintain an acceptable balance between generation
speed and mesh accuracy as a representation of the IS. Therefore, we characterized the
techniques by their primary motivation: either speed of visualization or reusability of
the generated mesh.

IS polygonization algorithms have focused on improving conversion to a linear piece-
wise representation. In this article, we have discussed issues related to visualization,
such as topological correctness, feature sensitivity, smoothness, and visualization or
conversion quality.

Polygonal approaches are able to satisfy concerns related to creating an accurate
surface representation. First, they can guarantee topological correctness and create
a high-quality approximation of surface features such as edges and corners. They
can also create adaptive representations that conform to local shape features such
as curvature. The quality of generated meshes is generally good and can be used
for alternative representations by several applications (i.e., in the scope of computer
graphics or scientific simulation).

We have presented the results of this investigation to help in choosing appropriate
algorithms for specific purposes. Table I presents our findings for comparison and
evaluation purposes when the primary concern is either speed or mesh quality.

From the existing methods, spatial decomposition is generally considered the fastest,
whereas surface tracking and post-remeshing techniques result in the most usable
representations. Although remeshing specific areas of the surface can produce adaptive
meshes quickly, these come at the cost of an extra processing step. Surface tracking
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is the most appropriate strategy, which uses local implicit information during mesh
generation to create a polygonal representation in a single step.

GPU-based polygonizers have already been proposed [Hansen and Hinker 1992;
Johansson and Carr 2006b; Kipfer and Westermann 2005].As for future polygonizers,
these can take advantage of high-throughput processing of many parallel operations
[Shirazian et al. 2012], since graphics hardware is moving away from special-purpose
architectures and toward multicore processing with large cache memories. Thus, new
interest and research will likely come from the granularity of future hardware. Even-
tually, one can foresee a time when there will be no need for polygonizers, as direct
visualization methods, such as ray tracing, will prove to be fast enough. More recent
approaches [Gomes et al. 2010] based on interval approximations and purely numerical
methods may, however, yield practical techniques to render and interact with complexor
ill-defined surfaces.
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