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Abstract. Increased application of structured pattern mining requires a perfect 
understanding of the problem and a clear identification of the advantages and 
disadvantages of existing algorithms. Among those algorithms, pattern-growth 
methods have been shown to have the best performance when applied to se-
quential  pattern mining. However, their advantages over apriori-based meth-
ods are not well explained and understood. Detailed analysis of the perform-
ance and memory requirements for these algorithms shows that counting the 
support for each potential pattern is the most computationally demanding step. 
Additionally, the analysis makes clear that the main advantage of pattern-
growth over apriori-based methods resides on the restriction of the search 
space that is obtained from the creation of projected databases. In this paper, 
we present this analysis and describe how apriori-based algorithms can 
achieve the efficiency of pattern-growth methods. 

1   Introduction 

The rapid growth of the amount of stored digital data and the recent developments in 
data mining techniques, have lead to an increased interest in methods for the explo-
ration of data, creating a set of new data mining problems and solutions. Frequent 
Structure Mining is one of these problems. Its target is the discovery of hidden struc-
tured patterns in large databases. Sequences are the simplest form of structured pat-
terns. 

In the last decade, a number of algorithms and techniques have been proposed to 
deal with the problem of sequential pattern mining. The main approaches to sequen-
tial pattern mining, namely apriori-based and pattern-growth methods, are being 
used as the basis for other structured pattern mining algorithms. However, and de-
spite the fact that pattern-growth algorithms have shown better performance in the 
majority of the situations, its advantages over apriori-based methods are not suffi-
ciently understood. 

In this paper, we study the problem of sequential pattern mining, in order to ex-
plain the main reasons why pattern-growth methods outperform apriori-based ap-



 

proaches. However, a fair evaluation of the methods requires that they have exactly 
the same goals, which is not true for the best-known algorithms, GSP and Prefix-
Span. In order to accomplish our goal, we use a generalization of PrefixSpan (Gen-
PrefixSpan) [2] that deals with gap constraints, and maintains the pattern-growth 
philosophy. From this analysis, we conclude that apriori-based methods may become 
as efficient as pattern-growth methods under specific conditions, and present a new 
apriori-based algorithm – SPaRSe (Sequential PAttern mining with Restricted 
SEarch) that uses both candidate generation and projected databases to achieve 
higher efficiency for high pattern density conditions. 

The rest of the paper is organized as follows: section 2 exposes and formalizes the 
problem, presenting its comparison to Frequent Itemset Mining problem, and an 
analysis of apriori-based and pattern-growth methods when using gap constraints. 
Section 3 describes a new apriori-based algorithm – SPaRSe, which implements new 
procedures for support based pruning, candidate generation and candidate pruning. 
Section 4 describes a complete performance study over synthetic and real-world 
datasets, used to demonstrate our claims and to discuss the advantages and disadvan-
tages of each approach. Section 5 finishes, drawing the most relevant conclusions. 

2   Sequential Pattern Mining 

Sequential Pattern Mining algorithms address the problem of discovering the exis-
tent maximal frequent sequences in a given database. Algorithms for this problem 
are relevant when the data to be mined has some sequential nature, i.e., when each 
piece of data is an ordered set of elements, like events in the case of temporal infor-
mation. 

The problem was first introduced by Agrawal and Srikant [1], and since then the 
goal of sequential pattern mining is to discover all frequent sequences of itemsets in 
a dataset. In particular, an itemset is a non-empty subset of elements from a set C, 
the item collection, called items. In this manner, an itemset represents the set of 
items that occur together. The itemset composed of items a and b is denoted by (ab). 

A sequence is an ordered list of itemsets. A sequence is maximal if it is not con-
tained in any other sequence. A sequence with k items is called a k-sequence. The 
number of elements (itemsets) in a sequence s is the length of the sequence and is 
denoted by |s|. The ith itemset in the sequence is represented by si and the set of con-
sidered sequences is usually designated by database (DB), and the number of se-
quences by database size (|DB|). 

A subsequence s' of s is denoted by s'⊆s. Formally, a sequence a=<a1a2...an> is a 
subsequence of b=<b1b2...bm>, if there exist integers 1

�
i1<i2<…<in

�
m such that 

a1⊆bi1, a2⊆bi2, …, an⊆bin. 
One of the simplest constraints applied in the discovery of sequential patterns is 

the gap constraint. It consists on imposing a limit in the maximum distance between 
two consecutive elements in the sequence. This simple constraint is very useful to 
reflect the impact of some item on another one, in particular, when each transaction 
occurs at a particular instant of time. In this manner, it is possible to specify that an 



 

event has greater impact on near events than on distant ones. When using gap con-
straints, the notion of contained in has to be adapted: a sequence a=<a1a2...an> is a 
δ-distance subsequence of b=<b1b2... bm>, if there exist integers 1 � i1<i2<…<in � m 
such that a1⊆bi1, a2⊆bi2, …, an⊆bin.and ik–ik-1 � δ. Sequence a is a contiguous subse-
quence of b if a is a 1-distance subsequence of b, i.e., the items of a can be mapped 
to a contiguous segment of b. Note that a contiguous subsequence is a particular case 
of δ-distance subsequence and is the most restrictive notion of subsequence. A δ-
distance subsequence s' of s is denoted by s' ⊆ δ s. Using δ=1 eliminates the possibil-
ity of having gaps between consecutive items. In the rest of this paper this is desig-
nated by gap=0. 

2.1   Problem Analysis 

What makes this problem more challenging than frequent itemset mining? It is obvi-
ous that frequent itemset mining is just a particular case of sequential pattern min-
ing, since frequent itemsets are a particular case of sequential patterns – 1-sequential 
patterns. Sequential pattern mining requires, beside the discovery of frequent item-
sets, the arrangement of those itemsets in sequences and the discovery of which of 
those are frequent. 

To understand why there exists a significant increase in the number of potential 
patterns, assume that there is a database to be mined with the minimum support 
threshold set to σ and with n =|C| different items in the item collection, C. The goal 
of frequent itemset mining is to find which itemsets are frequent from the | I | differ-
ent possible existent itemsets, where I is the powerset of C, and its value is given by 
equation (1). 
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To understand the sequential pattern mining problem, let's begin by considering 
that the database has sequences with at most m itemsets and each itemset has at most 
one item. In these conditions, there would be nm possible different sequences with m 
itemsets and  
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different arbitrary length sequences. Similarly, if each itemset has an arbitrary num-
ber of items, there would exist Sm possible frequent sequences with m itemsets, with 
the value of Sm given by equation (3). 
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And, there would exist S sequences in general, as in equation (4). 
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Indeed, the number of different items and the average length of frequent se-
quences are tightly connected: a large number of items in a short sequence may im-
ply a reduced number of frequent patterns, since the probability of the generality of 
items has to be small. In this way, algorithms will run efficiently. The opposite situa-
tion is a large sequence with a reduced number of items, where the probability of 
each element to occur in a large number of sequences is high. This leads to the exis-
tence of many patterns, and consequently a large amount of processing time. The 
concept of database density quantifies this relationship. The database density ( � ) is 
the ratio between the number of existing patterns (F) and the number of possible 
sequences S. 

In practice, the database density depends on the support considered. The density is 
higher when the minimum support thresholds are low, since there are a larger num-
ber of frequent sequences. Another parameter that has impact on the density is the 
set of items existing in the database. On one side, a large number of items allows for 
a potentially large number of different sequences. Since with many distinct se-
quences their probability to be frequent is low, there will exist (all other conditions 
being equal) a smaller number of patterns and the database density will be low. On 
the other side, a reduced number of items generates a smaller number of potential 
sequences, which will be more frequent in the database, increasing the number of 
patterns and consequently the density of the database. Despite the potentially large 
number of sequences (expression (4)), only a small fraction will be, in general, sup-
ported by the database. In particular, there can only exist 1/σ sequences of length m 
that are frequent. Given this discrepancy between the number of different sequences 
and frequent ones, the difficulty of the data mining process resides in figuring out 
what sequences to try and then efficiently finding out which of those are frequent [1]. 

2.2   Analysis of Algorithms 

There are several algorithms for mining sequential patterns. AprioriAll [1], GSP [7], 
SPADE [8], PrefixSpan [5] and Spam [3] are just the simpler ones (simple in the 
sense that they not introduce complex constraints in the mining process). From 
these, GSP and PrefixSpan are the best-known algorithms, and represent the two 
main approaches to the problem: apriori-based and pattern-growth methods. Next, 
we will describe both approaches and compare their advantages and disadvantages. 

Apriori-based Approaches. GSP follows the candidate generation and test 
philosophy. It begins with the discovery of frequent 1-sequences, and then generates 
the set of potentially frequent (k+1)-sequences from the set off frequent k-sequences 
(usually called candidates). The generation of potentially frequent k-sequences (k-
candidates) uses the frequent (k-1)-sequences discovered in the previous step, which 
may reduce significantly the number of sequences to consider at each moment. Note 
that to decide if one sequence s is frequent or not, it is necessary to scan the entire 
database, verifying if s is contained in each sequence in the database. 



 

In order to reduce its processing time, GSP adopts three optimizations. First, it 
maintains all candidates in a hash-tree to scan the database once per iteration. Sec-
ond, it only creates a new k-candidate when there are two frequent (k-1)-sequences 
with the prefix of one equal to the suffix of the other. Third, it eliminates all candi-
dates that have some non-frequent maximal subsequence. By using these strategies, 
GSP reduces the time spent in scanning the database, increasing its general perform-
ance. In general, apriori-based methods can be seen as breath-first traversal algo-
rithms, since they construct all k-patterns simultaneously. Note that, at each step 
GSP only maintains in memory the already discovered patterns and the k-candidates. 

Pattern-growth Methods. Pattern-growth methods are a more recent approach to 
deal with sequential pattern mining problems. The key idea is to avoid the candidate 
generation step altogether, and to focus the search on a restricted portion of the 
initial database. PrefixSpan is the most promising of the pattern-growth methods and 
is based on recursively constructing the patterns, and simultaneously, restricting the 
search to projected databases. An α-projected database is the set of subsequences in 
the database, which are suffixes of the sequences that have prefix α. At each step, the 
algorithm looks for the frequent sequences with prefix α, in the corresponding 
projected database. In this way, the search space is reduced at each step, allowing for 
better performances in the presence of small support thresholds. In general, pattern-
growth methods can be seen as depth-first traversal algorithms, since they construct 
each pattern separately, in a recursive way. 

As pointed in [2], when a gap constraint is used, neither PrefixSpan nor Prefix-
Growth [6] can be applied directly. The generalization proposed – GenPrefixSpan, is 
based on the redefinition of the method used to construct the projected databases. 
Instead of looking only for the first occurrence of the item, every occurrence is con-
sidered. 

Comparison. In order to understand and identify what are the most time consuming 
operations of each algorithm, we have performed a profiling study, recording the 
total time spent by the main steps of each algorithm. Both GSP and GenPrefixSpan 
were executed in a set of datasets with several different values for minimum support. 

As other pattern-growth methods, GenPrefixSpan generally outperforms GSP, and 
has much better results for low minimum threshold support values. In order to un-
derstand why this happens, let us analyze the time spent in each step of GSP when 
using low minimum support values. We have considered the two main steps of GSP: 
candidate generation (which includes the initial step, where frequent 1-sequences are 
discovered; the procedure that defines the sequences potentially frequent and the 
procedure that eliminates some of the candidates) and candidate test (which corre-
sponds to the support pruning and consumes almost the totality of processing time). 

Table 1 shows that the support-based pruning procedure consumes almost the to-
tality of processing time (the experiments are described in the last section). For Gen-
PrefixSpan, the relative results are quite different: the processing time spent in scan-
ning the database is approximately 50% and uses much less time than GSP for low 
minimum support values. 



 

Table 1 – Processing times for  GSP and GenPrefixSpan 

 GSP GenPrefixSpan 

sup Candidate 
Generation 

Candidate 
Test 

Total Find Elements Create  
ProjDB 

Total 

50% 0,01s 0% 3,19s 100% 3,19s 0,88s 50% 0,89s 50% 1,78s

40% 0,01s 0% 4,90s 100% 4,91s 1,33s 53% 1,16s 47% 2,49s

33% 0,02s 0% 9,08s 100% 9,10s 2,01s 55% 1,67s 45% 3,68s

25% 0,02s 0% 17,32s 100% 17,34s 3,40s 55% 2,74s 45% 6,15s

10% 1,26s 1% 157,63s 99% 158,89s 18,71s 58% 13,41s 42% 32,13s

Since both methods spend a large percentage of time scanning the database, what 
makes GenPrefixSpan much faster than GSP? The answer lies in the reduction of the 
search space. In fact, at each recursion step, GenPrefixSpan usually scans a smaller 
database, since the α-projected database has more sequences than the αβ-projected 
database. 

3   The SPARSE Algorithm 

The results of this analysis lead us to analyze the possibility of applying a search 
restriction to apriori-based methods. SPaRSe (Sequential Pattern mining with Re-
stricted Search) is a new algorithm, which combines the candidate generation and 
test philosophy with the restriction of the search space obtained from the use of pro-
jected databases. It acts iteratively like apriori-based algorithms: after discovering 
the frequent elements, it looks for patterns with growing length at each step. It fin-
ishes when there are no more potential frequent patterns to search. The key idea is to 
maintain a list of supporting sequences for each candidate, and to verify the exis-
tence of support only in the subset of sequences that are super-sequences of both 
generating candidates, in a way similar to SPADE [8]. 

Fig. 1 describes the main procedure of SPaRSe. Note that it is identical to the 
main procedure of GSP, since the ���������	��
��� �������	�	� �  procedure agregates the function-
alities of ���	
	�� �����������	
	�	������ ��
 , ���	
	�� �������	������
� 
	�  and ��������������������
� 
	�  in GSP. The dif-
ference to GSP is the fact that SPaRSe generates and tests each candidate separately. 
Procedure ������ ���� �	�  counts the support for one candidate and returns true if it is fre-
quent and false otherwise. This is similar to the behavior of ��������������������
� 
	�  in GSP. 

However, what makes SPaRSe more than a variant of GSP, is the restriction of the 
search space in a way similar to PrefixSpan: it associates each frequent discovered 
pattern with the set of sequences where it appears. This set is called the support da-
tabase. In this manner, it is possible to count the support of a new candidate, only in 
the intersection of the support databases of its parents. Note that the anti-
monotonicity property implies that if a sequence does not support a pattern, then it 
could not support any of its super-patterns. When the support of a candidate is 
counted, only the potential support sequences are scanned. 



 

 
Fig. 1. SPaRSe pseudocode 

In SPaRSe a pattern is not only a sequence in itself, but it contains the informa-
tion that lists the sequences where it occurs, which corresponds to its support data-
base. This simple modification justifies the new procedure for generating candidates 
– �����������	�
����
�	�	��� ������� . This simple inclusion allows for constraining the search con-
siderably, improving the global average performance. However, maintaining support 
databases for each discovered pattern, and for every candidate of length k is expen-
sive in terms of memory. 

A simple way to minimize this problem is to use an array of bits to represent the 
support database. Note that in GenPrefixSpan an α-projected database uses more 
memory (since it also keeps the sequence identification and the index of the α occur-
rence). However, GenPrefixSpan is a depth-first traversal algorithm, which avoids 
having all projected databases in memory at the same time. In the case of breath-first 
traversal algorithms, as SPaRSe, the solution is to redesign the candidate generation 
and test procedure: instead of generating all candidates at once and then testing 
them, it is possible to generate and test them one by one, minimizing the memory 
consumption, which explains the design of the ���������	������� �������	�	� �  procedure. Note that 
with this change, it does not make sense to use sophisticated data structures, as hash-
trees, to count the support for each candidate. Usually, as has been said, apriori-
based algorithms use hash-trees to store all candidates, and scan the database once to 
count the support for all candidates. Generating and testing each candidate sepa-
rately does not require the use of these techniques. 

However, for very low support thresholds SPaRSe does not work better than Gen-
PrefixSpan, spending long times in the candidate generation and pruning. Remem-
ber that apriori-based methods generate k-sequence candidates by joining two (k-1)-
patterns, when the prefix of one is equal to the suffix of the other. This operation 
may consume a considerable amount of time when there are many frequent patterns. 

 

SPaRSe (DB, minsup, δδδδ) 
 L1 � { f r equent  1- sequences}  
 for ( k=2; Lk- 1≠∅; k++)  do 

  patternDiscovery( Lk- 1, DB, mi nsup, δ, k )  
  k  �  k+1 
return ∪k Lk  

 
patternDiscovery(Lk-1,DB,min_sup,δδδδ, k) 

 Lk �  ∅ 
 for each s∈Lk- 1 do 

  for each t ∈Lk- 1 do 
   c � createNewCandidate( s ,  t ,  k )  
   if possibleFrequent( c . sequence,  

            Lk- 1,  k ,  δ)  

     ∧ satisfies( c , mi n_sup, δ)  

    Lk � Lk∪{ c}  
return Lk  

createNewCandidate(a, b, k) 
 c � join( a. sequence, b. sequence, k)  

 c . supDB � c1. supDB ∩ c2. supDB 
return c 

 
join (s, t, k) 

 if ( ∀1 � n � k- 2:  sn+1=t n)  
  return s1…s k- 1t k- 1 

 
possibleFrequent(s,Lk-1,k,δδδδ) 

return( ~∃t ⊆δs∧| t | =k- 1∧t ∉Lk- 1)  

 
satisfies(c, min_sup, δδδδ) 
 s �  c. sequence 
 nr � 0 

 for each t ∈c. supDB do 
  if s⊆δt  nr � nr +1 
return ( nr  sup)  

 



 

This happens, since for every pattern it is necessary to verify which patterns have a 
prefix equal to its suffix. 

To improve the generation of k-candidates, SPaRSe stores all (k-1)-patterns in a 
hash-tree. Fig. 2 illustrates this data structure when storing the different combina-
tions of two elements. When the number of items is large and the database is sparse 
it is useful to use the same leave to store sequences with different prefixes, justifying 
the use of a hash-tree instead of a suffix-tree. 

b a

b b a

b a

bbb bba

a

aaa

b a

abb
(ab)b

aba
(ab)a

 
Fig. 2. Hash-trees for candidate generation and pruning 

In order to generate a new candidate with length k, SPaRSe does not need to 
inspect every (k-1)-candidate. The algorithm takes the suffix of each candidate s and 
follows its path in the hash-tree. The reached sub-tree contains the sequences that 
may match with s to generate a new candidate. Now it is only necessary to verify if 
they really match with s, and then generate new candidates. 

Consider for example the sequence a(ab). Following the path of its suffix <ab> in 
the hash-tree, we discover the sequences that may match with it – abb, (ab)b, aba 
and (ab)a. Note that only (ab)b and (ab)a are really appropriate to join with it, and 
generate two new candidates: a(ab)b and a(ab)a. Fig. 2 shows the followed path with 
a doted line, and the possible matching sequences in the sub-tree inside the dotted 
box. By avoiding testing if any two patterns match, SPaRSe improves its perform-
ance by 50%, for low support thresholds. 

Finally, we have considered a last improvement – the use of a hash-tree to imple-
ment candidate pruning. The key idea of candidate pruning is to eliminate candi-
dates that cannot be frequent, as stated before. However, verifying if every maximal 
subsequence is frequent for every candidate may be prohibitive, especially when low 
support thresholds are used. Like candidate generation, this procedure may use a 
hash-tree to identify the potential frequent patterns. Consider again the hash-tree and 
the candidate (ab)aa. It has three maximal subsequences aaa, baa and (ab)a. Al-
though the first and second ones are frequent patterns (presented in shadowed 
boxes), the third one is not, since it is not stored in the hash-tree. Looking for the 
subsequence's paths in the hash-tree reduces significantly the time needed to make 
this discovery. 

In summary, SPaRSe is an apriori-based algorithm, which follows the candidate 
generation and test philosophy. It has three fundamental differences to GSP: it gen-
erates and tests one candidate at a time, it uses support databases to count the sup-
port for each candidate; and it uses a hash-tree to store frequent patterns. These im-
provements directly contribute to accelerate the candidate generation and pruning 
procedures. 



 

In the next section, it is shown how SPaRSe and GenPrefixSpan algorithms deal 
better with datasets of different characteristics, and that either one of them may rep-
resent the best choice for a particular application. 

4   Experimental Results 

The comparison of sequential pattern mining algorithms over a large range of data 
characteristics, such as different support thresholds, dataset sizes and sequence 
lengths, has been done by several authors (see for instance [2], [7], [8] or [5]). How-
ever, as stated in section 2, the results depend on the dataset density, and to the au-
thors best knowledge, there has been no study about the performance of sequential 
pattern mining algorithms in dense datasets. Our goal in this section is to understand 
the impact of those characteristics in the algorithms' performance. In order to do 
that, we compare the performance of GenPrefixSpan, SPaRSe, and GSP, on several 
distinct datasets, considering all the enumerated characteristics. The performance of 
GSP only serves as a reference line to the performance of the other two algorithms, 
since the execution times are generally much larger than the execution times of the 
other algorithms. Neither PrefixSpan nor SPAM [3] could be used, since they do not 
deal with gap constraints. 

To perform the study over a large range of different characteristics, we used the 
standard synthetic data set generator from IBM Almaden. The datasets used in these 
experiments were generated maintaining all, except one, of the parameters fixed, and 
exploring different values for the remaining parameter. In general, the datasets con-
tain 10.000 sequences (Parameter D of the generator set to 10), with 10 transactions 
each on the average (C=10). Each transaction has on the average 2 items (T=2). The 
average length of maximal patterns is set to 4 (S=4) and maximal frequent transac-
tions set to 2 (I=2). These values were chosen in order to follow closely the parame-
ters usually chosen in other studies. The values for different sequential patterns (Ns) 
and transactional patterns (Ni) were also chosen similarly, set to 5.000 and 10.000, 
respectively. The computer used to run the experiments was a Pentium M 1GHz with 
768MB of RAM. The operating system used was Windows XP. The datasets were 
maintained in main memory during the algorithms processing, avoiding hard disk 
accesses. The next subsections present the performance results achieved using data-
sets with different densities, followed by the studies on different support thresholds 
and different gap values. The section finishes with the scalability studies. 

Performance. The behavior of both algorithms is somehow different for different 
levels of density. As can be observed in Fig. 4(a), GenPrefixSpan achieves better 
results for sparse datasets, but shows performances similar to the ones shown by 
SPaRSe for dense datasets. The main reason for this difference is that SPaRSe does 
not waste so much time generating infrequent candidates for dense datasets. Since 
there are more patterns, both algorithms have to generate a similar number of 
sequences, reducing the difference between their processing times. In terms of 
memory consumptions, as stated before, GenPrefixSpan consumes more memory 



 

than SPaRSe, since it has to maintain multiple indexes for the same sequence and 
the corresponding pattern position for each occurrence. The results show that both 
algorithms consume more memory in processing dense datasets, since the number of 
patterns is higher. The different values for density were achieved by varying the 
number of different items in the dataset from ten to one thousand (N∈{10, 20, 30, 
40, 50, 100, 500 and 1.000}). 

For different minimum support thresholds, the results are consistent. SPaRSe 
equals GenPrefixSpan in dense situations and shows worse results than for sparse 
datasets (Fig. 3(b)). 
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Fig. 3. (a) Per formance and memory requirements vs dataset densities; (b) Per -
formance vs suppor t (dense and sparse datasets); (c) Per formance and memory 
requirements vs dataset sizes; (d-left) Per formance vs gap constraints; (d–r ight) 
Per formance vs sequence length 



 

It is interesting to note that the execution times in sparse datasets are about ten 
times faster than in dense datasets, for all compared algorithms. These results show 
that a great part of the efficiency of GenPrefixSpan is due to its levels of memory 
consumption. In several other experiments, conducted in machines with less avail-
able memory, the results were slightly different, with GenPrefixSpan showing worst 
results than SPaRSe for dense datasets. However, in the presence of machines with 
not much memory (say 250Mb) the results are again worst for SPaRSe. In fact, since 
GenPrefixSpan works in a depth-first manner, it is able to manage hard-disks access 
in a more efficient way. 

When comparing the algorithms for different gap constraints, the results are con-
siderably different (Fig. 4(d-left)). GenPrefixSpan is worst than SPaRSe for less 
restrictive gaps. In fact, while SPaRSe must scan the entire sequences for finding a 
pattern (even if it is not present in the sequence), GenPrefixSpan only has to look for 
the items in the positions near to the already discovered pattern prefix. When gap is 
set to zero, GenPrefixSpan only has to look at the next position, reducing the amount 
of time needed in scanning the dataset. Furthermore, for longer gaps, the number of 
sequences in the projected database increases, which also contributes to reduce its 
performance. 

Scalability. Since the most time consuming operation is scanning the database, the 
results achieved by algorithms for bigger datasets are not surprising. All algorithms 
present worst behaviors for large datasets, but with slightly different patterns of 
growth (Fig. 4(c)). The results show that SPaRSe and GenPrefixSpan present a con-
siderably better performance for very large databases (larger than 10 thousand se-
quences) than GSP. It is interesting to see that GenPrefixSpan consumes much more 
memory than apriori-based algorithms. This difference in memory consumption is 
due to the creation of projected large databases, since GenPrefixSpan has to maintain 
multiple indexes for the same sequence and needs to store the pattern position for 
each occurrence, wasting more memory than SPaRSe. This is clearly most notorious 
for larger datasets. 

Another important factor in the performance of sequential pattern mining algo-
rithms is the average length of sequences. In order to evaluate different situations, 
the generated datasets include sequences with different numbers of transactions. 
Indeed, the sequence length influences the time consumed when looking for each 
frequent candidate. For long sequences (more than 25 itemsets), the probability of 
supporting every element is very high. In this manner, SPaRSe is not able to reduce 
the search space (since the support databases approximately maintain the original 
size) and its candidate pruning does not eliminate a significant number of candi-
dates. On the other side, GenPrefixSpan only has to look for the next position, effi-
ciently dealing with long sequences (Fig. 3(d-right)). 

In summary, the experiments reveal essentially two aspects: GenPrefixSpan out-
performs SPaRSe in sparse datasets, mainly due the time spent on candidate genera-
tion by SPaRSe, but they show similar performances on dense datasets; and GenPre-
fixSpan consumes much more memory than SPaRSe and GSP. The results achieved 
from the analysis of real-world datasets, confirm the differences on the presence of 



 

dense and sparse datasets (due to space limitations, they are not presented here). 
Among our experiments, we have applied both algorithms to mine web-logs (very 
sparse datasets), sequences corresponding to retail customers acquisitions and to 
mine student's curricula (very dense datasets). 

5   Conclusions 

In this paper, we analyze the problem of sequential pattern mining in detail. After 
describing the best-known approaches to this problem (apriori-based and pattern-
growth methods), we show that apriori-based algorithms can be optimized to match 
the execution times of pattern-growth methods. SPaRSe is an optimization of GSP 
that achieves those goals. 

This paper also presents a detailed discussion of the advantages and disadvantages 
of both approaches (apriori-based and pattern-growth methods) conduced by compar-
ing the performance of SPaRSe and GenPrefixSpan in a diversity of artificial and 
real situations. This discussion clarifies the conditions that lead to a better perform-
ance of each algorithm. Since SPaRSe is an optimization of GSP, every constraint 
used by GSP can be applied without any change. Additionally, the use of regular 
expressions only requires the changes proposed in SPIRIT [4]. This makes SPaRSe 
and other candidate generation based methods competitive in conditions where 
restrictions are important. 
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